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Evidence indicates that children with autism spectrum disorder (ASD) suffer from an ongoing neuroinflammatory process in
different regions of the brain involving microglial activation. When microglia remain activated for an extended period, the
production of mediators is sustained longer than usual and this increase in mediators contributes to loss of synaptic connec-
tions and neuronal cell death. Microglial activation can then result in a loss of connections or underconnectivity.
Underconnectivity is reported in many studies in autism. One way to control neuroinflammation is to reduce or inhibit
microglial activation. It is plausible that by reducing brain inflammation and microglial activation, the neurodestructive
effects of chronic inflammation could be reduced and allow for improved developmental outcomes. Future studies that
examine treatments that may reduce microglial activation and neuroinflammation, and ultimately help to mitigate symp-
toms in ASD, are warranted.

Keywords: Autism, autism spectrum disorder (ASD), microglial activation, neuroinflammation, underconnectivity, early intervention,
treatments

E V I D E N C E O F M I C R O G L I A L
A C T I V A T I O N A N D B R A I N
I N F L A M M A T I O N I N A U T I S M

A study by Johns Hopkins University School of Medicine
found evidence of microglial activation in individuals with
autism or autism spectrum disorder (ASD) (Pardo et al.,
2005). Indeed, several studies now provide evidence that chil-
dren with autism suffer from an ongoing neuroinflammatory
process in different regions of the brain involving microglial
activation (Enstrom et al., 2005; Pardo et al., 2005; Vargas
et al., 2005; Zimmerman et al., 2005). Evidence of neuro-
inflammation includes activated microglia and astrocytes
found in post-mortem brain tissue (Pardo et al., 2005;
Vargas et al., 2005; Morgan et al., 2010) and irregular, pro-
inflammatory cytokine profiles in the brain and cerebrospinal
fluid of children with ASD (Vargas et al., 2005; Zimmerman
et al., 2005; Chez et al., 2007). Neuroinflammation, in
general, is characterized by the reactivity of microglial cells
and astrocytes, activation of inducible nitric oxide
(NO)-synthase (i-NOS) and increased expression and/or
release of cytokines and chemokines (Monnet-Tschudi et al.,
2011) and that is what is found in autism. As Herbert
(2005) pointed out in her review of the brain abnormalities
in ASD, the autistic brain is not simply wired differently,
but neuroinflammation is a part of the pathology in autism
from childhood through adulthood.

For example, three post-mortem studies have shown
microglial activation in ASD. First, Vargas et al. (2005)

examined brain tissue and cerebral spinal fluid (CSF) in
those with autism. For the morphological studies, brain
tissues from the cerebellum, midfrontal and cingulate gyrus
were obtained at autopsy from 11 patients with autism.
Fresh-frozen tissues from seven patients and CSF from six
living patients with autism were used for cytokine protein pro-
filing. The authors found active neuroinflammatory process in
the cerebral cortex, white matter, and notably in cerebellum of
patients with autism, with marked activation of microglia and
astroglia. The authors stated that the CSF showed a unique
proinflammatory profile of cytokines. The authors also
stated that the pattern of cellular and protein findings suggests
that the brain’s own immune system (not immune abnormal-
ities from outside the brain) and the neuroinflammatory
process appears to be an ongoing and chronic mechanism
of central nervous system (CNS) dysfunction.

Second, Morgan et al. (2010) examined the dorsolateral
prefrontal cortex of male cases with autism (n ¼ 13) and
control cases (n ¼ 9) and found microglial activation and
increased microglial density in the dorsolateral prefrontal
cortex in those with autism. They also noted process retraction
and thickening, and extension of filopodia (small protrusions
sent out from a migrating cell in the direction that it wants to
move) from the processes. The authors stated that the micro-
glia were markedly activated in 5 of 13 cases with autism,
including 2 of 3 under age 6, and marginally activated in an
additional 4 of 13 cases. The authors stated that because of
its early presence, microglial activation may play a central
role in the brain pathogenesis of autism.

Third, Tetreault et al. (2012) immunocytochemically ident-
ified microglia in fronto-insular and visual cortex in autopsy
brains of well-phenotyped subjects with autism and matched
controls and stereologically quantified the microglial densities.
They found that in the fronto-insular and visual cortex,
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individuals with autism had significantly more microglia com-
pared to controls. The authors concluded that because they
observed increased densities of microglia in two functionally
and anatomically disparate cortical areas, microglia are prob-
ably denser throughout cerebral cortex in brains of people
with autism.

E V I D E N C E O F A S T R O C Y T I C
A C T I V A T I O N I N T H E B R A I N
I N A U T I S M

Numerous studies have shown that glial fibrillary acidic
protein (GFAP) levels are increased in autism. An autopsy
report by Bailey et al. (1998), for example, found that the
Purkinje cell loss in ASD was sometimes accompanied by
gliosis and an increase in GFAP.

A study by Ahlsen et al. (1993) examined the levels of
GFAP in the CSF of children with autism and found that
their average GFAP level was three times higher than it was
in the control group. The authors stated that the results
could implicate gliosis and unspecified brain damage in chil-
dren with autism. Laurence and Fatemi (2005) examined
levels of GFAP in the frontal, parietal and cerebellar cortices
using age-matched autistic and control post-mortem speci-
mens. GFAP was significantly elevated in all three brain
areas. The authors stated that the elevated GFAP confirms
microglial and astroglial activation in autism and indicates
gliosis, reactive injury, and perturbed neuronal migration
processes.

Rosengren et al. (1992) also found GFAP levels in CSF in
children with autism were higher than those in normal
control children of the same age range. The authors stated
that the high levels of GFAP in combination with normal
S-100 protein concentrations in CSF indicate reactive astro-
gliosis in the CNS.

Also, Fatemi et al. (2008) investigated whether two astrocy-
tic markers, aquaporin 4 and connexin 43, are altered in
Brodmann’s Area 40 (BA40, parietal cortex), BA9 (superior
frontal cortex) and the cerebella of brains of subjects with
autism and matched controls. The authors reported that the
findings demonstrated significant changes in the two astrocy-
tic markers in the brain from individuals with autism.

R E S U L T S O F E X T E N D E D
M I C R O G L I A L A N D A S T R O C Y T I C
A C T I V A T I O N

When microglia remain activated for an extended period, the
production of mediators is sustained longer than usual. This
increase in mediators contributes to loss of synaptic connec-
tions and neuronal death (Wood, 2003). Streit et al. (2004)
state that in the case of chronic neuroinflammation, the cumu-
lative ill effects of microglial and astrocytic activation can con-
tribute to and expand the initial neurodestruction, thus
maintaining and worsening the disease process through
their actions. Neuroinflammation generally refers to more
chronic, sustained injury when the responses of microglial
cells expand the neurodestructive effects (Streita, 2006).
Evidence suggests that the collateral neural damage can
involve loss of connections in the brain (Gehrmann et al.,

1995). Underconnectivity is found in autism and will be dis-
cussed in the next section.

E V I D E N C E O F A B N O R M A L B R A I N
C O N N E C T I V I T Y I N A S D

It is apparent from many studies that ASD involves the loss of
critically important neuronal connections and networks (Just
et al., 2007; Kana et al., 2009; Minshew and Keller, 2010; Di
Martino et al., 2011; Wass, 2011). In a recent review of con-
nectivity in ASD, Wass (2011) stated that there is ‘consider-
able convergent evidence suggesting that connectivity is
disrupted in ASD’. From his review of the literature, he
states that the evidence indicates long-distance under-
connectivity, and that disruptions appear more severe in the
later-developing cortical regions.

As a result, the functional connectivity among regions of
autistic brains is diminished (Herbert et al., 2004, 2005;
Herbert, 2005). For example, Damarla et al. (2010) investi-
gated the cortical underconnectivity theory in autism by
examining the neural bases of the visuospatial processing in
high-functioning autism. Using a combination of behavioral,
functional magnetic resonance imaging (fMRI), functional
connectivity and corpus callosum morphometric methodo-
logical tools, they found that the autism group had lower func-
tional connectivity between the higher-order working
memory/executive areas and the visuospatial regions
(between frontal and parietal–occipital).

Ebisch et al. (2011), using fMRI, found reduced functional
connectivity in ASD, compared with controls, between
anterior and posterior insula and specific brain regions
involved in emotional and sensory processing. Di Martino
et al. (2011) found that children with ASD have abnormal
functional connectivity between nearly all striatal subregions
and heteromodal associative and limbic cortex previously
implicated in the physiopathology of ASD (e.g. insular and
right superior temporal gyrus).

Shukla et al. (2010) found fiber tract abnormalities in the
corpus callosum (indicating impaired interhemispheric trans-
fer), internal capsule and middle cerebellar peduncle and all
three segments of the internal capsule in ASD.
Boger-Megiddo et al. (2006) assessed midsagittal corpus callo-
sum cross-sectional areas in 3–4 year olds with ASD com-
pared to typically developing (TD) and developmentally
delayed (DD) children. Although there was no difference in
absolute size compared to TD, ASD callosums were dispro-
portionately small when adjusted for increased ASD cerebral
volume. The ASD clinical subgroup analysis revealed greater
proportional callosum reduction in the more severely affected
autistic disorder than in pervasive developmental disorder-not
otherwise specified children. Just et al. (2007) found that rel-
evant parts of the corpus callosum, through which many of the
bilaterally activated cortical areas communicate, were smaller
in cross-sectional area in the autistic participants and that the
size of the genu of the corpus callosum was correlated with
frontal–parietal functional connectivity.

Particularly implicated in connectivity is the cerebellum,
one of the most common sites of anatomic abnormality in
autism (Courchesne, 1997; Courchesne and Pierce, 2002;
Belmonte et al., 2004). The Purkinje cell is the main output
cell in the cerebellum and it is significantly diminished in
number in ASD (Palmen et al., 2004).
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It is important to note that the connectivity issues are
related to the symptomatology in ASD. Using electroencepha-
lography (EEG) to assess dynamic brain connectivity,
Barttfeld et al. (2011), for example, found that the greater
the abnormalities found in the connectivity in ASD, the
worse the child’s symptoms.

E V I D E N C E O F I N C R E A S E D
P R O I N F L A M M A T O R Y C Y T O K I N E
L E V E L S I N T H E B R A I N A N D C S F I N
A U T I S M ( T N F - a , I F N - g , I L - 1 b , I L - 8 )

As mentioned earlier, there is evidence of proinflammatory
cytokine profiles in the brain and cerebrospinal fluid of chil-
dren with ASD (Vargas et al., 2005; Zimmerman et al.,
2005; Chez et al., 2007). Some specific examples are as
follows. Li et al. (2009) showed that proinflammatory cyto-
kines (tumor necrosis factor-a (TNF-a), interleukin (IL)-6
and granulocyte-macrophage colony-stimulating factor
(GM-CSF)), Th1 cytokine (IFN-g) and chemokine (IL-8)
were significantly increased in the brains of ASD patients
compared with the controls. A study by Vargas et al. (2005)
demonstrated tumor growth factor-b1, derived from neuro-
glia, was significantly increased in the middle frontal gurus
of autistic patients, while macrophage chemoattractant
protein (MCP)-1, IL-6 and IL-10 were increased in the
anterior cingulated gurus. In addition, using protein array
approach, Vargas and colleagues also found that MCP-1,
IL-6, IL-8, and IFN-g were significantly increased in the
CSF (Vargas et al., 2005). TNF-a was also shown to be
increased in the CSF of autistic patients by Chez et al.
(2007). Chez et al. stated that the elevation of cerebrospinal
fluid levels of TNF-a was significantly higher (mean ¼
104.10 pg ml21) than concurrent serum levels (mean ¼ 2.78
pg ml21) in all the patients studied. They stated that the
ratio was significantly higher than the elevations reported
for other pathological states for which cerebrospinal fluid
and serum TNF-a levels have been simultaneously measured
and that this finding may provide an insight into CNS inflam-
matory mechanisms in autism.

P O S S I B L E R O L E O F N F - k B
E X P R E S S I O N I N
N E U R O I N F L A M M A T I O N I N A U T I S M

The neuroinflammation in autism appears to be chronic and
even excessive. Recent research suggests that the exaggerated
brain immune response in ASD may be due, in part, to aber-
rant nuclear factor kappa-light-chain enhancer of activated B
cells (NF-kB or NF-kappaB) expression, which can produce
chronic or excessive inflammation (Young et al., 2011). A
recent study by Young et al. (2011) examined NF-kB in
human post-mortem samples of orbitofrontal cortex tissue
in autism as compared to controls. They hypothesized that
the concentrations of NF-kB would be elevated, especially in
activated microglia in ASD, and pH would be concomitantly
reduced (i.e. acidification). According to the authors,
neurons, astrocytes, and microglia all demonstrated increased
extranuclear and nuclear translocated NF-kB p65 expression
in brain tissue from ASD donors relative to samples from
matched controls. The between-group differences were

increased in astrocytes and microglia relative to neurons, but par-
ticularly pronounced for highly ‘mature microglia’. Measurement
of pH in homogenized samples demonstrated a 0.98-unit differ-
ence in means and a strong (F ¼ 98.3; P ¼ 0.00018) linear
relationship to the expression of nuclear translocated NF-kB in
mature microglia. Young et al. (2011) summarized that NF-kB
is aberrantly expressed in orbitofrontal cortex in patients with
ASD, as part of a putative molecular cascade leading to inflam-
mation, especially of resident immune cells in brain regions
associated with the behavioral and clinical symptoms of ASD.
Their study provides further evidence of neuroinflammation
that may be categorized as excessive in ASD.

Naik et al. (2011) examined NF-kB in peripheral blood
samples of 67 children with autism and 29 control children
using electrophoretic mobility shift assay. They stated that
there was a significant increase in NF-kB DNA binding
activity in peripheral blood samples of children with autism
and when the fold increase of NF-kB in cases (n ¼ 67) was
compared with that of controls (n ¼ 29), there was a signifi-
cant difference (3.14 versus 1.40, respectively; P , 0.02).
They concluded that autism may arise, at least in part, from
an NF-kB pathway gone awry.

Evidence suggests that the equivalent of a vicious cycle can
occur where microglia produce oxidative products and then
increased intracellular reactive oxygen species (ROS), in
turn, activates a redox-sensitive NF-kB to provoke excessive
neuroinflammation. According to Nakanishi et al. (2011),
this can result in memory deficits and prolonged behavioral
consequences.

P O S S I B L E R O L E O F G L U T A T H I O N E
D E P L E T I O N I N M I C R O G L I A L
A C T I V A T I O N I N A U T I S M

Recent research suggests that glutathione (GSH) depletion can
play a role in microglia-mediated neurotoxicity (Lee et al.,
2010). Lee et al. (2010), for example, explored whether
GSH depletion stimulated a neuroinflammatory response.
They found that inhibition of GSH biosynthesis with
D,L-buthionine-S,R-sulfoximine causes human microglia and
human astrocytes to release TNF-a, IL-6 and nitrite ions.
They concluded that as astrocytes are a main supplier of GSH
to microglia and neurons in the brain, depletion of GSH
during aging or neurodegeneration in neurological diseases
may not only lead to activation of microglia and the astrocytes
themselves, but may also render neurons sensitive to cell death.

In addition, Kigerl et al. (2011) found that ex vivo analyses
showed that redox balance in microglia and macrophages is
controlled by induction of glutamate/cystine antiporter
(system x(c)(-)) and that high GSH:GSSG ratios predict the
neurotoxic potential of these cells. [Reduced glutathione
(GSH) is a major tissue antioxidant. The formation of a disul-
fide bond between two GSH molecules gives rise to oxidized
glutathione (GSSG). Under conditions of oxidative stress,
GSSG accumulates and the ratio of GSH to GSSG will
decrease. Therefore, the GSH/GSSG ratio can be used as an
indicator of oxidative stress in cells and tissues.]

More importantly, studies suggest that children with ASD
have inadequate GSH production. First, studies indicate
abnormalities in the transsulfuration pathway in ASD (the
pathway is where GSH is made) (James et al., 2004, 2006;
Geier et al., 2009). And studies show low plasma GSH levels

microglial activation in autism 207



in ASD (James et al., 2004, 2006; Geier et al., 2009) and
reduced glutathione regenerating enzymes (Al-Yafee et al.,
2011). In addition, James et al. (2009) used lymphoblastoid
cells (LCLs) derived from autistic children and unaffected
controls to assess relative concentrations of reduced gluta-
thione (GSH) and oxidized disulfide glutathione (GSSG) in
cell extracts and isolated mitochondria as a measure of intra-
cellular redox capacity. Their results indicated that the GSH/
GSSG redox ratio decreased and the percentage of oxidized
glutathione increased in both cytosol and mitochondria in
the autism LCLs.

More importantly, Chauhan et al. (2012) compared DNA
oxidation and glutathione redox status in post-mortem
brain samples from the cerebellum and frontal, temporal, par-
ietal and occipital cortex from autistic subjects and age-
matched normal subjects. The authors reported that levels
of reduced glutathione GSH were significantly reduced and
the levels of oxidized glutathione GSSG were significantly
increased in the cerebellum and temporal cortex in the
brain samples from the group with autism as compared to
the corresponding levels in the control brain samples.

Thus, it is possible that inadequate availability of GSH in
ASD may play a role in microglial activation. Furthermore,
GSH stores could be depleted from oxidative stress caused
by microglial activation and if an individual cannot readily
regenerate GSH, low GSH availability may stimulate micro-
glial activation, leading to a cascade of events that potentiates
itself.

In addition, in its resting state, microglia have been shown to
contain levels of glutathione significantly higher than in astro-
cytes or neurons (Chatterjee et al., 2000; Hirrlinger et al., 2000).
It appears that the production of NO following microglial acti-
vation causes a decline in cellular GSH levels leading to brain
oxidative damage (Moss and Bates, 2001). A study by Heales
et al. (1996) examined brain glutathione and nitric oxide
synthase activity (which generates NO). They found that loss
of GSH was accompanied by a significant increase in brain
nitric oxide synthase activity, by up to 55%. Depletion of
GSH in cultured neurons, by approximately 90%, led to a sig-
nificant 67% increase in nitric oxide synthase activity, as
judged by nitrite formation, and cell death. It was concluded
by Heales and colleagues that depletion of neuronal GSH
results in increased nitric oxide synthase activity.

E V I D E N C E O F I N C R E A S E D N I T R I C
O X I D E P R O D U C T I O N A N D R E L A T E D
M E D I C A L S Y M P T O M S I N A S D

As mentioned earlier, once activated, microglia release large
amounts of NO and superoxide as a cytotoxic attack mechan-
ism (Colton and Gilbert, 1987). ROS and RNS derived from
NO and superoxide may also cause local cellular damage by
reacting with proteins, lipids and nucleic acids (Valko et al.,
2007). These chemicals can directly damage cells and lead to
neuronal cell death. As a result, elevated NO levels can
cause a wide array of medical problems, many of which are
found in ASD. Although an ASD diagnosis is defined by
three core features (impairment in communication and social-
ization, and behavioral issues), other features, more physical
or systemic in nature, are associated with an ASD diagnosis.

For example, a recent analysis of the National Health
Interview Survey, 2006–2010, that included 375 children

with autism by Schieve et al. (2011), found that children
with autism were more likely to have headaches/migraines,
respiratory and food allergies, physician visits and to be
taking prescription medication than children without
autism. Children with ASD are also, according to a study by
Atladóttir et al. (2010), more likely to be hospitalized for an
infectious disease. These medical diseases could possibly be
a result of, or associated with, or exacerbated by elevated
NO levels. Some examples are as follows:

As mentioned, children with ASD have a higher rate of
infection (Atladóttir et al., 2010). There is evidence that abun-
dant NO at an inflammatory site may reduce and impair
natural killer (NK) cell function (Takabayashi et al., 2000)
which may provide an explanation for the frequent infections
that a large subset of children with autism suffer from
(Nicolson et al., 2007). Studies have found low NK function
in ASD (Enstrom et al., 2009). Vojdani et al. (2008), for
example, found that at least 45% of children with autism
suffer from low NK cell activity.

Seizures are common in autism, occurring in 20–30% of
patients based on the majority of studies. Epileptiform EEG
abnormalities are present in 10.3–72.4% of patients
(Danielsson et al., 2005; Kagan-Kushnir et al., 2005). Several
studies have found that microglial activation can result in
seizures (Radewicz et al., 2000; Somera-Molina et al., 2007,
2009). In a study by Kovács et al. (2009) the researchers
propose that NO-dependent enhancement of synaptic trans-
mission is a key promoting factor for the initiation of seizures.
In addition, NO might exert long-term effects in epilepsy.
NO-dependent inhibition of mitochondrial electron transport
chain activity (Brown, 2001), disruption of the mitochondrial
networks (Yuan et al., 2007), and blockade of mitochondrial
trafficking (Rintoul et al., 2006) might contribute to metabolic
impairment as described for the epileptic hippocampus (Kunz
et al., 2000; Kann et al., 2005).

In the National Health Interview Survey, 2006–2010, Schieve
et al. (2011) also reported a higher rate of asthma and bronchitis
in children with intellectual disabilities (ID), including ASD. In a
review by Ashutosh (2000), it was reported that an increase in
the exhaled NO has been shown to accompany eosinophilic
inflammation and to correlate with other indices of inflam-
mation in asthma. Exhaled NO increases during exacerbation
and decreases with recovery in patients with asthma. Yates
(2001) also reported that asthma is characterized by chronic
airway inflammation and increased synthesis of NO and other
highly reactive and toxic substances (ROS). Pro-inflammatory
cytokines such as TNF-a and IL-1b are secreted in asthma
and result in inflammatory cell recruitment, but also induce
calcium- and calmodulin-iNOS and perpetuate the inflamma-
tory response within the airways. NO is released by several pul-
monary cells including epithelial cells, eosinophils and
macrophages, and NO has been shown to be increased in con-
ditions associated with airway inflammation, such as asthma
and viral infections.

Research suggests relatively high rates of eczema and food
allergies in ASD as compared to TD children (Schieve et al.,
2011). It has been suggested that NO is an important player
in eczema, food allergies, and intestinal inflammation.
Eczema is characterized by inflammation of the skin and is
commonly associated with food allergy. The results of a
study, by Devenney et al. (2010), were able to support
previous studies indicating that the homeostasis of nitrogen
radicals is disturbed in childhood eczema.
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As mentioned, Adams et al. (2011) and Wang et al. (2011)
found that there is a correlation of gastrointestinal symptoms
with autism severity indicating that children with more severe
autism are likely to have more severe gastrointestinal symp-
toms and vice versa. Schieve et al. (2011) found that children
with autism were 70% more likely than children in the ID
group, two times more likely than children in the attention-

deficit hyperactivity disorder and learning disabled/other
developmental delay groups, and seven times more likely
than children without developmental delays (DDs) to have
had frequent diarrhea/colitis in the last 12 months. Research
shows that exaggerated or uncontrolled expression of iNOS
itself becomes detrimental to the gastrointestinal tract
(Calatayud et al., 2001), and that large amounts of NO can

Fig. 1. This diagram shows the relationships and interplay between microglial activation and the neuropathology, medical issues and symptoms in ASD.
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increase gut permeability and induce apoptosis (Dijkstra et al.,
2004). Inflammatory bowel disease (IBD) and irritable bowel
syndrome (IBS) are chronic diseases that cause inflammation
of the intestines. A study by Reinders et al. (2005) found that
NO was low in healthy control subjects, and variations over
time were small. In IBS patients NO was slightly elevated,
whereas patients with active IBD or collagenous colitis had
greatly increased NO levels. Rectal NO correlated with disease
activity in IBD and collagenous colitis and decreased markedly
in IBD patients responding to anti-inflammatory treatment.

A statistically significant global reduction of cerebral blood
flow (CBF) is found in autistic children (Burroni et al., 2008).
Recent studies on brain circulation have provided evidence
that CBF is impaired by decreased formation of NO from
endothelial cells, autonomic nitrergic nerves or brain
neurons and also by increased production of ROS. The NO–
ROS interaction is an important topic in discussing blood
flow and cell viability in the brain (Toda et al., 2009).

In the recent study, Giulivi et al. (2010) found that children
with autism were more likely to have mitochondrial dysfunc-
tion than TD children. Evidence has also been provided that
mitochondrial dysfunction can be induced by elevated levels
of NO (Stewart and Heales, 2003). NO and its toxic metabolite
peroxynitrite (ONOO(-)) can inhibit the mitochondrial res-
piratory chain, leading to energy failure and ultimately cell
death. ROS and RNS derived from NO and superoxide may
also inhibit mitochondrial brain energy metabolism (Valko
et al., 2007), preventing the production of adenosine triphos-
phate (Bolaños et al., 1995).

Abnormal eating patterns and eating disorders are associ-
ated with ASD (Maenner et al., 2011; Tang et al., 2011). A
team of researchers in Italy provided evidence on the possible
actions of NO on the etiology of eating disorders (Vannacci
et al., 2006). In this study, plasma nitrite and cyclic guanosine
monophosphate levels were significantly higher in eating dis-
order patients than in healthy controls.

C O N C L U S I O N

Evidence indicates that children with ASD suffer from an
ongoing neuroinflammatory process in different regions of
the brain involving microglial activation. The microglial acti-
vation appears to play a role in the brain underconnectivity
and other issues in ASD (see Fig. 1 which shows the relation-
ships and interplay between microglial activation and the
neuropathology, medical issues and symptoms in ASD).
Current therapies typically used in ASD do not directly
address the underlying neuroinflammation. It is possible
that by reducing brain inflammation and microglial acti-
vation, the neurodestructive effects of chronic inflammation
could be reduced and allow for neuronal reconnection.
Reducing brain inflammation could allow for an improved
response to early behavioral and learning intervention
measures to be more effective, and ultimately enhance devel-
opmental outcomes. Many studies suggest that there are
pharmaceutical and nutraceutical treatments that can reduce
microglial activation and/or their associated inflammatory
cytokines. However, the studies that have examined these
potential therapies have not been conducted in ASD. Future
studies that examine treatments that may reduce microglial
activation and neuroinflammation, and ultimately help to
mitigate symptoms in ASD, are warranted.
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