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Mathematical modeling in the field of glucose metabolism has a longstanding tradition.
The use of models is motivated by several reasons. Models have been used for
calculating parameters of physiological interest from experimental data indirectly, to
provide an unambiguous quantitative representation of pathophysiological mechanisms,
to determine indices of clinical usefulness from simple experimental tests. With the
growing societal impact of type 2 diabetes, which involves the disturbance of the
glucose homeostasis system, development and use of models in this area have
increased. Following the approaches of physiological and clinical investigation, the focus
of the models has spanned from representations of whole body processes to those of
cells, i.e., from in vivo to in vitro research. Model-based approaches for linking in vivo
to in vitro research have been proposed, as well as multiscale models merging the
two areas. The success and impact of models has been variable. Two kinds of models
have received remarkable interest: those widely used in clinical applications, e.g., for
the assessment of insulin sensitivity and β-cell function and some models representing
specific aspects of the glucose homeostasis system, which have become iconic for their
efficacy in describing clearly and compactly key physiological processes, such as insulin
secretion from the pancreatic β cells. Models are inevitably simplified and approximate
representations of a physiological system. Key to their success is an appropriate balance
between adherence to reality, comprehensibility, interpretative value and practical
usefulness. This has been achieved with a variety of approaches. Although many
models concerning the glucose homeostasis system have been proposed, research
in this area still needs to address numerous issues and tackle new opportunities. The
mathematical representation of the glucose homeostasis processes is only partial, also
because some mechanisms are still only partially understood. For in vitro research,
mathematical models still need to develop their potential. This review illustrates the
problems, approaches and contribution of mathematical modeling to the physiological
and clinical investigation of glucose homeostasis and diabetes, focusing on the most
relevant and stimulating models.
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INTRODUCTION

Mathematical modeling in the field of glucose homeostasis
has a time-honored tradition. One of the earliest “minimal”
representations of the glucose-insulin system was published
in the early 1960’s (Bolie, 1961). Before this study, glucose
metabolism was intensively investigated by means of glucose
tracers and using mathematical models. Steele et al. (1956) and
Steele (1959) laid the foundations of glucose tracer modeling,
describing a three-compartment model for the kinetics of labeled
glucose and a single-compartment model for the assessment
of glucose production in non-stationary conditions, which has
become a standard for this purpose and is still in use. In the
preceding years, mathematical theories for metabolic tracers
flourished, e.g., in the Bulleting of Mathematical Biophysics,
founded in 1939. The study of insulin secretion by modeling had
a relatively more recent start, as the insulin radioimmunoassay
was available only since the early 1960’s (Yalow and Berson, 1960).
In the early 1970’s, Grodsky (1972) described a landmark model
of the complex insulin secretion patterns that were observed in
many in vitro and in vivo studies of early β-cell investigation.
Since these early years, the use of mathematical models has been
integrated in the mainstream of metabolic research. The growing
worldwide concern on the societal impact of type 2 diabetes
(T2D), a major disorder of glucose metabolism, has further
stimulated metabolic research, including model-based studies.

In this article, we describe the ideas, problems, approaches,
aims and achievements in the area of glucose homeostasis
through various examples. The number of models in this
area, from biochemical reactions in the cells to clinical trial
simulation, is too large to allow a comprehensive review. A broad
review is that by Ajmera et al. (2013), which discusses a
wide class of models with different applications. Here, we have
preferred to consider a selection of models that we repute
influential in the physiological and clinical investigation of
glucose homeostasis and T2D. Our intended audience includes
scientists from both the mathematical and medical/biological
fields, as this interdisciplinary area requires. With this review,
we hope to enhance the reciprocal interest and trust of
these two groups.

MATHEMATICAL MODELING: IDEAS,
AIMS, AND APPROACHES

Ideas and Aims
The natural idea underlying the use of mathematical models
in physiology, as in other disciplines, is to employ the
successful paradigm of physics for understanding, quantifying
and predicting physiological processes. This paradigm, in
its strict form, has some applications also in the study of
metabolism. The mathematical theories of tracers have shown
that relevant properties of the methodology can be demonstrated
with rigorous methods (e.g., Norwich, 1977; Lassen and Perl,
1979). However, this is a rare case; most models involve
considerable simplifications, which make their usefulness and
success more challenging.

In physiological investigation, mathematical modeling has
been focused on various aims. A humble, though relevant,
aim has been the estimation of quantities that are not directly
measurable. A famous old example is the so-called Fick’s
principle to estimate cardiac output (Lassen and Perl, 1979),
which rests on elementary equations for mass conservation
and convective transport of a substance in a fluid. A similar
need underlay the development of tracer methodologies, such as
the cited Steele’s model (Steele, 1959), or the current standard
model for calculating insulin secretion in vivo (Van Cauter
et al., 1992). This category of models may embed assumptions
that may be very solid, as in Fick’s principle, or not always
appropriate, as for Steele’s model (Cobelli et al., 1987). This
has led to progressive evolution of models for this purpose,
as it has happened for Steele’s model (Radziuk et al., 1978;
Mari et al., 2003).

An extension of this category of models includes widely used
“calculators” of parameters of physiological interest that cannot
be directly assessed or require complex experiments. A well-
known example is the so-called “minimal model” (Bergman
et al., 1979), an essential and approximate representation of
the glucose-insulin homeostasis system aimed at quantifying
insulin sensitivity, i.e., the ability of insulin to stimulate glucose
utilization. Another famous example are the “HOMA” indices
of insulin sensitivity and β-cell function, which originally were
derived from a glucose homeostasis model (Matthews et al.,
1985). The practical usefulness and relevance of these models has
been crucial for their success.

An ambitious approach is to use models as unambiguous
quantitative representations of particular physiological
systems, aiming at elucidating the mechanisms underlying
the observations. A good example is the cited model of insulin
secretion by Grodsky (1972), which successfully described
a series of complex experimental results using a consistent
mathematical representation that provided hypotheses on the
possible mechanisms determining the β-cell response. Another
significant example is the model by Topp et al. (2000), which
proposed an interesting mathematical formalization of the
hypothesis that the decline of β-cell mass in T2D might be a
consequence of damages to the β cells caused by hyperglycemia.
This class of models is potentially of great interest, as it can
provide insightful representations of complex physiological
mechanisms, but it is also at high risk of speculations.

Complete representations of the glucose homeostatic system
are an expected outcome of modeling in this field and
indeed several representations of variable complexity have been
proposed, as discussed below. However, glucose homeostasis
simulators face the difficulty of dealing with a very complex
system, the quantitative properties of which are still partially
unknown. This makes the reliability of these simulators
uncertain. Nevertheless, glucose homeostasis simulators have
been proven helpful to test algorithms for optimal insulin
administration regimens in type 1 diabetes, based on continuous
glucose monitoring or the artificial pancreas (Hovorka et al.,
2004; Dalla Man et al., 2007). A more ambitious model
that extended its predictions beyond glucose homeostasis
(e.g., to complications and pharmacoeconomics) has been the
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Archimedes model (Eddy and Schlessinger, 2003), which received
considerable attention in the recent past.

The use of models to support development of drugs
against T2D is a particular area. This approach, denoted
as pharmacokinetic/pharmacodynamic (PKPD) modeling or
pharmacometrics, and mainly aimed at providing advanced
data analysis in the drug development process (e.g., Lee et al.,
2011; Mould and Upton, 2012), is endorsed by drug regulatory
agencies, such as the Food and Drug Administration. The
typical PKPD approach is thus oriented toward model-based
analysis of experimental data (i.e., it does not consider models
for pure simulation) and employs population methods for the
estimation of the model parameters (Mould and Upton, 2012).
PKPD modeling methods have been used in the field of glucose
homeostasis, with aims not necessarily related to drug testing.
Models are mostly compartmental and often employ standard
submodels of known properties (e.g., Landersdorfer and Jusko,
2008). While assessment of the model ability to describe the
data adequately is a typical analysis step, less attention is paid
to the adherence of the mathematical representation to the
physiological knowledge.

In vitro and in vivo Modeling
Since the early examples mentioned in the Introduction, models
were developed to explain both in vitro and in vivo experimental
data. In vivo models concerning glucose metabolism and
insulin secretion have probably taken the lion’s share. More
recently, however, following the great advancements of in vitro
research, in vitro models, particularly for insulin secretion,
have received remarkable attention, as discussed below. Notably,
using modeling it is possible to interpret in vitro and in vivo
experimental data with unifying mechanisms, when the same
model, with appropriate parameter scaling, can predict both
in vitro and in vivo data accurately. Because the methods
of in vitro research are essential to understand the cellular
mechanisms but cannot be applied to assess the relevance of the
findings in vivo, mathematical modeling offers a way to bridge
these two conditions. This approach has been for instance used
for insulin secretion (Grespan et al., 2018), as discussed later.

Strengths and Weaknesses of
Mathematical Representations
The vast majority of models are based on ordinary differential
equations, with some exceptions using partial differential
equations (e.g., Salinari et al., 2011) or agent based modeling
(Dehghany et al., 2015). The translation of the physiological
mechanisms into a mathematical description has followed,
however, different logics. In particular, the correspondence
between physiology and equations has achieved a variable
degree of neatness.

Some approaches attempt to condense the physiological
complexity into model elements designed to capture the key
physiological features, with a clear correspondence between
the mathematical representation (e.g., the model parameters)
and the physiology. One example is the cited insulin secretion
model (Grodsky, 1972), in which, to describe accurately the

dependence of first-phase insulin secretion on glucose levels,
a characteristic hypothesis on the underlying process and a
transparent mathematical description has been devised.

Other approaches are less concerned with the precise
physiological significance of the equations, focusing on the ability
of the model to describe the data adequately. This attitude
typically accompanies the use of compartmental models, which
can be easily configured and expanded to obtain a sufficient
flexibility to describe the data. While this approach is not
intrinsically flawed, it bears the risk of yielding models with an
unclear or distorted relationship with the physiological system,
as discussed below.

The mathematical representations are strengthened when they
are supported by a formal analysis of their characteristics, which
contributes to clarify the role of assumptions. This has been done
occasionally for some models (e.g., Cobelli et al., 1987; Mari,
1997). For the minimal model, a formal analysis (Mari, 1997) has
provided explanations for several issues encountered during its
numerous applications.

Success and Failure
Discussion of success and failure of models may be arbitrary
and futile, as non-scientific aspects often influence these
outcomes. Nevertheless, some remarks might be useful to
improve reciprocal understanding between the experimental and
modeling communities.

Perhaps the most successful models are those with a clear
usefulness for various aspects of data analysis. The article
describing the HOMA model (Matthews et al., 1985), which
provides an easily computable index of insulin resistance, has
received over 21,000 citations; the minimal model (Bergman
et al., 1979), which has been used for insulin sensitivity
assessment in may studies, over 1,300 citations; Steele’s model
for tracer analysis (Steele, 1959) has been cited more than 1,800
times. A less striking but remarkable number of citations was
received by several other models designed for data analysis, such
as the model for calculating insulin secretion from C-peptide
(Van Cauter et al., 1992) and the methods for assessing insulin
sensitivity and β-cell function from an oral glucose tolerance test
(Mari and Ferrannini, 2008; Cobelli et al., 2014). A message from
these experiences is that models that provide relevant support to
experimental data analysis are well received.

On the other hand, the success of models of remarkable
mathematical sophistication and not oriented toward practical
applications in experimental data analysis is of particular
interest: it emphasizes the capacity of mathematical modeling to
provide interesting interpretations of unexplained phenomena,
which may be illuminating even beyond their adherence to
the experimental data. Examples are the mentioned models of
insulin secretion (Grodsky, 1972) and β-cell failure in T2D
(Topp et al., 2000).

On the other side of the coin, indubitably some models
may be an exercise with a weak rationale. Models with
a poor relationship with experimental data and embedding
questionable assumptions have a good reason for being ignored.
Sometimes, however, modeling studies may be underappreciated
due to the difficulty, inherent in the mathematical language, of
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FIGURE 1 | Scheme of the main mechanisms of glucose homeostasis. Mass fluxes are indicated as black solid arrows. Colored dashed arrows represent control
signals (glucose or hormone concentrations) that regulate glucose fluxes or insulin and glucagon secretion. The scheme does not show adaptive control
mechanisms (e.g., insulin secretion upregulation with insulin resistance).

communicating the fundamental results to a wider community.
An important ingredient of success is thus to make the
description of the model and its fundamental properties
understandable to non-mathematical readers and to highlight the
significance of the model in the research context.

PHYSIOLOGICAL BACKGROUND

Glucose Homeostasis
This review focuses on models relevant for the study of
glucose homeostasis, in which glucose metabolism and insulin
secretion are the fundamental components. The glucose
homeostatic system has received remarkable attention because
its derangements lead to T2D, a pathology with a high
societal burden.

The glucose homeostatic system is highly complex. Some
mechanisms, such as glucose utilization in response to increasing
insulin levels, have been widely studied and are quantitatively
well characterized. Other aspects, such as the control of glucose
production and the role of the central nervous system, are less
clear. Poorly understood but very important aspects concern the
relative role in the control of glucose levels of the various glucose
homeostasis processes and the mechanisms underlying glucose
tolerance deterioration that lead to overt T2D.

Glucose homeostasis is governed by an adaptive feedback
control system. It includes some basic feedback loops and
higher-level processes that affect the feedback loop characteristics

to ensure tighter control. The adaptation capacity of the
glucose homeostatic system is remarkable, as it can cope with
wide variations of the subject’s conditions, such as obesity,
starvation and pregnancy.

Figure 1 is an essential representation of the glucose
homeostatic system. Glucose levels are maintained by a balance
of glucose delivery to the glucose pool (absorption from the
intestine and production by the liver) and glucose utilization.
Glucose utilization has an insulin-independent component
(mainly in the central nervous system) and an insulin-dependent
component (mainly liver, muscle, and adipose tissue). Glucose is
excreted in the urine by the kidneys if glucose concentration is
above a certain threshold. Glucose absorption from the intestine
is not regulated by insulin, while hepatic glucose production
and glucose utilization are directly controlled by insulin and, for
production, by glucagon. Insulin and glucagon exert opposite
actions: glucagon stimulates glucose production while insulin
stimulates glucose utilization and inhibits glucose production.

Insulin and glucagon constitute the core feedback signals in
the system. Glucose stimulates insulin secretion by the pancreatic
β cells (and thus increases the insulin levels) and, together with
insulin, suppresses glucagon secretion by the pancreatic α cells.

In normal life at fasting, the glucose level is maintained by
balancing glucose production and utilization (mostly occurring
in the central nervous system in this condition), through the
contrasting actions of glucagon and insulin. When glucose
decreases, insulin decreases and glucagon increases, leading to
a compensatory increase in glucose production and decrease
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in glucose utilization. Opposite reactions take place when
glucose increases.

With carbohydrate ingestion, glucose concentration increases
due to glucose influx from the gut and the increase is
counteracted by the same mechanisms described above. With
nutrient ingestion, however, another mechanism contributes to
glucose lowering, the so-called entero-insular axis or incretin
system. The passage of nutrients in the intestine stimulates
the secretion of two hormones produced by specific intestinal
cells, denoted as GIP and GLP-1 or incretin hormones, which
potentiate insulin secretion. GLP-1 also inhibits glucagon
secretion, thus further suppressing glucose production.

While these multiple feedback loops control glucose
concentration during fasting and feeding in normal conditions,
the adaptive mechanisms take place when the conditions are
altered, such as with weight gain. Weight gain typically causes
insulin resistance, i.e., hampers the ability of insulin to enhance
glucose utilization and suppress glucose production. If insulin
resistance were not compensated, glucose concentration would
increase above the normal levels. The main adaptive mechanism
activated with insulin resistance involves insulin secretion, which
is upregulated, i.e., for the same glucose concentration the β cells
secrete more insulin.

Derangements of Glucose Homeostasis
Various mechanisms may be malfunctioning and cause an
increase in glucose concentration, a condition denoted as glucose
intolerance. The mechanisms underlying glucose intolerance
have been widely studied, and two factors have been highlighted
as crucial: insulin resistance, described previously, and β-cell
dysfunction, i.e., the inability of the β cells to secrete appropriate
amounts of insulin. In T2D, insulin resistance is present and β-
cell function is compromised and often declines as the disease
progresses. Understanding and preventing the progressive β-
cell function deterioration is a crucial issue to prevent T2D
worsening, and an area for modeling.

OVERVIEW OF MODELS

In the following sections, on a historical background we discuss
several models proposed to describe various aspects of the
glucose homeostasis system and to address specific problems.
Models are grouped according to the glucose homeostasis
subsystem they describe.

Glucose Utilization and Insulin Action
The study of glucose kinetics with tracers has been among the
first applications of modeling. The whole-body tracer methods
initially relied on the analysis of the tracer concentration
curves in blood after a bolus injection, which were fitted
with a sum of exponentials to calculate glucose clearance and
distribution volume in the body. This approach naturally led to
the use of compartmental models (e.g., Steele et al., 1956, in
dogs), which showed the existence of multiple compartments.
Since the early studies, multi-compartment models of glucose
kinetics have thus become a sort of standard. Based on this

approach, the effects of insulin on glucose utilization have been
described by Insel et al. (1975) using a model that represents
the progenitor of many successive models, still in use today.
Insel’s model couples a three-compartment model of insulin
kinetics (Sherwin et al., 1974) with a three-compartment model
of glucose kinetics. The three-compartment models featured a
“central” compartment, corresponding to the plasma pool (where
glucose, tracer and insulin are measured) and two “peripheral”
compartments. The model has introduced the important concept
that the action of insulin on glucose utilization is delayed
compared to the insulin concentration profile in plasma. In the
multi-compartment model, this was achieved by including a
glucose utilization rate from a peripheral glucose compartment
controlled by insulin concentration in a peripheral insulin
compartment, sometimes denoted the “remote” (with respect to
plasma) insulin compartment.

While Insel’s model laid the foundations of successive
models describing glucose-insulin interactions, compartmental
models were widely used to calculate glucose fluxes (utilization,
production, and absorption) from the analysis of tracer data
in non-steady state conditions, such as after insulin infusion
or an oral glucose load. After the widely used Steele’s single-
compartment model (Steele, 1959), Radziuk et al. (1978)
proposed a more accurate approach based on a two-compartment
model. These models did not assume a structural dependence
of glucose utilization on insulin concentration, as in Insel’s
approach; they were used to calculate the time course of
glucose utilization (in addition to glucose appearance from oral
ingestion and hepatic glucose production) from glucose and
tracer concentrations. This generality allowed wide use of the
models in many studies.

Compartmental models have been used for the study
of glucose kinetics beyond their limitations, highlighted in
authoritative commentaries (e.g., Zierler, 1981). Insel’s model
already embedded the questionable principle that compartments
could be identified with physiological entities. A typical example
is the so-called plasma compartment, which is associated to
measurements performed in plasma, such as glucose and insulin
concentrations. This association bears the unrealistic expectation
that the estimate of the compartment volume, obtained from
the extrapolation to zero of, e.g., a tracer disappearance curve,
corresponds to the plasma volume. Detailed recordings of the
concentration profiles on the time scale of seconds are not
compatible with this view (e.g., Avram et al., 1997).

An alternative to compartmental models are those embedding
a description of the circulatory loop (arteries – tissues – vena
cava – heart/lungs – arteries) coupled with the classical methods
for the study of organ kinetics (Lassen and Perl, 1979), used to
represent the lumped organs. This approach, conceived long ago
(Waterhouse and Keilson, 1972), has the advantage of employing
mathematical representations that are based on solid physical
principles (convective transport and mass conservation) and
have well characterized properties (Mari, 1993, 1995a,b). This
class of models, sometimes denoted as “circulatory models,”
may include finite delays in convective transport, observed in
real data (e.g., Avram et al., 1997), or responses that are not
multi-exponential. The theory of circulatory models has provided
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rigorous answers to the problem of the determination of the
distribution volume, showing that a fraction of this volume
is not determinable from classical kinetics experiments (Mari,
1993). The expectation of compartmental models to overcome
this indeterminacy based on model configurations inspired to a
correspondence between compartment and organs (e.g., Cobelli
et al., 1984; Ferrannini et al., 1985) has no solid foundations
and provides arbitrary results (Mari, 1993). Circulatory models
provide a framework to describe whole-body glucose kinetics
using mathematical representations that bear a close relationship
with the physiological system, as done for the analysis of non-
steady state tracer data (Mari et al., 2003) or for insulin action
(Bizzotto et al., 2016).

The study of glucose utilization is linked to the quantification
of insulin sensitivity, i.e., the ability of insulin to stimulate glucose
utilization and suppress glucose production. This problem was
addressed by Insel’s model, which was based on experimental
data from a euglycemic glucose clamp, the reference test for the
assessment of insulin sensitivity (Ferrannini and Mari, 1998). The
notion that the effects of insulin on glucose utilization could
be well represented by modeling, let to the proposal of using
a model to estimate insulin sensitivity from a test simpler than
the euglycemic glucose clamp. The proposed model (Bergman
et al., 1979), which was successively denoted as the “minimal
model” (e.g., Bergman et al., 1981) alluding to its essentiality,
can be considered a simplification of Insel’s model, applied to
an intravenous glucose tolerance test (IVGTT), i.e., a bolus
injection of glucose. The minimal model inherited from Insel’s
model the notion that the effects of insulin are delayed with
respect to plasma insulin concentration (the remote insulin
compartment) and used a single compartment simplification for
glucose kinetics. The important advantage of the simplification
was the possibility of estimating the model parameters, and in
particular an insulin sensitivity index, from a clinically usable test
such as the IVGTT. This was the basis for the widespread use of
the minimal model.

For various reasons the minimal model has attracted great
attention, both from the modeling and the experimental
community, becoming an iconic model. Initially, some studies
evaluated the degree of concordance between the insulin
sensitivity estimates from the minimal model and the reference
method of the glucose clamp (e.g., Finegood et al., 1984; Saad
et al., 1994). Later, criticism has been raised regarding the
excessive simplification of the model [e.g., Caumo et al., 1996
and the discussion on the IVGTT models by Palumbo et al.
(2013)], which became evident in the difficulty of data fitting
and negative (or zero) estimates of the insulin sensitivity index
(e.g., Saad et al., 1994; Godsland and Walton, 2001). A two-
compartment evolution of the minimal model has been proposed
to overcome these problems (Vicini et al., 1997; Cobelli et al.,
1999), as well as other model formulations (Palumbo et al.,
2013). In spite of its limitations, the minimal model remains a
valuable approach for the assessment of insulin sensitivity, as
discussed in our formal analysis of the role of the minimal model
assumptions (Mari, 1997). However, while experimental studies
with the minimal model have certainly expanded our knowledge
on glucose homeostasis and have probably increased the

acceptance of mathematical models among experimentalists, the
minimal model per se has not improved much our mechanistic
understanding of the relationships between insulin and glucose
utilization, beyond its original foundations by Insel. In the early
2000’s, the idea of using a model to assess insulin sensitivity from
a clinically applicable test, underlying the minimal model, has
been extended to the oral glucose tolerance test (OGTT) or a
meal test, for which two model-based indices have been proposed
(Caumo et al., 2000; Mari et al., 2001).

Advancements over Insel’s description of insulin action on
glucose utilization have been made by some models that attempt
to describe two phenomena known since long time: the non-
linear dependence of glucose utilization on insulin concentration
(e.g., Rizza et al., 1981) and on glucose concentration (e.g.,
Best et al., 1981). Because the reasons underlying these findings
are still unclear and data to support mathematical descriptions
are scarce, these phenomena are often not represented in the
models of insulin action (e.g., Jauslin et al., 2011) or the
representations are conceptually rational but not directly tested
against experimental data (e.g., Dalla Man et al., 2007). We
have addressed these problems using a circulatory model, and
showing that at constant glucose concentration a Michaelis–
Menten relationship between insulin concentration and glucose
utilization was in good agreement with the experimental data
(Natali et al., 2000). To represent the non-linear dependence of
glucose utilization on glucose concentration, we have later used a
similar model for the relationship between insulin concentration
and glucose utilization, combined with a Michaelis–Menten
equation expressing glucose utilization as function of glucose
concentration (Bizzotto et al., 2016). This model was able to
describe several tracer-based studies with a wide range of glucose
and insulin concentrations and has highlighted that the non-
linear dependence of glucose utilization on glucose concentration
is a quantitatively relevant phenomenon in glucose homeostasis.

Insulin Secretion
Assessment of Insulin Secretion
Early investigation on insulin secretion from pancreatic β

cells, both in vitro and in vivo [e.g., the landmark studies by
Grodsky (1972) in the perfused pancreas and by Cerasi et al.
(1973) in humans], has been based on the measurement of
insulin concentration. While in vitro research still uses insulin
concentration, studies in vivo have found that insulin, secreted
by the pancreas in the portal vein, is massively removed (by
∼50%) as it crosses the liver (see the section on insulin clearance
below). As hepatic insulin extraction may be variable, both
within and between subjects, plasma insulin concentration is
not reputed to represent insulin secretion accurately. For this
reason, an alternative methodology has been devised, based on
the measurement of plasma C-peptide, a molecule secreted with
insulin in equimolar amounts and not substantially removed by
the liver (Eaton et al., 1980). Because of the linearity of C-peptide
kinetics, insulin secretion can be calculated from C-peptide
concentration using a C-peptide model and deconvolution
approaches (Eaton et al., 1980; Hovorka and Jones, 1994). The
use of this method in experimental studies would require the
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individual assessment of the C-peptide model parameters. To
overcome this complication, a standardized C-peptide model
has been proposed by Van Cauter et al. (1992), in which the
model parameters are individualized based on anthropometric
data. This model has become the standard method for calculating
insulin secretion in vivo. In practice, no alternative exists,
also because obtaining synthetic C-peptide to assess C-peptide
kinetics is difficult. Regretfully, Van Cauter’s model has not been
developed for all the situations to which it has been applied.
The dataset on which it was based included lean and obese
subjects with normal glucose tolerance and T2D, but not children,
pregnant women, severely obese subjects and type 1 diabetic
patients, populations in which the model has nevertheless been
used. Furthermore, in Van Cauter’s model, the dependence of
the C-peptide kinetic parameters, and in particular of C-peptide
clearance, on the subject characteristics embeds thresholds (on
the body mass index and glucose tolerance) and is thus not
continuous. This may be problematic in longitudinal studies, as
it may generate spurious sudden changes in C-peptide clearance
when the thresholds are crossed.

Clinical Models for β-Cell Function Assessment
The early models for the assessment of β-cell function from
clinical tests, such as the IVGTT, were developed in parallel with
the minimal model (Toffolo et al., 1980; Bergman et al., 1981).
These models, still based on insulin concentration, used a very
simplified representation of the β-cell response to an IVGTT. The
biphasic insulin secretion response during this test was quantified
with a first-phase index, expressing the expected contribution
of the initial insulin secretion burst to insulin concentration,
and a second-phase index, obtained from an empirical model
relating insulin secretion to glucose concentration and time. This
empirical model has been employed in several studies, but the
relationship of the estimated first- and second-phase parameters
with the classical indices from the hyperglycemic clamp have not
been assessed, to our knowledge.

Between the late 1990s and the early 2000s, renewed attention
has been paid to the OGTT as an effective clinical test to
assess β-cell function, besides insulin sensitivity, using empirical
formulas and model-based approaches. Four relevant models
were conceived in this period to assess β-cell function and are
still in use (Hovorka et al., 1998; Breda et al., 2001; Cretti et al.,
2001; Mari et al., 2002). OGTT-based methods are of considerable
interest in clinical research because of the relative simplicity of the
test, its diagnostic value for glucose tolerance and the possibility
to assess both insulin sensitivity and β-cell function. In addition,
the OGTT represents a physiological perturbation of the glucose
homeostatic system, compared to the IVGTT or the glucose
clamps, and, more importantly, it involves the incretin system,
which is a relevant player in insulin secretion, as discussed below.

The cited models share some principles (all rely on C-peptide
for insulin secretion assessment) but also have important
differences. The earliest model by Hovorka et al. (1998) is
based on a simple linear dose-response relating insulin secretion
to glucose concentration. The model by Cretti et al. (2001)
is in essence an extension of Hovorka’s model that includes
a delay between the changes in glucose concentration and

those of insulin secretion. The original model parameters are,
however, transformed according to an empirical logic to obtain
a β-cell function index. The other two models (Breda et al.,
2001; Mari et al., 2002) include a representation of early
insulin secretion, which is reputed to be a manifestation of
the mechanisms underlying first-phase secretion. Early insulin
secretion is modeled as a function of the derivative of glucose
concentration (the “dynamic” or “derivative” insulin secretion
component), which is positive when glucose concentration
increases and zero otherwise. This representation followed an
elaboration by Ličko (1973) of Grodsky’s model of first-phase
insulin secretion (Grodsky, 1972). The two models, however,
differ in the description of sustained secretion during the
OGTT. Breda’s model (Breda et al., 2001) included a first-order
delay between the changes in glucose concentration and insulin
secretion. This mechanism explained the observation that, in
the late phase of the OGTT, insulin secretion is higher, for the
prevailing glucose level, compared to baseline. Our model (Mari
et al., 2002) did not represent this phenomenon as a delay, but as
a time-dependent potentiation, according to the studies by Cerasi
et al. (1974). We avoided the delay model also because in the
perfused pancreas the insulin secretion response to a square wave
of hyperglycemia is incompatible with a first-order delay, as it
shows a slow onset but a fast offset (Bergman and Urquhart, 1971;
Grodsky, 1972). Although these differences are important for the
interpretation of insulin secretion during an OGTT (Mari and
Ferrannini, 2008), all these models have shown their usefulness
for the assessment of β-cell function in a large number of studies.

β-Cell Models
Numerous models have been proposed to explain the complex
insulin secretion patterns observed in vitro and investigate the
underlying mechanisms. Table 1 summarizes the β-cell models
reviewed here and highlights some of their relevant features,
discussed in detail in the text.

Grodsky’s model (Grodsky, 1972) explained the biphasic
insulin secretion pattern observed after a brisk elevation in
glucose concentration with distinct mechanisms for the initial
short secretion peak and the slowly ascending second insulin
secretion phase. First-phase secretion was described with the
original hypothesis that insulin in the β cells is contained in
“packets” that are quickly released from a “labile pool” when
glucose concentration exceeds a packet-specific threshold. This
model was able to reproduce accurately the sharp first-phase
insulin secretion peaks and their dependence on the glucose
concentration increase with a suitable distribution of the packet
thresholds. Second-phase insulin secretion was described as a
process of refilling of the labile pool from a stable compartment.
This representation was able to reproduce data from several tests,
most importantly the response to a square wave of hyperglycemia
followed, after a short time, by a second hyperglycemic step.
When Grodsky’s model was proposed, the knowledge of the
cellular mechanisms underlying insulin secretion was quite
rudimentary. That the distribution of the packet thresholds could
be related to insulin granule heterogeneity was a hypothesis,
as it was the possibility that the heterogeneity could concern
β cells. Interestingly, however, the labile pool and refilling are
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TABLE 1 | Summary of the β -cell models.

Study Mechanisms1 Data2 Explanation of T2D3

Calcium Glucose In vitro In vivo

Grodsky, 1972 No Explicit ++ ∅ No

Cerasi et al., 1974 No Explicit ∅ + Yes

Overgaard et al., 2006 No Explicit ∅ + (Yes)

Giugliano et al., 2000 Explicit Explicit − ∅ Hypothesis

Bertuzzi et al., 2007 Implicit Explicit + + Hypothesis

Chen et al., 2008 Explicit Implicit + ∅ Hypothesis

Pedersen and Sherman, 2009 Explicit Implicit − ∅ No

Stamper and Wang, 2013 No Explicit − ∅ No

Dehghany et al., 2015 Implicit Explicit + ∅ No

Palumbo and De Gaetano, 2010 and De Gaetano et al., 2015 No Explicit − − Hypothesis

Grespan et al., 2018 Explicit Explicit ++ ++ Yes

Pedersen et al., 2019 Explicit Explicit ++ ∅ Hypothesis

1Explicit or implicit mathematical representation of the role of calcium and glucose on insulin secretion. Only explicit representations allow simulations with arbitrary calcium
or glucose data. 2Simulations with direct comparison with experimental in vitro or in vivo data: not simulated (∅); no comparison (−); limited comparison (+); extensive
comparison (++). Studies with no direct comparison show simulations only, without experimental data. 3Analysis of the mechanisms underlying type 2 diabetes: not
considered (No); hypotheses provided without comparison with real data (Hypothesis); hypotheses based on the comparison with real data (Yes). The study by Overgaard
et al. (2006) includes data from relatives of type 2 diabetic patients who developed diabetes.

concepts that are still in use in the current research on β-cell
physiology and modeling, as discussed below. In addition, the
idea of a distribution of heterogeneous β-cell characteristics is still
under discussion.

Among the historical models of the insulin secretion
mechanisms, Cerasi’s model (Cerasi et al., 1974) is noteworthy
at it interprets the biphasic insulin secretion response to a
hyperglycemic step differently from the prevalent pool-based
view. This model described first-phase secretion as the effect of
an initiation phase, rapidly followed by an inhibition (refractory)
phase. The ascending second phase and the amplification of
the secretory response with two successive glucose stimuli was
ascribed to potentiation mechanisms, observed experimentally.
The model was used to analyze experimental data, including
subjects with T2D. The reduced secretory response in T2D was
attributed to reduced initiation or increased inhibition.

The model by Overgaard et al. (2006) is a simplification
of Grodsky’s model and describes two insulin pools (denoted
as “active” and “passive”), which shape the dynamic secretory
response, and a glucose-dependent pool refilling (denoted as
“provision” as in Grodsky’s terminology), which determines
sustained insulin secretion. Grodsky’s concept of a distribution
of the packet thresholds is reformulated using a function that
increases with glucose concentration, augments the active pool
size and sustains first-phase insulin secretion. First-phase insulin
secretion is also governed by a term that is dependent on the
derivative of glucose concentration. In the OGTT, the refilling
includes an incretin effect component, as discussed in the specific
section below. The model was conceived to estimate clinically
meaningful β-cell function parameters from an IVGTT or OGTT.
However, the clinical value of the parameters and the potential
advantages of this more elaborate model with respect to the
simpler approaches described above have not been demonstrated.
The study included a group of relatives of T2D patients that

subsequently developed overt diabetes, from which the defects
underlying T2D was hypothesized. The alterations found in this
group mainly concerned the redistribution rate constant from
passive to active packets and the threshold distribution function.

Although the role of calcium in insulin secretion was
already known when these early models were proposed, the
underlying mechanisms were elucidated considerably later (see
e.g., Henquin, 2000 for a summary). An early finding was the link
between calcium and membrane electrical activity, modulated
by glucose, which stimulated the development of models of
membrane potential oscillations since the early 1980s (Chay and
Keizer, 1983). In this area, several models have been proposed
to represent the complex interplay between glucose metabolism,
membrane ion channels and potential, and calcium levels, as
reviewed in (Ajmera et al., 2013; Felix-Martinez and Godinez-
Fernandez, 2014; Bertram et al., 2018).

Calcium dynamics started to be incorporated in models of
insulin secretion since the work by Giugliano et al. (2000). The
model represented the metabolic pathways related to glucose
transport across the cell membrane, ATP production following
glucose metabolism and the electrophysiological events that
follow intracellular glucose increase. The electrophysiological
model predicted the changes in membrane potential in relation
to the potassium, sodium and calcium currents. The intracellular
calcium dynamics modulating calcium and sodium currents was
described by a two-compartment model derived from Chay
(1996). The insulin granules were represented in one of the
following three states: “recovered” (ready-releasable), “active”
(during the fusion to the plasma membrane) and “inactive”
(granules in the reserve pool). Readily releasable granules are
released when calcium spikes occur, in quantities that depend
on both the amount of activated anchoring proteins (calcium
dependent) and the number of readily releasable granules.
These mechanisms determine first-phase insulin secretion. The
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second phase depends on the recovery and mobilization of the
granules to the readily releasable pool, which is represented as
a first-order process occurring over a fixed time scale. Thus,
the refilling rate of the ready releasable granules does not
depend on glucose concentration, as it would be expected from
experimental data. The model represented β-cell dysfunction in
T2D as a desensitization of ATP-sensitive potassium channels
to intracellular ATP concentration. All simulations qualitatively
represented insulin secretion without a direct comparison with
experimental data.

The study by Bertuzzi et al. (2007) gave a representation of
insulin granule trafficking that implied a role of cytoplasmic
calcium in exocytosis, but calcium was not explicitly modeled.
Both the biochemical events that lead to changes in ATP
concentration and cytoplasmic calcium concentration in
response to a glucose stimulus are represented as time changes
of rate coefficients regarded as “control” signals that regulate
granule trafficking. The model includes a reserve granule pool
and pools of docked, immediately releasable and fused granules.
First-phase insulin secretion mainly depends on the insulin
amount in the pool of immediately releasable granules and on
the product of functions representing ATP sensitivity to glucose
and calcium sensitivity to ATP. Second-phase insulin secretion is
regulated by the size of the reserve pool and the rate coefficient
of granule translocation and priming, related to the ATP-to-ADP
ratio. The model does not include explicitly the regulatory role
of calcium in granule translocation and thus in the second-phase
insulin release, shown in several studies. The model was able to
reproduce qualitatively insulin secretion in some classical in vitro
studies, although without a direct comparison with experimental
data, and data from a hyperglycemic clamp in vivo. The possible
reasons underlying defective insulin secretion in T2D were not
deeply investigated, but it was suggested that the translocation
from the reserve pool to the docked granules, granule fusion and
the release of insulin from fused granules could be involved.

Chen et al. (2008) developed a model representing the
exocytosis cascade (composed of docked, primed, readily
releasable, and fused granules) and a two-compartment model of
intracellular calcium dynamics. Both L-type and R-type voltage-
sensitive calcium channels control calcium influx when the cell
is depolarized and four types of calcium transporters regulate
its clearance from the cytosol. The space surrounding L-type
channels is one of the calcium compartments, denoted as
“microdomain”; in this region, in which calcium concentration
can reach 20–30 µmol/L, insulin granule exocytosis takes place.
The second calcium compartment represents cytosolic calcium,
where concentration is in the order of 200–300 nmol/L during
cell depolarization. The dependence of calcium concentration
on the glucose stimulus is not described but calcium follows
membrane depolarization, which is represented as a square wave.
First-phase insulin secretion depends on the size of the readily
releasable pool of granules, which is mainly determined by
the granule priming rate. Second-phase secretion is dependent
on the resupply rate of granules from the reserve to the
docked pool. The dependence of the priming rate and the
refilling rate on glucose is not modeled, but changes are
empirically determined to reproduce the simulated data. The

model reproduces several experimental conditions such as a
hyperglycemic clamp, a glucose ramp and the response to two
consecutive hyperglycemic glucose steps separated by a period of
rest, and investigates the role of R and L-type calcium channels.
However, the model-predicted cytosolic calcium concentration
and insulin secretion are not compared to real data. In addition,
the relationships between glucose and membrane depolarization
controlling calcium and the refilling rate are not mathematically
represented but set empirically.

Pedersen and Sherman (2009) have extended Chen’s model
by including a pool of granules with a higher calcium sensitivity
and responding to cytosolic calcium rather than to calcium in
the microdomain, which triggers exocytosis of the immediately
releasable pool. Insulin granules activated in this way, called
newcomers, can be secreted without passing through the docked
status, away from the microdomain. The model ascribes to these
granules the main role during second-phase insulin secretion.
First-phase insulin secretion depends on the granules close to the
L-type calcium channels, in the microdomain, as in Chen’s model.
The model investigates the role of R and L-type calcium channels,
Syntaxin-1A protein and of the low and high sensitivity granule
pools on biphasic insulin secretion, reproducing the secretory
response to a hyperglycemic clamp in normal conditions and
with knockdown of the R-type or L-type channels or Syntaxin-
1A. As for Chen’s model, however, the described mechanisms are
not explicitly linked to glucose concentration and simulations are
not compared to the experimental data. In contrast to Chen’s
model, this model does not describe the effect of calcium on
granule mobilization.

The model of Stamper and Wang (2013) represents granules
in a docked, primed and fused status, a reserve pool and a pool
of newcomer granules. The translocation rates among pools are
glucose dependent and the model suggests that insulin granule
mobilization from the reserve pool is a critical factor for second-
phase insulin secretion. First-phase insulin secretion depends on
the rapid depletion of the primed, readily releasable granules. The
model reproduces insulin secretion in response to several classical
tests, although simulations are not directly compared with real
data. The model does not describe the role of calcium on insulin
secretion explicitly.

The model by Dehghany et al. (2015) is the first and only
agent-based space-resolved model for insulin granules dynamics
in pancreatic β-cells. The model includes a spatial description
of the β cell including insulin granules, microtubules and actin
filaments and simulates the movement of the secretory granules
from the inner cell to the plasma membrane, regulated by glucose
levels. The model represents docked, primed and newcomer
granules. Docked granules can be released if they are close
enough to calcium channels and a large part of these granules
undergoes exocytosis after priming upon glucose stimulation:
these granules constitute the readily releasable pool. Exocytosis
depends on the number of readily releasable granules and on
the number of opened calcium channels. A primed granule fuses
with the plasma membrane when at least one of the calcium
channels of the hosting docking site is open. The model does not
consider ion currents explicitly but uses an empirical function
to determine the opening probability of the channels. Exocytosis
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takes place with a certain delay. First-phase insulin secretion
depends on the size of the readily releasable pool, with the time
and shape of the peak modulated also by the exocytosis latency.
Second-phase insulin secretion depends mainly on newcomers
granules, and the rising second phase is modulated by an
increased number of docking sites and a decreased priming rate
upon glucose stimulation. The model reproduces and compares
with experimental data several experimental tests: the response
to continuous and intermittent membrane depolarization with
and without glucose, a hyperglycemic clamp and two successive
hyperglycemic steps followed by a period of rest.

The models by Palumbo and De Gaetano (2010) and
De Gaetano et al. (2015) resume Grodsky’s concept of the
distribution of thresholds in glucose sensing and, in some way,
Cerasi’s proposal of a refractory state after rapid insulin release
and potentiation with hyperglycemia. Secretory units, identified
with islets, are supposed to release an insulin packet when a given
glucose threshold is crossed and then enter a refractory state (i.e.,
a sudden increase in the threshold) that progressively returns to
the normal state. The size of the packet is modulated by glucose,
which acts with a delay. The model parameters are assumed to
follow assigned distributions (typically lognormal) in one million
of simulated units. The second study used a more complex
representation of packet size modulation by glucose and a
modified distribution of the glucose thresholds. Both studies also
include a glucose-insulin model to simulate some experimental
conditions in vivo. The studies have specifically addressed the
problem of insulin secretion oscillations, but the second study
simulated also more classical tests, such as those considered by
Grodsky and an IVGTT in subjects with normal glucose tolerance
and T2D. In T2D, a reduction of the potentiating effect of glucose,
of the average basal packet size and possibly of the glucose
threshold distribution was postulated, but the simulated IVGTT
was not compared with real data.

We recently envisaged a model with which in vitro and
in vivo data could be interpreted in a unifying framework,
aiming at elucidating the possible cellular defects underlying β-
cell dysfunction in T2D (Grespan et al., 2018). We based the
mathematical representation of the cellular events on the current
description of the fundamental mechanisms of insulin secretion
(Henquin, 2000), similarly to several models described above.
The core of the model is an immediately releasable pool of insulin
granules, the content of which depends on calcium-mediated
exocytosis (the “triggering pathway”), and on a calcium- and
glucose- mediated refilling flux (the “amplifying pathway”).
These two processes are represented with functions of calcium
and glucose. Calcium is determined from glucose using a dose-
response function derived from mouse data and an empirical
model describing the initial calcium overshoot observed with a
glucose step. We first used the model to predict calcium and
insulin secretion in some classical in vitro studies in mouse
islets. We then simulated, after appropriate parameter scaling,
several in vivo tests in humans, describing the experimental data
accurately, in subjects with both normal glucose tolerance and
T2D. We also described the well-known enhancement of first-
phase insulin secretion with insulin resistance and its reduction
with fasting hyperglycemia. Based on a variety of simulations,

we proposed that the calcium-independent amplifying pathway
is the key defect in T2D, while the loss of first-phase secretion
is mainly a consequence of an altered equilibrium of the
immediately releasable pool. Another interesting finding is that
an accurate description of the experimental data, both in vitro
and in vivo, can be obtained without complex descriptions of
the granule status.

Pedersen et al. (2019) investigated how calcium and the
granule pools interact to control dynamic insulin secretion, by
comparing simulations with three model variants to experimental
data in mouse islets. Experimental protocols included different
glucose steps, a staircase glucose test, intermittent tolbutamide
injection at low glucose and glucose pulses, with measurement
of insulin secretion and cytosolic calcium. The first basic model
includes a readily releasable pool of granules, and insulin
secretion is a function of its size and cytosolic calcium. The
pool is replenished by a glucose dependent refilling, described
with an empirical function. The second model includes also a
pool of docked granules, with a glucose dependent priming rate
(transfer from the docked to the readily releasable pool). Glucose
dependent refilling takes place in the docked pool. The third
model includes an additional glucose-independent refilling of the
readily releasable pool, which, affecting the pool size, contributes
to insulin secretion. As the third model reproduces the data most
accurately, and the staircase experiment in particular, the authors
conclude that both calcium and the pool size contribute to
shaping insulin release, without the need to assume heterogeneity
of the readily releasable pool. The study briefly discusses the
possible mechanisms underlying β-cell dysfunction in T2D,
without simulations, hypothesizing a defect in both refilling and
calcium signaling, in contrast to what proposed in Grespan et al.
(2018).

The models illustrated above share several principles, such as
the existence of one or more granule pools underlying first-phase
insulin secretion and of pool refilling, which ensures granule
resupply and determines sustained insulin secretion. However,
the description of the mechanisms by which glucose controls
granule trafficking often differs remarkably. For instance, not
all models represent calcium explicitly, or include a complete
representation of the glucose concentration-insulin secretion
dynamic relationship. The level of detail of the representation of
the known processes is also variable, and some models attempt to
describe more precisely the β-cell physical structure, while others
have a more abstract approach. The demonstration of the ability
of the model to describe experimental data accurately differs
widely and only some models show direct comparisons with real
data. To our knowledge, only our study supports the hypotheses
concerning the defects in T2D showing that the model correctly
reproduces the experimental data in these patients.

Incretin Effect
The effects of the incretin hormones GIP and GLP-1 on insulin
secretion have been often empirically described in some models
of glucose homeostasis simulating an OGTT or a meal test,
as discussed in the dedicated section below. In contrast, few
models have specifically represented the incretin effect to describe
experimental data, in spite of its considerable importance.
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As concerns the in vivo models, the model by Overgaard et al.
(2006), described above, represented the incretin effect as an
additive term on sustained insulin secretion, using the OGTT
glucose concentration increment over baseline as a surrogate
of incretin hormone concentrations, which were not measured.
The model also included a more complex effect on early
secretion. C-peptide was not available to employ the standard
insulin secretion method and the model was used to fit insulin
concentration during an IVGTT and an OGTT. However, the
parameter estimation method treated the IVGTT and OGTT data
as if they were from different subjects, as the purpose was to
compare the β-cell function parameters rather than to assess the
incretin effect. The validity of the incretin effect estimate is thus
not based on solid grounds and is untested.

The models by Dalla Man et al. (2010, 2016) are elaborations
from the classical insulin secretion models of the group, in which
the action of GLP-1 was described as a multiplicative factor on
incremental insulin secretion. Four models were proposed to
express the dependence of this factor on GLP-1 concentration
during a hyperglycemic clamp with concomitant GLP-1 infusion,
concluding that a linear dependence on GLP-1 concentration and
its derivative was the most appropriate model (Dalla Man et al.,
2010). The model variant applied to a meal test (Dalla Man et al.,
2016) used a simple linear relationship with GLP-1, but neglected
the contribution of GIP.

The model by Tura et al. (2014), an extension of our previous
OGTT model (Mari et al., 2002), was conceived to interpret the
classical test for the assessment of the incretin effect based on
an OGTT and an intravenous glucose infusion matching the
OGTT glucose levels. In this model, incretins were assumed to
affect both early insulin secretion (increasing the early secretion
parameter of the OGTT model) and sustained insulin secretion,
by means of a time-dependent incretin potentiation factor.
Incretin potentiation was determined from the simultaneous
analysis of the OGTT and the intravenous test, without
assuming a specific dependence on incretin hormones. The
model was applied to various studies, in particular to quantify
the sensitivity to incretins in normal and T2D subjects, where an
approximate linear relationship between incretin concentration
and potentiation was found (Tura et al., 2017).

In vitro, we are not aware of models in this area, except for our
recent study (Grespan et al., 2020). This model is an extension
of our previous β-cell model (Grespan et al., 2018) and describes
a transient effect of GIP and GLP-1 on calcium and a sustained
effect on the refilling of the immediately releasable pool. Because
of the lack of relevant in vitro data, the model has been tested on
a variety of in vivo studies using incretin infusions or an OGTT.
The model has revealed an unexpected saturative action of GIP.

β-Cell Function Deterioration
Progressive β-cell function loss is a hallmark of the transition to
T2D and diabetes progression, but the mechanisms responsible of
this phenomenon are still poorly understood. An early attempt to
describe this phenomenon was made by Topp et al. (2000), who
proposed a simple glucose-insulin homeostatic model in which
β-cell mass was dynamically regulated by glucose levels. While
moderate hyperglycemia, e.g., originating from insulin resistance,

induced an increase in β-cell mass and insulin secretion,
marked hyperglycemia produced β-cell mass reduction due to
glucose-induced acceleration of β-cell death. The mathematical
formulation of this process led to the interesting finding that
the system had a stable equilibrium point, where glucose was
maintained in presence of moderate disturbances in insulin
resistance, but also an unstable point, beyond which glucose
control was lost and β-cell mass was progressively reduced
to zero. This model not only represented the known inverse
relationship between insulin sensitivity and secretion, but also
offered a possible explanation of the transition toward diabetes,
that successive studies showed to occur in a short time window
(e.g., Ferrannini et al., 2004; Tabak et al., 2009). Interestingly,
the success of the model has been greater than its adherence to
experimental data. The study was in fact based on simulations
only, there is no evidence of such dramatic changes in β-cell
mass, and the presence of a transition point in the β-cell response,
as opposed to a more continue derangement, has not been
clearly established.

De Gaetano et al. (2008) followed a similar approach and
reached similar conclusions (in particular on the equilibrium
points), but using a more elaborate model in the attempt to
reconcile the mathematical description with the physiological
knowledge, thus permitting a more direct, though limited,
evaluation on experimental data (Hardy et al., 2012).

De Gaetano’s model has been recently extended to simulate
both short-term glucose perturbations and longitudinal long-
term changes in insulin sensitivity and β-cell function (De
Gaetano and Hardy, 2019). The model parameters were tuned to
simulate longitudinal experimental data from an OGTT (fasting
and 30-min glucose and insulin and 2-h glucose), performed
sequentially over 4 years in a study including placebo, intensive
life style, and metformin treatment. The model has been used
to simulate longitudinal changes in insulin sensitivity from the
euglycemic clamp, and lifetime changes in OGTT glucose and
insulin concentrations and in glycated hemoglobin.

Ha et al. (2016) proposed a different model of the β-
cell adaptation to insulin resistance, involving an interplay
between changes in β-cell function and mass, which was absent
in the previous models. For β-cell mass dynamics, a key
factor was the distinction between a glucose-dependent “β-
cell metabolic rate” (M), associated with β-cell loss, and an
insulin secretion-dependent factor, stimulating β-cell growth.
With normal compensation for insulin resistance, the model
predicts a rapid increase in β-cell function, followed by a slower
mass increase. This combination drives glucose, and thus M,
back to normal levels. The increase in mass sustains larger total
insulin secretion, while maintaining secretion per β cell normal,
a normal M and thus a constant β-cell mass. With a large increase
in insulin resistance, the postulated increase in β-cell function is
not able to restore glucose, thus leaving M high, a high rate of β-
cell loss, leading to uncontrolled glucose and producing massive
β-cell mass loss, as in Topp’s model. As previous models, Ha’s
model is characterized by two equilibrium points (normal and
diabetic condition).

Ha’s model has been recently expanded (Ha and Sherman,
2020) to enrich the glucose homeostasis model, including a
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dynamic β-cell response [based on Chen et al. (2008)]. The
model describes more precisely glucose and insulin concentration
obtained from experimental studies, including the OGTT and the
IVGTT, allowing prediction of fasting and 2-h glucose after an
OGTT both at a given time point and longitudinally, similarly to
the model by De Gaetano and Hardy (2019). Several scenarios
for T2D onset are simulated, with results compatible with the
observations of the longitudinal studies.

In spite of the conceptual interest, demonstrated by the
considerable number of citations of Topp’s article, these models
remain rather speculative due to the weak relationships with
experimental data. The models also typically embed assumptions
that do not fully correspond to what is experimentally known
(such as the degree of β-cell mass loss in T2D), and the
implications of these assumptions on the model results are
difficult to predict.

Insulin Clearance
Insulin kinetics are the intermediate step between the secretion
of insulin and its action on glucose fluxes, as for a given
insulin secretion response following a glucose stimulus insulin
concentration is determined by insulin distribution and
clearance. Insulin kinetics have been often considered of
secondary importance for glucose homeostasis, as insulin
clearance does not appear to be a highly regulated process, as it
happens for glucose clearance and insulin secretion (Ferrannini
and Cobelli, 1987a). Nevertheless, modeling of insulin kinetics
has a time-honored tradition and relevant applications.

Modeling had to face the complexity of the insulin system,
in which the endogenous source of insulin is in the portal
vein. The liver removes a large fraction of insulin at each
transit (∼50%), and thus systemic insulin appearance (or post-
hepatic insulin delivery) is only about a half of insulin secretion.
In addition, hepatic insulin fractional extraction depends on
the insulin levels (Ferrannini and Cobelli, 1987b). Hepatic
insulin extraction is thus a potentially crucial determinant of
peripheral insulin levels, affecting both first-pass extraction of
newly secreted insulin and whole body insulin clearance, through
continuous recirculation. However, access to the liver vessels is
hardly possible and determination of hepatic insulin extraction
from simpler experiments is subject to assumptions. These
difficulties are reflected in the historical development of insulin
kinetics models.

The early study by Sherwin et al. (1974) proposed a three-
compartment representation of insulin kinetics in humans with
linear elimination. The model was based on experiments with
porcine insulin administered in a peripheral vein as bolus
injection and primed continuous infusion at different doses, and
showed that insulin in a peripheral compartment, rather than in
plasma, was a more direct determinant of glucose utilization. This
concept was later used in the glucose utilization model discussed
above (Insel et al., 1975).

In early investigation, the linearity of insulin kinetics was
debated. Tiran et al. (1979), based on experiments in dogs
with both peripheral and portal insulin infusion, developed a
circulatory model describing multiple organs, and recognized
that a non-linear insulin elimination component was necessary

to describe the data consistently. Non-linearity was, however,
attributed to peripheral insulin removal, rather than the liver.

Saturation of insulin clearance in humans, as potentially
related to insulin binding to receptors, was reported by Jones
et al. (1984), who proposed a simple insulin kinetics model with
single-compartment insulin distribution and receptor-mediated
and non-receptor-mediated insulin degradation. The inclusion
of receptor-mediated insulin degradation made the model non-
linear. The model was able to describe data from a stepped insulin
infusion experiment, causing an increase in peripheral insulin
concentration up to∼1 nmol/L.

Thorsteinsson and colleagues reaffirmed in various studies
[summarized in Thorsteinsson (1990)] the importance of
including saturation of insulin clearance, in order to explain
steady state insulin data after constant infusion of porcine insulin
at different rates (insulin concentration up to ∼6 nmol/L),
with clamped glucose. Their model, which included a simple
Michaelis–Menten function of insulin concentration to quantify
insulin removal, accurately described the data in normal and
type 1 diabetic subjects. Both Jones’ and Thorsteinsson’s models
required assumptions on post-hepatic insulin delivery from
endogenous insulin secretion: Thorsteinsson (1990) assumed a
constant rate [as in Sherwin et al. (1974)], as C-peptide was
substantially unchanged during insulin infusions, while Jones
et al. (1984) assumed an exponential decrease, with time constant
obtained from previous studies.

Hovorka et al. (1993) extended Jones’s model, describing
insulin distribution with three compartments (representing
plasma, hepatic, and interstitial insulin), insulin binding to the
hepatic and peripheral receptors and receptor-mediated and non-
receptor-mediated insulin degradation. The model adequately
described data from euglycemic clamps with peripheral insulin
infusions at two doses, causing an increase in peripheral insulin
concentration up to ∼12 nmol/L. Insulin secretion during the
clamps, calculated from C-peptide data, was also accounted for
in the analysis.

A more sophisticated multiscale model was developed later
in rats by Koschorreck and Gilles (2008), representing the
processes described in Hovorka’s model and adding the kinetics
of phosphorylation and internalization of the insulin hepatic
receptors. The model was able to reproduce experimental data
from the literature using parameter values taken from in vitro
experiments and previous studies, without adjustment. However,
several assumptions were required to define the complex
structure of the model.

While the approaches discussed above were based on
exogenous insulin infusion, the possibility to assess insulin
secretion from C-peptide, discussed above, offered a new way
to estimate insulin clearance and in particular hepatic insulin
extraction. The pioneering study by Eaton et al. (1983) employed
the previously described C-peptide model (Eaton et al., 1980)
and a three-compartment insulin model representing hepatic,
vascular, and extravascular spaces, derived from Sherwin’s study
(Sherwin et al., 1974). A key assumption was the use of fixed
parameter values for the insulin kinetics model, determined
from previous experiments, except for insulin removal from the
hepatic compartment and the transfer rate from liver to plasma.
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This assumption was crucial to allow estimation of hepatic
insulin extraction from tests without exogenous insulin infusion.
The analysis of OGTT’s at increasing doses revealed decreasing
insulin extraction by the liver in the presence of increasing insulin
exposure. The dependence of hepatic insulin extraction from
insulin levels was, however, not modeled.

Other studies followed Eaton’s approach, using measurement
of insulin and C-peptide without exogenous insulin infusion,
to quantify insulin clearance or hepatic extraction. Cobelli and
Pacini (1988) employed a two-compartment C-peptide kinetics
model and a single-compartment insulin model to describe
data from an IVGTT. The single-compartment insulin model
described the fate of post-hepatic insulin delivery. Insulin
secretion from C-peptide and post-hepatic insulin delivery
from insulin were determined, together with the parameters
of the two kinetic models, assuming specific relationships with
glucose concentration, similarly to a previous study (Toffolo
et al., 1980). Hepatic insulin extraction was calculated as the
relative difference between insulin secretion and post-hepatic
insulin delivery. Thus, this model used specific relationships
between glucose concentration and insulin secretion or post-
hepatic insulin delivery to resolve the indeterminacy that Eaton
et al. (1980) overcame with assumptions on the insulin kinetics
model. The approach estimates insulin secretion and post-hepatic
insulin delivery simultaneously with insulin and C-peptide
kinetics parameters. As insulin secretion depends on C-peptide
kinetics and post-hepatic insulin delivery on insulin kinetics, the
concomitant estimation of the parameters of these processes may
lead to an inaccurate separation of their role, resulting in biased
parameter estimates. In addition, the insulin kinetics model
assumes a constant clearance, which contradicts the finding of
a variable hepatic insulin extraction, as physiologically hepatic
insulin extraction contributes to whole-body insulin clearance.

Measurement of insulin and C-peptide without exogenous
insulin infusion was the strategy adopted also by Thomaseth et al.
(1996), who modeled OGTT data with a single-compartment
insulin model as in Cobelli and Pacini (1988), but assuming
constant hepatic insulin fractional extraction. Tura et al. (2001),
using this model, showed reasonable concordance between
the model estimates of hepatic extraction and the results of
trans-hepatic catheterization. Piccinini et al. (2016), to describe
mixed meal test data, proposed a three-compartment insulin
kinetics model, with insulin cleared linearly from the central
compartment and non-linearly from a peripheral compartment,
assumed to represent the liver and to receive secreted insulin.
The non-linear clearance component was described as a linear
function of plasma glucose concentration, with negative slope, an
assumption with uncertain physiological basis. To determine the
model parameters from the data, specific relationships between
glucose concentration and insulin secretion were assumed,
similarly to Cobelli and Pacini (1988). Assumptions on the
insulin kinetics model were also necessary, similarly to Eaton
et al. (1983), but in this case a model for hepatic insulin
extraction was used.

The models following Eaton’s approach described above relied
on experiments in which only endogenous insulin secretion was
present. In this condition, estimates of insulin clearance and

hepatic insulin extraction are crucially dependent on the model
assumptions, as in Eaton’s model. A more robust approach was
used by Toffolo et al. (2006), Campioni et al. (2009), and Polidori
et al. (2016), who relied on the so-called insulin-modified IVGTT,
in which insulin is intravenously infused over 5 min, 20 min
after the glucose bolus. The advantage of this experiment is the
presence of both an endogenous and an exogenous source of
insulin appearance, which allows clearer separation of hepatic
and extrahepatic insulin clearance. Toffolo et al. (2006) used
the insulin kinetics model developed by Cobelli and Pacini
(1988). Their analysis was further developed by Campioni et al.
(2009), who used a piecewise linear description of hepatic
fractional extraction.

The model developed by Polidori et al. (2016) represented
insulin kinetics with a single-compartment, in which the influx is
the sum of insulin infusion and post-hepatic insulin appearance,
i.e., insulin secretion times one minus the hepatic fractional
extraction, and the outflux is the product of insulin concentration
and insulin clearance. Insulin clearance includes a hepatic
component (hepatic fractional extraction times hepatic plasma
flow) and an extrahepatic component (a constant). Individual
hepatic insulin extraction is described with a linear or a
Michaelis–Menten function of insulin delivery to the liver
(estimated from insulin concentration and secretion), depending
on the subject’s data. While the model provides a clinically
interesting method, indeed used in successive studies (e.g., Smith
et al., 2020), it is based on a single-compartment simplification of
insulin kinetics and it uses an ambiguous (as subject-dependent)
representation of the saturative hepatic insulin extraction.

Although the historical concept that insulin clearance is not
substantially regulated has not been superseded, recent studies,
often based on modeling, have emphasized that insulin clearance
is modulated by several factors and that this modulation affects
insulin levels and therefore glucose homeostasis (e.g., Bojsen-
Møller et al., 2018; Smith et al., 2020). As insulin levels
influence insulin clearance due to saturation of insulin removal,
the study of these factors requires a precise quantification
of insulin clearance independent of the prevailing insulin
levels. For instance, it is known since long time that insulin
clearance is inversely related to insulin resistance (Haffner et al.,
1992). However, since insulin resistance also produces relative
hypersecretion and thus hyperinsulinemia, distinguishing the
direct influence of insulin resistance on insulin clearance from
that mediated by the saturative effects of hyperinsulinemia is
challenging. This is an area where modeling is particularly
relevant and progress above the current models is needed. One
major drawback of most of the models discussed here is in
fact the use of compartments, which distorts the relationships
between the mathematical representation and the physiological
system, with unpredictable consequences on the interpretation of
the estimates of insulin clearance and hepatic insulin extraction.
Circulatory models, as the historical Tiran’s model (Tiran et al.,
1979), offer a more appropriate solution. Furthermore, models
should embed a clear representation of saturation phenomena
and provide parameters quantifying insulin clearance or hepatic
insulin extraction that do not depend on insulin levels.
Experimental data should also include both exogenous and

Frontiers in Physiology | www.frontiersin.org 13 November 2020 | Volume 11 | Article 575789

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-575789 November 20, 2020 Time: 17:38 # 14

Mari et al. Mathematical Modeling of Glucose Homeostasis

endogenous sources of insulin delivery, to reduce the impact
of model assumptions. We have recently proposed a model
inspired on these principles (Bizzotto et al., 2018), and the study
is still underway.

Glucose Homeostasis
As anticipated in the Section “Introduction,” models of glucose
homeostasis have a long history. The direct ancestor of the
most famous HOMA model (Turner et al., 1979) has been
one of the earliest attempts to develop a glucose homeostasis
model based on a variety of data, but the study follows a
logic that is rather far from the current conception of glucose
homeostasis models. Perhaps the earliest ambitious attempt to
develop a comprehensive model is that by Guyton et al. (1978)
at Joslin and MIT, who used the state of the art knowledge
of those times for representing glucose metabolism and insulin
secretion. Since those early attempts, many glucose homeostasis
models with various aims and degree of complexity have been
proposed (see e.g., Ajmera et al., 2013). The evolution of these
models to some extent has followed the increase in detailed
knowledge of the components of the glucose homeostatic system.
Here we review some of the more recent models in this field,
highlighting the different aims and degree of adherence to
physiological knowledge.

Two widely cited models of glucose homeostasis were
developed in Cambridge (Hovorka et al., 2004) and Padua (Dalla
Man et al., 2007). Their success mostly relates to their use
for testing the performance of algorithms employed in the so-
called artificial pancreas, a closed-loop glucose controller for
type 1 diabetes management. The two models were developed
based on the consolidated experience of the respective research
groups on the use of models in clinical investigation, e.g., in
the study of glucose kinetics and insulin action with multiple
glucose tracers.

The model of Hovorka et al. (2004) is a compartmental
model of the glucose-insulin system, with two compartments for
glucose kinetics, one compartment for insulin kinetics (assumed
linear), and three distinct delay compartments for the actions
of insulin on glucose distribution, utilization and production.
Insulin-independent glucose utilization is reduced when glucose
concentration is low. Renal glucose excretion is represented
as a threshold function of glucose. Two-compartment chains
were used to model glucose absorption from the gut and
absorption of subcutaneously administered short-acting insulin.
Insulin secretion was not represented, as the model was intended
to simulate the type 1 diabetes condition. The model was
developed based on a previous model of glucose transport
and utilization, built on data from an IVGTT with multiple
tracers (Hovorka et al., 2002). The model was later extended to
simulate glucose regulation in the critically ill (Hovorka et al.,
2008), including an insulin secretion component [derived from
Hovorka et al. (1998), with the addition of an inhibitory effect
of exogenous insulin] and an insulin kinetic component with
saturable removal. The glucose kinetic model was modified to
account for saturable effects of insulin concentration on glucose
transport and utilization. Insulin sensitivity was also assumed
time-dependent, a necessary feature in the critically ill.

In the model of Dalla Man et al. (2007), glucose and insulin
kinetics are represented with two-compartment submodels and
glucose absorption is modeled via compartments associated to
the stomach and gut according to a previous study (Dalla Man
et al., 2006). The insulin kinetics model accounts for non-
constant hepatic extraction. The action of insulin on glucose
utilization and production is represented by non-linear functions
of delayed insulin (obtained from a chain two-compartment
model). Renal glucose excretion is represented as a threshold
function of glucose. Insulin secretion is described by the model of
Breda et al. (2001), discussed above. This model was successively
expanded to describe other aspects of glucose homeostasis,
including: a more detailed representation of the dependence of
glucose utilization on glucose concentration, glucagon secretion
and kinetics and its effects on glucose production, in type 1
diabetic patients (Dalla Man et al., 2014); circadian variations
in insulin sensitivity [derived from Visentin et al. (2015)]; the
“dawn” phenomenon (early-morning increase in blood glucose
concentration) (Visentin et al., 2018); and a three-compartment
model of insulin kinetics (Visentin et al., 2020). The incretin effect
was not modeled. A computer simulator of single meal scenarios
based on the 2007 model has been accepted by the Food and Drug
Administration as a substitute to animal trials for the preclinical
testing of control algorithms in artificial pancreas studies.

Another model of glucose homeostasis oriented toward the
artificial pancreas application is that by Fabietti et al. (2006).
A glucose-insulin model derived from the minimal model was
expanded to include a component describing glucose absorption
from meals as a function of meal carbohydrate composition.
Circadian variations in insulin sensitivity were also represented.
The model was tested on a limited data set in type 1 diabetic
subjects. The model by Brubaker et al. (2007), developed
on OGTT data, was devised to illustrate the importance of
the incretin effect and, more generally, to simulate glucose
dynamics under various conditions, some of which compared
with published data. The foundations and testing of these models
are somewhat weaker than those of the models discussed above.

In the PKPD field, several compartmental models have been
proposed to describe glucose homeostasis, with progressive
improvements allowed by the available data, resulting in an
increased level of completeness. The first models were built
on different studies analyzed together, in which glucose was
given intravenously (Silber et al., 2007) or both intravenously
and orally (Jauslin et al., 2007), following various protocols
and using glucose tracers. The models included compartments
to represent glucose and insulin kinetics and oral glucose
absorption, with delayed glucose and insulin signals affecting
glucose clearance and production, following a logic similar to
that of the models described above. Simple models were used for
insulin secretion and its increase after glucose ingestion; in the
model on intravenous glucose data, first-phase insulin secretion
was represented only in healthy subjects and omitted in T2D
patients. Extensions of these models included the description of
circadian rhythms [based on 24-h glucose and insulin profiles,
(Jauslin et al., 2011)], glucagon kinetics and glucose production
dependence from glucose, insulin and glucagon [using meal
tests with glucagon measurement, (Schneck et al., 2013)], gastric
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emptying and glucose absorption [using paracetamol, (Alskär
et al., 2016)], and scaling factors to account for interspecies
differences (Alskär et al., 2017). These models employ empirical
descriptions of their components (e.g., insulin secretion),
sufficient to predict the available data adequately. On the other
hand, the population parameter estimation methods, typical of
PKPD and used with these models, quantify inter-individual
variability in the model parameters; these results are reported
in the publications and are a potential advantage for realistic
simulations of clinical studies. To the best of our knowledge, such
estimates have not been reported for most of the other models.

The models described above have a variable degree
of complexity, but mathematical representations are kept
parsimonious, aiming at describing only mechanisms that are
essential to explain adequately the observed data. A different
approach is taken by two significant models that represent the
details of the glucose homeostatic system up to the cell level. One
aim of this approach is the possibility to predict the clinical effects
of drugs, based on the knowledge of their molecular mechanisms.

The model of Schaller et al. (2013) follows the principles of
systems biology and pharmacology (multiscale, or hierarchical,
approach), with integration of multiscale data from the
subcellular level (e.g., receptor-mediated action and clearance
of insulin) to the whole-body level (e.g., distribution of blood
flow across the organs). The model considers kinetics models for
glucose, insulin, and glucagon. The organs relevant for each of
these components are described in detail and represented in their
interconnection through the circulation, based on an approach
known as physiology-based pharmacokinetics modeling (Mould
and Upton, 2012). The parameter values were taken from the
literature, and the values of the most influential parameters
were adjusted to fit several standard in vivo tolerance tests. The
ability of the model to represent the behavior of the subsystems
appropriately was, however, not tested in detail.

The multiscale approach by Nyman et al. (2011) used the
homeostasis model of Dalla Man et al. (2007) as a general
framework, and expanded the submodel describing glucose
utilization in insulin-dependent tissues by including an adipose
tissue module. The adipose tissue module described glucose
uptake via the translocation of the GLUT4 transporter, enhanced
by insulin signaling, which was represented including a feedback
model of internalization of the insulin-receptor complex. The
model reproduced some in vitro and in vivo data. This framework
was specifically developed to elucidate the link between in vitro
insulin signaling and in vivo glucose homeostasis, which is of
interest in the study of insulin resistance. On the other hand,
the usefulness of the whole multiscale model for simulation of
glucose homeostasis was not demonstrated.

Accurate representation of glucose homeostasis is difficult
because of the complexity of the physiological system and
its incomplete knowledge. All models embed approximations,
the influence of which on the accuracy of the simulations
is hard to predict. This difficulty is illustrated in one
of our studies discussed above (Bizzotto et al., 2016), in
which we present a glucose kinetics model that explains the
dependence of glucose clearance on glucose concentration,
a phenomenon represented only in some models. In this
study, we describe a partial glucose homeostasis model and
show that neglecting this phenomenon leads to relevant
differences in the predicted glucose concentration during an
OGTT or an insulin infusion in T2D subjects. Therefore,
performing a critical evaluation or assessing the domain of
validity of glucose homeostasis models is practically impossible
in general. The model complexity is not necessarily an
advantage in itself; a better performance is more likely to be
obtained from the models that embed components separately
developed in specific studies and are tested on significant
clinical datasets.

CONCLUSION

Although this review covers only some topics, it highlights
the usefulness and vitality of modeling in the area of glucose
homeostasis. Models for clinical use appear to take the lion’s share
for understandable reasons, but we have underlined the interest
of models that provide explanations of the possible mechanisms
underlying complex phenomena, such as insulin secretion. There
is obviously large space for new models, as several aspects of
glucose homeostasis are still underexplored. In a review of almost
20 years ago (Mari, 2002), we identified modeling of the OGTT
as a promising area, particularly for insulin secretion. As this
has now come true, we propose that two broad areas might be
new challenges for the future: the use of glucose homeostasis
models to gain deeper insight in the progression toward T2D,
which involves multiple interacting factors with a still unclear
quantitative role; and the use of models to link in vitro and in vivo
findings, for which interesting efforts have been recently made for
insulin secretion.
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