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Background: White-matter hyperintensity (WMH) is the key magnetic resonance imaging (MRI) marker 
of cerebral small-vessel disease (CSVD). This study aimed to investigate whether habitat analysis based on 
physiologic MRI parameters can predict the progression of WMH and cognitive decline in CSVD.
Methods: Diffusion- and perfusion-weighted imaging data were obtained from 69 patients with CSVD 
at baseline and at 1-year of follow-up. The white-matter region was classified into constant WMH, 
growing WMH, shrinking WMH, and normal-appearing white matter (NAWM) according to the T2-
fluid-attenuated inversion recovery (FLAIR) sequences images at the baseline and follow-up. We employed 
k-means clustering on a voxel-wise basis to delineate WMH habitats, integrating multiple diffusion metrics 
and cerebral blood flow (CBF) values derived from perfusion data. The WMH at the baseline and the 
predicted WMH from the habitat analysis were used as regions of avoidance (ROAs). The decreased rate of 
global efficiency for the whole brain structural connectivity was calculated after removal of the ROA. The 
association between the decreased rate of global efficiency and Montreal Cognitive Assessment (MoCA) and 
mini-mental state examination (MMSE) scores was evaluated using Pearson correlation coefficients.
Results: We found that the physiologic MRI habitats with lower fractional anisotropy and CBF values and 
higher mean diffusivity, axial diffusivity, and radial diffusivity values overlapped considerably with the new 
WMH (growing WMH of baseline) after a 1-year follow-up; the accuracy of distinguishing growing WMH 
from NAWM was 88.9%±12.7% at baseline. Similar results were also found for the prediction of shrinking 
WMH. Moreover, after the removal of the predicted WMH, a decreased rate of global efficiency had a 
significantly negative correlation with the MoCA and MMSE scores at follow-up.
Conclusions: This study revealed that a habitat analysis combining perfusion with diffusion parameters 
could predict the progression of WMH and related cognitive decline in patients with CSVD.
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Introduction 

Subcortical vascular cognitive impairment (SVCI), an 
important subtype of vascular cognitive impairment, is 
induced by cerebral small-vessel disease (CSVD) (1,2). 
SVCI progresses through two distinct phases: initially, it 
manifests as subcortical vascular mild cognitive impairment 
(svMCI) and is followed by the more advanced phase of 
vascular dementia (VaD). Over half of patients with svMCI 
eventually progress to VaD due to cognitive function 
deterioration (3). Effective strategies to combat this include 
early monitoring of vascular high-risk factors, dietary 
adjustments, and aerobic exercise, which can delay or 
even reverse the progression (4). Thus, early detection of 
cognitive function deterioration in patients with CSVD is 
crucial for timely intervention against VaD (5,6). 

White-matter hyperintensities (WMHs), as crucial 
magnetic resonance imaging (MRI) markers, can indicate 
CSVD damage (7). These lesions can disrupt specific fiber 
tracts, impede effective communication within the white-
matter network, and ultimately cause cognitive decline (8,9). 
Although previous studies have linked WMH burden and 
cognitive outcomes in patients with SVCI, this relationship 
has not been established in clinical practice (10-13). Simply 
monitoring total WMH volume changes over time may 
not fully capture its complex association with cognitive 
impairment, while solely focusing on aggregated WMH 
features can neglect intra-WMH heterogeneity. These 
insufficient approaches could obscure a comprehensive 
understanding of how WMH progression impacts cognitive 
function. 

Although conventional MRI is capable of detecting 
WMH, novel imaging techniques can offer additional 
insights. Diffusion tensor imaging (DTI) can assess the 
tissue microstructure by measuring microscopic water 
movement, which is notably higher in WMH (11). DTI can 
characterize white-matter network disruption, a primary 
cause of cognitive impairment in SVCI, and detect subtle 
tissue alternations of the WMH penumbra (5,7,12). The 
WMH penumbra is an area of white matter surrounding 
the WMH but with normal signal on fluid-attenuated 
inversion recovery (FLAIR) images. Similarly, arterial spin 

labeling (ASL) can identify areas of hypoperfusion within 
the penumbra (11). WMHs and their associated penumbras 
constitute a spectrum of white-matter damage, as abnormal 
changes to normal-appearing white matter (NAWM) 
often precede WMH expansion. Although these imaging 
techniques can provide a degree of insight into WMH 
development, there is lack of understanding regarding 
the specific NAWM alternations that evolve into WMHs. 
Acquiring greater clarity in this area may elucidate the 
nature of the clinical variation observed in patients with 
CSVD.

By leveraging advanced postprocessing algorithms, 
habitat analysis of radiological imaging can define 
subregions within a heterogeneous tumor, identifying 
voxels with similar tumor features (14). This voxel-
level analysis provides pathophysiological insights into 
WMH progression, revealing tissue microenvironment 
heterogeneity. It is compatible with various neuroimaging 
methods, including diffusion- and perfusion-weighted 
MRI (14). Given the dynamic nature of WMH and its 
associated penumbras, investigating their evolution 
through spatial and temporal heterogeneity, as well as 
cognition-related imaging biomarkers, holds pivotal 
clinical value (15). Employing diffusion and perfusion MRI 
for habitat analysis in those with CSVD could improve 
our understanding of WMH progression and cognitive 
impairment. 

Various etiologies and cerebrovascular risk factors are 
associated with WMH, yet the related neuropathological 
mechanisms have not been elucidated. Understanding 
these mechanisms is crucial for the prognosis and early 
intervention in patients with CSVD (16). In this study, 
we aimed to determine whether habitat analysis using 
physiological MRI in combination with structural 
connectivity analysis could predict WMH progression and 
cognitive decline. We propose that a temporal and spatial 
habitat analysis based on DTI and ASL can facilitate the 
identification of NAWM regions prone to future WMH 
development. We present this article in accordance with 
the STROBE reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-238/rc).

Submitted Feb 04, 2024. Accepted for publication Jul 18, 2024. Published online Aug 28, 2024.

doi: 10.21037/qims-24-238

View this article at: https://dx.doi.org/10.21037/qims-24-238

https://qims.amegroups.com/article/view/10.21037/qims-24-238/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-238/rc


Quantitative Imaging in Medicine and Surgery, Vol 14, No 9 September 2024 6623

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(9):6621-6634 | https://dx.doi.org/10.21037/qims-24-238

Methods 

Participants 

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the research ethics committee of Renji 
Hospital (approval no. RA2021-645). Written informed 
consent was obtained from all patients. Participants were 
recruited from the Stroke Clinic of Renji Hospital between 
April 2020 and July 2022, and most had experienced a 
clinical lacunar stroke at least 3 months before the study. 
Imaging assessment of each CSVD marker was rated by 
two well-trained radiologists (X.H. and Y.W.) according 
to the Standards for Reporting Vascular Changes on 
Neuroimaging (STRIVE) (17). Images with inconsistent 
results were ultimately assessed by another senior 
radiologist (YW Sun). All radiologists were blinded to the 
participants’ clinical data.

The clinical data including sociodemographic, clinical 
information, patient history, and MRI data were collected 
for all participants. The exclusion criteria were as follows: 
(I) cerebral hemorrhages, cortical and/or subcortical 
nonlacunar territorial infarcts, and watershed infarcts; 
(II) identifiable causes of white-matter lesions (e.g., 
multiple sclerosis, sarcoidosis, and brain irradiation); (III) 
other neurodegenerative diseases, including Alzheimer 
and Parkinson diseases; (IV) signs of normal pressure 
hydrocephalus or alcoholic encephalopathy; (V) low 
education levels (<6 years); (VI) severe depression 
[Hamilton Depression Rating Scale (HDRS) ≥18], other 
psychiatric comorbidities, or severe cognitive impairment 
(inability to perform neuropsychological tests); (VII) 
severe claustrophobia and contraindications to MRI 
(e.g., pacemaker and metallic foreign bodies); and (VIII) 
poor image quality or missing of clinical data. Finally, 
86 participants were included (7 were excluded: cerebral 
hemorrhages =2, low education levels =2, poor image 
quality =1, and missing clinical data =2).

Neuropsychological assessment

The neuropsychological assessments of the participants 
were conducted by two seasoned neurologists at baseline 
and 1-year follow-up, timed to occur within 2 weeks before 
or after the completion of MRI procedures. None of 
participants experienced a new clinical stroke or transient 
ischemic attack in the interval between MRI procedures. 
The following extensive set of neuropsychological 

assessments were used: Trail-Making Test A and B, Stroop 
color-and-word test, verbal fluency (category) test, auditory 
verbal learning test (short and long delayed free recall), 
Rey-Osterrieth complex figure test-delayed recall), Boston 
Naming Test (30 words), Rey-Osterrieth complex figure 
test-copy, Lawton-Brody Instrumental Activities of Daily 
Living (ADL) scale test, Barthel Index (BI), HDRS, and the 
Neuropsychiatric Inventory.

To evaluate the participants’ cognitive statuses, the scores 
for each measure of normal-aged individuals in Shanghai, 
China, were used as the normal baseline (norms) (18).  
Cognitive dysfunction was defined as a performance at 
least 1.5 standard deviations (SDs) below the mean on at 
least one neuropsychological test. As per the Statement 
on Vascular Contributions to Cognitive Impairment and 
Dementia of the American Heart Association (AHA) (19),  
VaD diagnosis requires a cognitive decline from a previous 
level and deficits in at least two cognitive domains 
sufficiently severe to interfere with daily functions without 
being influenced by the motor or sensory aftermath of 
the vascular event. The criteria for svMCI included the 
following: (I) normal or mildly impaired ADL; (II) no 
fulfilment of dementia criteria; and (III) detectable mild 
cognitive declines in domains such as attention, executive 
function, memory, language, and visuospatial skills. We 
assessed functional abilities using BI and Lawton-Brody 
ADL scales. Patients with disabilities from cognitive and 
motor sequelae were rigorously excluded based on their 
cognitive impairment history and clinical assessment. 
Non-cognitive impairment (NCI) denotes subcortical 
vascular disease absent of cognitive deficits, with all 
neuropsychological assessments within normal limits (>−1.5 
SD) (18). Overall cognitive performance was gauged using 
the Montreal Cognitive Assessment (MoCA) and mini-
mental state examination (MMSE) (20,21). The study 
initially categorized 86 participants into 33 with NCI, 36 
with MCI, and 17 with VaD, yet only 69 participants (33 
NCI and 36 MCI) were ultimately included. 

MRI data and preprocessing

MRI examinations were carried out at baseline and at 
1-year follow-up on a 3.0-T MRI scanner (Signa HDxt; GE 
HealthCare, Chicago, IL, USA) equipped with an eight-
channel phase array head coil, and two foam paddings were 
used to restrict head motion. Several MRI sequences were 
performed. (I) DTI was conducted under the following 
parameters: field of view (FOV) =256×256 mm, repetition 
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time (TR)/echo time (TE) =17,000/89.8 ms, slice thickness/
gap =2.0/0 mm, number of slices =66, matrix size =128×128, 
diffusion-weighted directions =20, b-value =1,000 s/mm2, 
and acquisition time =6 min 14 seconds). (II) ASL was 
performed based on a three-dimensional fast spin-echo 
(FSE) sequence, featuring a 1,500-ms labeling duration 
followed by a 2,000-ms delay after labeling. ASL acquisition 
included six averages: one proton density-weighted image 
and six pairs of labeled and unlabeled images. These were 
averaged to produce a single mean perfusion-weighted 
image (unlabeled-labeled) [FOV =240×240 mm, TR/TE 
=4,337/9.8 ms, slice thickness =4 mm, matrix size =128×128, 
flip angle =155°, number of excitations (NEX) =3, number 
of slices =34, scanning time = 4 min 12 seconds]. The 
cerebral blood flow (CBF) map was automatically calculated 
on the Signa HDxt MRI console, which was calculated 
according to the following equation:
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where T1b is the T1 of blood and is assumed to be 1.6 s at 
3.0T [the partial saturation of the reference image (proton 
density-weighted image) was corrected by using a T1t of 
1.2 s (typical of gray matter)]; ST is the saturation time and 
is set to 2 s; the partition coefficient, λ, is set to the whole 
brain average, 0.9; the efficiency, ε, is a combination of 
both inversion efficiency (0.8) and background suppression 
efficiency (0.75) resulting in an overall efficiency of 0.6; 
PLD is the postlabeling delay used for the ASL experiment; 
LT is the labeling duration and is set to 1.5 s; and PW is 
the perfusion-weighted or the raw difference image. (III) 
Sagittal T1-weighted images encompassing the entire 
brain were obtained using the three-dimensional fast 
spoiled gradient recalled echo (SPGR) sequence under 
the following parameters: FOV =256×256 mm, TR/TE 
=5.6 /1.8 ms, TI =450 ms, slice thickness/gap =1.0/0 mm,  
number of slices =156, flip angle =15°, matrix size 
=256×256, acquisition time =3 min 53 seconds. (IV) T2-
FLAIR sequences were conducted under the following 
parameters: FOV =256×256 mm, TR/TE =9,075/150 ms, 
TI =2,250 ms, matrix size =256×256, slice thickness =2 mm, 
number of slices =66, and acquisition time =7 min 18 s.

The DTI data were preprocessed with the FMRIB’s 
Software Library. The major procedures involved skull 
removal, gap cropping, motion correction, eddy current 

distortion rectification, and diffusion tensor calculations. 
The derived maps of fractional anisotropy (FA), mean 
diffusivity (MD), axial diffusivity (AD), and radial diffusivity 
(RD), as well as the FLAIR images and normalized CBF 
maps, were each coregistered in native space with their 
corresponding T1-weighted images. The baseline T1-
weighted images were automatically segmented into distinct 
categories, namely WM, gray matter, cerebrospinal fluid, 
and other regions. This segmentation was accomplished 
using the SPM toolbox in MATLAB (MathWorks, Natick, 
MA, USA).

Automatic WMH segmentation and habitat analysis

The automatic segmentation of WMH was conducted based 
on the methodologies presented in a previous study (22).  
The WMH mask was also used to correct the entire white-
matter region. After the linear coregistration of the baseline 
and follow-up T1-weighted and FLAIR images, the entire 
white-matter region of the baseline was divided into four 
distinct subregions (Figure 1). We subsequently found that 
the FLAIR images had thicker slices (2 mm) compared to 
the T1 images (1 mm). To avoid registration errors due 
to this discrepancy, we interpolated the FLAIR images to 
match the slice thickness of the T1-weighted images. This 
process minimized the potential for mismatch and ensured 
more accurate coregistration. We used a method that 
involved interpolating the images to ensure consistency in 
voxel size and followed this by applying coregistration and 
subtraction techniques to identify changes.

The entire white-matter region of the baseline was 
segmented into four parts, including NAWM (areas 
not showing WMH at either baseline or follow-up), 
constant WMH (areas showing WMH at both baseline 
and during follow-up), growing WMH (areas without 
WMH at baseline but with WMH during follow-up), and 
shrinking WMH (areas showing WMH at baseline but 
not during follow-up). This method of partitioning the 
entire white-matter region according to the baseline and 
follow-up FLAIR images was used as the gold standard 
for the subsequent prediction that only used the baseline 
physiologic parameters from DTI and ASL data.

We performed habitat analysis, an unsupervised 
clustering method, based on the parametric maps of FA, 
MD, AD, RD, and CBF at the baseline. The procedure 
included the following steps:

(I) Normalization: for each participant, the five 
parameters (FA, MD, AD, RD, and CBF) were all 
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Figure 1 The entire white matter was divided into four distinct subregions according to the FLAIR images at baseline and follow-up. These 
included growing WMH (areas without WMH at baseline but with WMH during follow-up), constant WMH (areas showing WMH at 
both baseline and follow-up), shrinking WMH (areas showing WMH at baseline but not during the follow-up), and normal-appearing WM 
(the remaining white-matter areas). WM, white matter; WMH, white-matter hyperintensity; FLAIR, fluid-attenuated inversion recovery.

WMHfollow-up-WMHbaseline 
Growing WMH

The intersection of WMHbaseline 

and WMHfollow-up Constant WMH
WMHbaseline-WMHfollow-up 

Shrinking WMH
The rest WM 

Normal-appearing WM

WMH 
follow-upThe entire WM

WMH 
baseline

standardized using z-score.
(II) Clustering: we employed the script of k-means 

in MATLAB, with the number of clusters being 
k=2 or 3, distance parameters set to “city block”, 
100 replications, and with other parameters set 
to their default values. To distinguish between 
growing WMH and NAWM, we used a habitat 
analysis strategy in which all the non-WMH 
voxels at the baseline were clustered according to 
their similarities using the L1 distances between 
the voxel intensities and similarity metric. All 
clusters were displayed as spatial habitats in the 
original image space, using the k-means clustering 
algorithm. 

(III) Evaluation: the performance of habitat analysis 
in predicting growing WMH was evaluated by 
calculating the volumes of overlapping regions 
between the physiologic habitats and growing 
WMH, as well as metrics including accuracy, 
sensitivity, and specificity.

Similarly, we conducted habitat analysis on all the WMH 
voxels at the baseline to differentiate shrinking WMH 
from constant WMH for each participant. We chose the 
optimum number of clusters when obtaining the best 

performance to ensure the results were explainable. The 
flowchart of habitat analysis is provided in Figure 2.

Effect of WMH on the structural network 

To evaluate the effect of the WMH during the baseline 
and the predicted WMH from the habitat analysis on the 
structural connectome, the WMH regions during the 
baseline and follow-up were used as regions of avoidance 
(ROAs) in DTI tractography for each patient, respectively. 
The structural connectivity was calculated using DSI studio 
(http://dsi-studio.labsolver.org/) with q-space diffeomorphic 
reconstruction (QSDR) and whole-brain fiber tracking with 
107 seed points and the fiber length set from 20 to 400 mm. 
The Brainnectome parcellation map was used to define 
connectivity nodes, and the density-weighted structural 
connectivity matrix was calculated with a sparsity of 0.9. 
The decreased rate of global efficiency was estimated on 
the basis of the whole brain connectivity matrices with and 
without ROAs.

Statistical analysis

All statistical analysis was performed in MATLAB. To 
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Figure 2 The flowchart of the study procedure. VaD, vascular dementia; CSVD, cerebral small-vessel disease; NCI, non-cognitive 
impairment; MCI, mild cognitive impairment; dMRI, diffusion magnetic resonance imaging; ASL, arterial spin labeling; T1WI, T1-
weighted image; FLAIR, fluid-attenuated inversion recovery image; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; 
WMH, white-matter hyperintensity; RD, radial diffusivity; CBF, cerebral blood flow; ROA, region of avoidance. 

identify physiological differences between the NAWM and 
growing WMH regions and between the constant WMH 
and shrinking WMH regions, diffusion and perfusion 
parameters (FA, MD, AD, RD, and CBF) were calculated 
via a two-tailed Wilcoxon matched-pairs signed-rank 
test. Moreover, we conducted two-samples t tests on the 
decreased rate of global efficiency between the MCI and 
NC groups, and Pearson correlation analysis between 

the decreased rate of global efficiency and the scores of 
the MMSE/MoCA. Subsequently, a power analysis was 
conducted using MATLAB scripts (MathWorks), with the 
sampsizepwr and binofit functions being used to calculate 
the power for the sample size in this study. The power 
analysis was based on determining significant associations 
between imaging parameters and cognition. A P value <0.05 
was considered statistically significant.

24 removed subjects (2 

cerebral hemorrhages, 2 

low education levels, 1 poor 

image quality, 2 missing of 

clinical, and 17 VaD)
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Table 1 The demographic and clinical outcome of all patients with 
CSVD 

Clinical outcome
CSVD patients (n=69)

P value
Baseline One-year follow-up

Age (years) (mean ± SD) 66.2±6.7 66.2±6.7 NA

Gender (No.) NA

Male 54 54

Female 15 15

Cognitive subtype (No.) >0.99

MCI 36 36

NC 33 33

MMSE (mean ± SD) 27.7±2.0 27.7±2.0 0.93

MoCA (mean ± SD) 23.5±3.7 23.4±3.5 0.79

CSVD, cerebral small-vessel disease; SD, standard deviation; 
NA, not applicable; MCI, mild cognitive impairment; NC, normal 
cognition; MMSE, mini-mental state examination; MoCA, 
Montreal Cognitive Assessment.
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Figure 3 The comparisons of physiological parameters between normal-appearing white matter and growing WMH. The physiological 
parameters including (A) FA, (B) MD, (C) AD, (D) RD, and (E) CBF showed significant differences between normal-appearing white matter 
and growing WMH regions according to a two-tailed Wilcoxon matched-pairs signed-rank test. Sum of signed ranks: FA: −2,004; MD: 
2,346; AD: 2,346; RD: 2,342; CBF: −2,278. ***, P<0.001. FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial 
diffusivity; CBF, cerebral blood flow; WMH, white-matter hyperintensity. 

Results

A total of 69 participants with CSVD were enrolled in 
this study, which included a baseline evaluation and 1-year 
follow-up. The demographic characteristics and clinical 
outcomes of all participants are listed in Table 1. There were 
no significant differences in MMSE or MoCA scores from 
the baseline to the 1-year follow-up (both P values >0.5). All 
participants were categorized into an MCI or NC group, 
and there were no significant differences in gender or age 
between these two groups (both P values >0.05, Table 1).

Before habitat analysis was performed, five physiologic 
parameters (FA, MD, AD, RD, and CBF) were calculated 
between growing WMH and NAWM, all of which showed 
significant differences between the two groups (sum of 
signed ranks: FA: −2,004; MD: 2,346; AD: 2,346; RD: 
2,342; CBF: −2,278; Figure 3). These five parameters were 
compared between shrinking WMH and constant WMH 
at baseline and also showed significant differences (sum 
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of signed ranks: FA: 2014; MD: −2,074; AD: −1,742; RD: 
−2,100; CBF: 2,084; Figure 4). 

According to these imaging distinctions, habitat analysis 
was performed to discriminate between growing WM 
and NAWM and between shrinking WMH and constant 
WMH. With the number of clusters set to two (k=2), 
the accuracy for differentiating growing WMH from 
NAWM using the physiological MRI habitat with lower 
FA and CBF values and higher MD, AD, and RD values 

was 88.9%±12.7%. The sensitivity and specificity for this 
differentiation were 91.4%±13.5% and 86.5%±12.3%, 
respectively (Table 2). When the number of clusters was 
increased to three (k=3), the corresponding accuracy was 
reduced to 71.1%±8.9%, and the sensitivity and specificity 
were 80.2%±10.4% and 65.0%±7.7%, respectively (Table 2).  
Similarly, the physiological MRI habitat with higher 
FA and CBF values and lower MD, AD, and RD values 
achieved accuracies of 76.6%±12.3% and 65.9%±9.3% 
in distinguishing shrinking WMH from constant WMH, 
when the number of clusters was set to two and three, 
respectively (Table 2). However, neither the volume of 
growing WMH and shrinking WMH nor the physiologic 
parameters within these regions showed any significant 
correlation with cognitive scale scores (all P values >0.05). 
These data indicated that habitat analysis could characterize 
WMH heterogeneity and predict growing WMH with a 
relatively high accuracy and specificity. A growing WMH 
was typically associated with lower FA and CBF values and 
with higher MD, AD, and RD values.

To further test the efficacy of habitat analysis, we assessed 
the impact of WMH, both at baseline and as predicted from 
habitat analysis, on structural connectome. The WMH 
regions identified at baseline and predicted for the follow-
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Figure 4 The comparisons of physiological parameters between constant and shrinking WMH. The physiological parameters including 
(A) FA, (B) MD, (C) AD, (D) RD, and (E) CBF showed significant differences between constant and shrinking WMH regions according to 
a two-tailed Wilcoxon matched-pairs signed-rank test. Sum of signed ranks: FA: 2,014; MD: −2,074; AD: −1,742; RD: −2,100; CBF: 2,084. 
***, P<0.001. FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; CBF, cerebral blood flow; WMH, 
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Table 2 The performance of habitat analysis in predicting growing 
WMH and shrinking WMH

Number of 
clusters

Accuracy (%) Sensitivity (%) Specificity (%)

Predicting growing WMH

k=2 88.9±12.7 91.4±13.5 86.5±12.3

k=3 71.1±8.9 80.2±10.4 65.0±7.7

Predicting shrinking WMH

k=2 76.6±12.3 79.8±12.6 75.4±11.0

k=3 65.9±9.3 70.3±10.5 61.5±8.7

Data are represented as mean ± standard deviation. WMH, 
white-matter hyperintensity.
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Figure 5 The structural connectivity network in representative MCI and NC patients. We estimated the full connectivity, the connectivity 
with the WMH region during baseline as the ROA, and the connectivity with the predicted WMH region (using habitat analysis) as 
the ROA and calculated the corresponding global efficiency. MCI, mild cognitive impairment; ROA, region of avoidance; NC, normal 
cognition; WMH, white-matter hyperintensity.

up period were integrated as ROAs in DTI tractography 
for each patient. Figure 5 shows an example of the white-
matter structural connectivity network with and without 
the consideration of the WMH region as the ROA in 
representative MCI and NC patients. After the removal of 
the WMH region, we observed a significant decrease in the 
global efficiency of the white-matter network. Interestingly, 
the percentage decrease significantly diverged between the 
MCI and the NC groups at baseline and follow-up (baseline: 
t=2.774; follow-up: t=2.348; Figure 6A,6B). Moreover, 
the percentage decrease exhibited a negative correlation 
with the cognitive scale scores (MMSE: r=−0.39, P=0.003; 
MoCA: r=−0.41, P=0.002; Figure 6C). Upon further 
analysis, when the predicted WMH was removed, the global 
efficiency of the white-matter network declined during the 
follow-up period. Once again, the percentage decrease was 
negatively correlated with the cognitive scale scores (MMSE: 
r=−0.36; P=0.01; MoCA: r=−0.38; P=0.006; Figure 6D).

Given our sample size consisting of 36 participants 
with MCI and 33 participants with normal cognition, the 
statistical powers associated with the significant differences 
in the percentage decrease of global efficiency of MCI 
and NC groups and their consequential correlations with 

the cognitive scale scores exceeded 0.80. This implies a 
strong probability of correctly rejecting the null hypothesis, 
thereby affirming the robustness of our findings.

Discussion 

In this study, we compiled an extensive and diverse 
dataset including both clinical and neuropsychological 
assessments complemented by multimodal MRI data from 
the cohort diagnosed with CSVD who were followed up 
for a duration of 1 year. Our analysis revealed that habitat 
analysis, based on baseline perfusion- and diffusion-
weighted images, could characterize WMH heterogeneity 
and predict growing WMH and the related cognitive 
decline. Notably, the prognostic utility of the habitat 
analysis was found to surpass traditional clinical scales. 
The primary finding of this study was that habitat analysis 
could effectively discriminate between growing WMH 
and NAWM and between shrinking and constant WMH. 
Growing WMH was associated with relatively lower FA 
and CBF values and higher MD, AD, and RD values, an 
observation of critical importance for understanding the 
clinical implications of the results. The efficacy of the WM 
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Figure 6 The comparisons of global efficiency decrease between MCI and NC patients and its relationship with cognitive rating scales. (A,B) 
The percentage decrease in global efficiency showed significant differences between the MCI and NC patients during baseline and follow-
up [(A) baseline: t=2.774; (B) follow-up: t=2.348]. (C,D) The percentage decrease in global efficiency were negatively correlated with the 
MMSE and MoCA scores in all patients at baseline [(C) MMSE: r=−0.39, P=0.003; MoCA: r=−0.41, P=0.002] and follow-up [(D) MMSE, 
r=−0.36, P=0.01; MoCA, r=−0.38, P=0.006]. *, P<0.05; **, P<0.01. MCI, mild cognitive impairment; NC, normal cognition; WMH, white-
matter hyperintensity; MMSE, mini-mental state examination; MoCA, Montreal Cognitive Assessment. 

network declined considerably when the predicted WMH 
region was excluded. Additionally, a negative correlation 
was found between the percentage decrease and cognitive 
scale scores. In summary, our findings suggest that the 
application of imaging-based habitat analysis could provide 
complementary prognostic information. 

WMH damages white-matter fibers, impairs cognition, 
and increases the risk of dementia (11,23,24), with 80% 
of new WMH lesions extending from existing ones (7). 
Prior research indicates that the penumbras around 
WMH, marked by DTI metrics, typically extend from 2 
to 9 mm in extent. In contrast, blood flow in the brain, as 
determined by ASL, generally spans about 12 to 14 mm 
(25-28). This suggests that CBF penumbras are more 
extensive than are the structural changes in surrounding 
NAWM. WMH progression, marked by low perfusion and 
white-matter integrity loss, involves accumulating small 
vessels, demyelination, and axonal injury, which manifest 
as changing ASL and DTI parameters. This damage 

transforms NAWM into WMH, with cascading effects. 
WMH heterogeneity complicates imaging studies, making 
sole WMH analysis insufficient for an understanding of its 
progression (13). Our study found significant differences 
in all five physiologic parameters of FA, MD, AD, RD, and 
CBF between growing WMH and NAWM and between 
shrinking WMH and constant WMH, providing a basis for 
predicting WMH changes through habitat analysis. Besides, 
we found shrinking WMH to be significant, challenging 
prior attributions to technical issues such as segmentation 
and registration and underscoring its importance in future 
research. This highlights potential positive implications for 
patients with CSVD.

In our habitat analysis, we found that baseline MRI 
habitats with lower FA and CBF values but higher MD, AD, 
and RD value overlapped considerably with new WMH 
at the follow-up. This finding suggests that visible WMH 
progression on conventional FLAIR imaging is a superficial 
finding indicative of a much deeper issue. The underlying 
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loss of microstructural integrity and low perfusion are 
detectable only using advanced neuroimaging techniques. 
Our results indicate that long-term hypoperfusion is the 
earliest pathological change in cerebrovascular disease, 
leading to WM microstructural lesions and eventually 
visible WMH on FLAIR. Growing WMH could be 
influenced by a hypoxic microenvironment. 

FA, MD, AD, and RD reflect white-matter integrity. 
MD correlates with broad cognitive impairment, while FA 
only significantly correlates with visual space. Compared 
with MD, the correlation between FA and cognitive 
function is weaker, highlighting the internal heterogeneity 
of WMH, with FA and MD jointly affecting the cognitive 
function. Moreover, AD reflects the diffusivity of the main 
diffusion direction, which is a sign of axon damage, while 
RD is the diffusivity perpendicular to the main direction, 
which reflects the degree of demyelination. Previous 
studies have shown that AD and RD correlate differently 
with cognitive domains, which can explain the clinical 
variations in participants with a similar WMH burden 
(29,30). For instance, participants with degraded WMH 
microstructural integrity might experience more severe 
clinical symptoms than those with equivalent WMH extent 
but better microstructural integrity (4,7). This aligns with 
CSVD studies in which patients with substantial loss of 
microstructural integrity within their WMH had decreased 
cognitive performance regardless of WMH volume (29,31). 
The habitat of lower FA and CBF values and higher MD, 
AD, and RD values could potentially serve as a biomarker 
for WMH progression, providing a personalized foundation 
for individual intervention strategies (32). 

Previous research has indicated that white matter 
microstructural damage disrupts cortico-subcortical 
pathways, thereby impairing brain network connectivity 
and reducing overal l  brain network transmission  
efficiency (33). A holistic approach to the brain is more 
effective in identifying imaging markers related to 
cognition. A brain network, with both the brain structure 
and function being mapped, focuses on the integration 
of information from structural damage across the whole  
brain (9). Numerous methods have been developed to study 
cognitive dysfunction through the construction of a brain 
network (34). CSVD damages white-matter fiber bundles, 
disrupting the complex network connecting the cortex and 
subcortical regions and altering cognitive function in SVCI. 
Network disruption reflects global structural and cognitive 
damage (35). 

We observed a significant global efficiency decrease upon 

WMH removal, with notable differences between the MCI 
and NC groups. This reduction correlated negatively with 
cognitive function. In addition, treating baseline-predicted 
WMH as lesions revealed a similar decrease in network 
efficiency and its cognitive correlation. A longitudinal 
5-year study produced evidence supporting the key role of 
structural network disruption in cognitive decline (36) and 
in line with our findings, found that individual lesions were 
not independently associated with cognition. It is likely that 
various pathological processes resulting in demyelination 
and reduction in axonal number and density may directly or 
indirectly impact the integrity of white-matter tracts (37,38). 
The structural brain network, representing the integrity 
of WM connectivity, offers comprehensive insights into 
cognitive dysfunction mechanisms. 

Cognitive function relies on the interconnection and 
integration of multiple cortical regions. Thus individual 
focal lesions may not accurately reflect the functional 
disturbance at the core of cognitive decline. The greater 
sensitivity of brain network measures stems from their 
continuous, quantitative properties, which are highly 
sensitive to subtle disruptions in the microstructures (39). 
These results provide critical insights into the network 
properties of brain structural damage and cognitive 
impairment in patients with SVCI. CSVD’s insidious 
nature, characterized by minor stroke(s) leading to gradual 
cognitive impairment, necessitates the use of surrogate 
neuroimaging marker to assess and monitor cognitive 
status. The network measures exhibited a correlation 
with cognitive impairment and could potentially serve as 
an indicator of cognitive decline. The WMH-induced 
disruption of brain networks is a critical process in the 
cognitive dysfunction in patients with CSVD.

Our study has a few potential limitations that should 
be mentioned. First, the 1-year follow-up period might 
not have been sufficiently long to observe a substantial 
cognitive decline in patients with CSVD compared to 
baseline measurements. Second, our habitat analysis was 
conducted on a patient-by-patient basis using individual 
MR images, which might have introduced variability due 
to the absence of unified segmentation criteria across all 
patients. The importance of individual MRI parameters was 
only cursorily evaluated in the k-means clustering model for 
habitat analysis. Third, the partial volume effect and slight 
misregistration can impact the definition of the four white-
matter regions. Finally, our evaluation focused exclusively 
on the relationship between cognitive impairment and 
WMH concerning the global efficiency decrease of 
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the white-matter network. We did not delve into the 
contributions of specific subnetworks and subregions to the 
observed cognitive anomalies.

Conclusions 

WMH consists of multiple spatially distinct subregions. 
Through the integration of perfusion and diffusion 
parameters, habitat analysis could potentially predict 
progressive WMH and cognitive decline in those with 
CSVD. 
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