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A family harboring an MLKL loss of function variant
implicates impaired necroptosis in diabetes
Joanne M. Hildebrand 1,2, Bernice Lo3, Sara Tomei3, Valentina Mattei3, Samuel N. Young1, Cheree Fitzgibbon1,
James M. Murphy 1,2 and Abeer Fadda 3

Abstract
Maturity-onset diabetes of the young, MODY, is an autosomal dominant disease with incomplete penetrance. In a
family with multiple generations of diabetes and several early onset diabetic siblings, we found the previously
reported P33T PDX1 damaging mutation. Interestingly, this substitution was also present in a healthy sibling. In
contrast, a second very rare heterozygous damaging mutation in the necroptosis terminal effector, MLKL, was found
exclusively in the diabetic family members. Aberrant cell death by necroptosis is a cause of inflammatory diseases and
has been widely implicated in human pathologies, but has not yet been attributed functions in diabetes. Here, we
report that the MLKL substitution observed in diabetic patients, G316D, results in diminished phosphorylation by its
upstream activator, the RIPK3 kinase, and no capacity to reconstitute necroptosis in two distinct MLKL−/− human cell
lines. This MLKL mutation may act as a modifier to the P33T PDX1 mutation, and points to a potential role of
impairment of necroptosis in diabetes. Our findings highlight the importance of family studies in unraveling MODY’s
incomplete penetrance, and provide further support for the involvement of dysregulated necroptosis in human
disease.

Introduction
Monogenic diabetes constitutes less than 5% of diabetes

cases, of which the two main forms affect either newborns
(NDM) or young adults (MODY)1. To date, there are 14
types of MODY named after the genes involved in each.
MODY is inherited in an autosomal dominant mode, and
despite being described as monogenic, it is not fully
penetrant2. Families affected with the insulin promoter
factor-1 (PDX1) MODY (or MODY4), for example, fre-
quently do not segregate strictly with pathogenic PDX1
mutations, with unaffected carriers being common and
some diabetic members lacking the mutations3–7. PDX1 is
a transcription factor that regulates expression of key
pancreatic genes, including those encoding insulin,

somatostatin, glucokinase, islet amyloid polypeptide and
glucose transporter type 2 genes8. Biallelic damaging
mutations have been well characterized with severe con-
sequences in humans and mice, involving pancreatic
agenesis, NDM and death9,10. However, mice bearing a
single allele knockout exhibit only a mild phenotype and
do not develop diabetes11. Despite many of the reported
MODY4 mutations studied in vitro and in vivo confirm-
ing a role in pathogenesis3,4,6,7, these studies stop short of
explaining the phenomenon of incomplete penetrance.
Additional environmental or genetic factors are clearly
acting alongside PDX1 mutations in the etiology of
MODY. In support of this idea, the selective, inducible
inhibition of IKK/NF-κB signaling in pancreatic β-cells
could induce bona fide diabetes in pre-diabetic adult
Pdx1+/− mice12.
Family studies have greatly contributed to the identifi-

cation of pathogenic mutations and continue to yield
important new insights even in the era of large cohort
sequencing. While genome-wide association (GWAS)
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studies succeeded in revealing many disease-associated
variants with small effects on phenotypic expression, rare
variants with big or moderate phenotypic effects are
overlooked. Here, we present findings gleaned from a
family with five siblings, four of whom have diabetes in
addition to their mother. We observed the previously
described P33T PDX1 haploinsufficiency mutation in all
patients and the unaffected sibling. This mutation has
been previously reported in MODY patients, and func-
tional analyses show reduced binding of the mutated
PDX1 to the insulin promoter and reduced transcriptional
activation in vitro4. Several in silico prediction tools
confirmed a damaging effect of this mutation, while the
high conservation score (PhyloP p value = 2.78E–06)
indicates the functional importance of this substitution to
protein function. However, relative abundance of the
variant in the population, (global MAF of 0.0023, or 0.23%
of all PDX1 alleles genotyped in gnomAD13) is atypical of
a mutation responsible for monogenic disease. The lack of
strict allele-disease segregation (or penetrance) within this
and other families also contradicts its classification as a
Mendelian pathogenic gene variant. Therefore, it is clas-
sified as a variant of uncertain significance according to
the American College of Medical Genetics and Genomics
(ACMG) guidelines in ClinVar14. Through direct genomic
comparisons, the presence of a healthy carrier in the
family provides a great opportunity for finding modifier
mutations that would explain the incomplete penetrance.
Further sequence analysis revealed a rare mono-allelic
damaging mutation in the Mixed Lineage Kinase Domain-
Like (MLKL) gene, exclusively in the diabetic family
members.
MLKL is the terminal executioner protein in the

necroptosis cell death pathway15–18. Necroptosis is a lytic
cell death pathway that is thought to have evolved as an
arm of the innate immune response to pathogens19–24.
While it is dispensable for mouse and human develop-
ment16,25,26, dysregulated necroptosis has been widely
implicated in infectious and non-infectious disease
alike19,26–32. Necroptotic signals can emanate from several
forms of extracellular and intracellular stimuli, but almost
universally culminate in the formation of the ‘necrosome’.
Within the necrosome, RIPK3 activity is enhanced by
autophosphorylation17,33–35, which provides the cue for
MLKL recruitment and phosphorylation. Upon phos-
phorylation of its regulatory pseudokinase domain, MLKL
undergoes conformational switching to an activated
form16,36–41, which is oligomerized and trafficked to the
plasma membrane where it accumulates into hotspots
that permeabilize the cell to cause lytic death42–45.
To date, relatively few human diseases have been

associated with MLKL variant sequences, with substitu-
tions so far genomically-linked to neurodegenerative
spectrum disorder26, Alzheimer’s disease31, and Chronic

Recurrent Osteomyelitis (CRMO)27. Here, we report a
missense mutation in MLKL that segregates exclusively
with affected members of a diabetic family. The amino
acid substitution, G316D, fully ablates MLKL killing
activity in human cells in vitro. These data suggest that
impaired necroptosis may contribute to the penetrance of
P33T PDX1 haploinsufficiency-induced diabetes in these
patients.

Results
Case presentation
A non-consanguineous family of Palestinian ethnicity

has multiple generations and multiple siblings affected
with diabetes (Fig. 1). Four out of five siblings have
developed insulin dependent diabetes during their teens.
Their mother developed mild diabetes at 40 years of age
which she manages with diet, while her mother developed
gestational diabetes that did not resolve. Within the
nuclear family, all of the affected are lean to normal
weight; the paternal grandmother had type 2 diabetes. We
tested non-fasting glycosylated hemoglobin (HbA1c),
endogenous insulin (c-peptide), and two autoantibodies,
anti-glutamic acid decarboxylase (anti-GAD), and anti-
thyroid peroxidase (anti-TP) antibodies (Table 1). All
affected siblings had very low levels of endogenous insu-
lin, and 3 were positive for at least one autoantibody. The
mother showed a slight increase in c-peptide suggestive of
insulin resistance. The older sibling remains unaffected at
31 years of age, the time of writing the manuscript.

Fig. 1 Pedigree of a non-consanguineous Palestinian diabetic
family. Gray- and black-filled shapes indicate mild and severe
diabetes, respectively. White-filled shapes represent the unaffected
family members; numbers inside shapes reflect the number of
unaffected siblings. Circles represent females while squares represent
males. Numbers stated beside circles and squares refer to age of
disease onset. GDM is Gestational Diabetes Mellitus. Genotypes listed
are for PDX1 and MLKL mutations respectively.
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Oligogenic inheritance
Whole genome sequencing was performed for all

members of the nuclear family. We examined CNVs (copy
number variations), indels (insertions/deletions) and
SNPs (single nucleotide polymorphisms), and applied
strict variant filtering criteria such as a minimum read
depth of 20, global allele frequency <1%, and prediction of
pathogenicity by both SIFT and PolyPhen (see details in
the methods). Variant analysis revealed the presence of a
maternally inherited heterozygous mutation in PDX1
c.97 C > A, p.P33T, (rs192902098) in all 5 siblings,
including the healthy unaffected sibling (Fig. 1). Looking
for potential modifier mutations, we extracted all genetic
variants that were shared by the diabetic siblings, but
absent in the unaffected sibling. Applying the same fil-
tering criteria as above, we arrived at four substitution
mutations listed in Table 2. One of these substitution
mutations was in the gene encoding the Mixed Lineage
Kinase Domain Like protein (MLKL G316D,
rs375490660). The MLKL G316D substitution occurs
within the αE helix within the C-lobe of MLKL’s C-
terminal pseudokinase domain. The mutation is very rare
(0.001% of MLKL alleles) and is not found in the homo-
zygous state in the gnomAD database13. Owing to the
steric bulk of an Asp relative to the native Gly (Fig. 2), and
the accompanying introduction of a negatively charged
sidechain, we predicted the G316D substitution would be
deleterious to protein function.

G316D substitution impairs MLKL activation
To examine if the non-conservative Gly316Asp amino

acid replacement altered the stability or function of MLKL
in human cells, we examined this mutant relative to wild-
type MLKL in two cell lines commonly used to study
necroptotic signal transduction: the HT29 colon adeno-
carcinoma and U937 monocytic cell lines. MLKL+/+ and
MLKL−/− lines were stably-transduced with a doxycycline-
inducible MLKLWT or MLKLG316D gene construct. All cell
lines used showed similar levels of RIPK3 and equivalent

levels of RIPK3 activation following the addition of the
necroptotic stimulus TNF, Smac-mimetic and IDN6556
(TSI) as judged by upshift of the RIPK3 band on western
blot indicating protein modification (Fig. 3a). Following a
5 h incubation of MLKL−/− HT29 cells with 100 ng/mL
doxycycline, exogenously encoded MLKLG316D protein
levels were ~50% that of exogenously encoded MLKLWT

in cells not stimulated by TSI (Fig. 3a, Supplementary Fig.
1a). Despite similar levels of total MLKLWT and
MLKLG316D species detectable in MLKL−/− HT29s sti-
mulated with both doxycycline and TSI, phosphorylated
MLKL (pS358) was virtually undetectable for G316D
MLKL (Fig. 3a, quantified in Supplementary Fig. 1a). This
reduced level of total MLKL expression and only trace
levels of phosphorylated MLKL is also seen when G316D
MLKL was expressed under the same conditions in
MLKL−/− U937 monocytic cell lines (Fig. 1b, quantified in
Supplementary Fig. 1b), and at supraphysiological levels of
exogenous MLKLG316D expression (Supplementary Fig.
1c).

MLKLG316D compromises necroptotic effector activity
We next examined if MLKLG316D could function as an

effector of necroptotic cell death in cultured cell lines.
Following the addition of 100 ng/mL doxycycline, which
facilitates expression at almost physiological levels (rela-
tive to WT cells), MLKLG316D failed to reconstitute any
sensitivity to the necroptotic stimulus, TSI. This was the
case in three independent MLKL−/− clones of each of the
HT29 (Fig. 3c) and U937 (Fig. 3d) cell lines. This was not
due to any deficiency in upstream signaling, given the
equivalent activation of RIPK3 apparent by western blot
post TSI stimulation (Fig. 3a, b, Supplementary Fig. 1c)
and equivalent activation of the extrinsic apoptotic
pathway following stimulation with TNF and Smac
mimetic in the absence of caspase inhibition (TS) (Sup-
plementary Fig. 2a-HT29 and b-U937). Even when
expressed at supraphysiological levels following the
addition of 500 ng/mL doxycycline, MLKLG316D failed to

Table 1 Summary of clinical measurements.

Age Sex BMI Disease duration Treatment HbA1c % (mmol/mol)a c-peptide (ng/ml)b anti-GAD anti-TP

Mother 40 F 25 <1 Diet 7.4 (57) 5.37 na na

Father 50 M 21 – _ na na na na

Unaffected sibling 27 M 23 – _ 6.1 (43) 2.63 na na

Sibling 2 25 F 24 9 Insulin 8.8 (73) 0.05 Negative Positive

Sibling 3 20 M 22 6 Insulin 9.1 (76) 0.01 Positive Negative

Sibling 4 19 M 18 11 Insulin 10.3 (89) 0.01 Negative Negative

Sibling 5 17 M 16 5 Insulin 12.7 (115) 0.65 Positive Negative

aNormal range for HbA1c is 4.0–6.0%.
bNormal range for c-peptide 0.8–4.0 ng/ml.
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reconstitute any sensitivity to the necroptotic stimulus,
TSI, in both MLKL−/− HT29 (Supplementary Fig. 2c) and
MLKL−/− U937 (Supplementary Fig. 2d) cell lines. When
expressed in an MLKL+/+ background at near physiolo-
gical and supraphysiological levels, exogenous
MLKLG316D does not alter the maximal necroptotic cell
death facilitated by endogenous wild-type MLKL in
HT29s (Supplementay Fig. 3a). In MLKL+/+ U937s, the
exogenous expression ofMLKLG316D reduces the maximal
necroptotic cell death facilitated by endogenous wild-type
MLKL up to 50%, but the same reduction is similarly
observed for exogenous MLKLWT under these conditions,
precluding any conclusion about a specific dominant-
negative effect of MLKLG316D (Supplementary Fig. 3a, b).

Discussion
While diabetes is a complex disease, monogenic forms

of diabetes have been relatively easier to study and
delineate the causative mutation. However, in many cases
the pathophysiology remains enigmatic, including in
MODY, where penetrance is incomplete and the muta-
tions do not segregate fully with disease status. In this
study we have taken advantage of classic Mendelian
genetics in a family with multiple affected members, to
discover rare variants that may interact to cause diabetes.
In addition to the previously reported P33T PDX1
mutation with incomplete penetrance, we found a very
rare mutation in the key necroptosis protein, MLKL,
present in the affected individuals only. Necroptosis
proteins have been linked to glucose homeostasis in mice.
MLKL, RIPK1 and RIPK3 were found to be upregulated in
adipose and liver tissue of obese mice46,47. Genetic inac-
tivation of Ripk3 was found to increase Caspase-8-
dependent adipocyte apoptosis and inflammation andTa
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Fig. 2 MLKL G316D mutation is predicted to affect the
pseudokinase domain structure (PDB accession 4MWI)38. (A) The
substitution is in the αE helix within the C-lobe. (B) A close up of
the amino acid change showing the wild type residue in green
and the mutant aspartic acid side chain in red. Figures drawn with
Pymol (Schrodinger, LLC. 2010) and HOPE58.
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lead to impaired glucose signaling in those cells46. How-
ever, this is the first report that connects necroptosis with
diabetes in humans. Our evidence is based on ACMG
guidelines for variant classification, which state that loss-
of-function variants that segregate thoroughly with the
phenotype, are considered pathogenic. The chances of
this mutation occurring randomly with no connection to
MODY are greatly diminished by the rarity of the muta-
tion in the general population as well as its full segrega-
tion with the disease in the five affected family members.

The G316D MLKL mutation occurs in the C-terminal
pseudokinase domain, where specific mutations in mouse
MLKL have been found to either cause constitutive
necroptosis or dampen it16,48, while missense mutations
in the human domain reported so far, including this
report, were shown to either abolish or delay the
necroptotic function of the protein17,24,36,39. While dys-
regulated MLKL stability and activation has been
observed in disease, MLKL is dispensable for animal
development16,25,26, although human MLKL protein

Fig. 3 MLKLG316D shows much reduced levels of Ser358 phosphorylation and no capacity to induce necroptosis in HT29 and U937 cell
lines. (A) HT29s and (B) U937s were stably transduced with doxycycline (dox) inducible humanMLKLWT or MLKLG316D expression constructs. MLKL and
RIPK3 protein levels were analysed by Western blot after 5 h doxycycline in the absence or presence of a necroptotic stimulus (TSI). Images in (A) and
(B) are representative of at least 3 independent experiments. MLKL−/− HT29s (C) and U937s (D) expressing doxycycline inducible MLKLWT (black circle)
or MLKLG316D (red square) were stimulated as indicated. Total number Sytox green positive cells per mm2 or proportion of Sytox green positive cells
per mm2 were quantified over time using an IncuCyte automated cell imager. Plotted as mean ± SEM of at least 4 independent experiments, specific
“n” as indicated. Necroptotic stimulus, TSI; TNF, Smac mimetic and IDN6556. Necroptosis inhibitor, NSA; necrosulfonamide.
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deficiency has been recently associated with neurode-
generative disease26. Previous studies have highlighted
how prone mouse MLKL is to hyperactivation16,27,37,49

whilst mutations of the human counterpart typically
suppress activation39,42. Consistent with these observa-
tions, exogenous expression of the patient MLKL sub-
stitution, G316D, in human cell lines led to 50–100% of
the protein levels of the wild-type counterpart, whilst we
did not observe evidence for decreased transcription in
whole blood RNAseq analysis of our MLKLG316D/+

patients. These data do not indicate the transcript to be
unstable and sensitive to nonsense mediated decay, nor
the protein to be intrinsically unstable. Instead, the
MLKLG316D exhibited reduced capacity for activation by
RIPK3 through phosphorylation at Ser358, which led to a
corresponding abrogation of its necroptotic effector
activity. Based on these data, it is predicted that cells from
humans that are heterozygous for the MLKLG316D

mutation would exhibit diminished capacity for necrop-
tosis. This reduction could be due to a simple monoallelic
reduction of necroptosis-competent MLKL, but we can-
not rule out the potential for dominant-negative impedi-
ment of MLKLWT function by MLKLG316D within cells.
Because MLKL oligomerisation is an essential checkpoint
in the execution of necroptotic cell death37,39,42,44, it is
foreseeable that blockade of assembly of productive
MLKL oligomers, such as by co-expression of an inactive
mutant like MLKLG316D, could impose another layer of
restriction on necroptotic signaling.
The choice of two human cell lines, HT29 and U937, to

perform the above experiments was due to their known
ability to reliably undergo necroptosis upon stimulation
with defined stimuli24,36,39,42,44. A cellular system that
would bring together the capacity to model PDX1-MODY
and to study the MLKL’s necroptotic signaling functions
in vitro, is not available currently. Similarly, there is cur-
rently no animal model for the study of human MLKL
protein. As mentioned earlier, the activation and regula-
tion of MLKL differ between human and mouse cells, and
in particular, the pseudokinase domain (where the G316D
mutation resides) has diverged between the two species.
Thus, studying the effect of the mutation in the context of
a PDX1-MODY animal model remains of outstanding
interest for future studies.
While our studies clearly show the MLKLG316D sub-

stitution to compromise MLKL function in necroptotic
signaling, we cannot exclude other mutations and/or
factors contributing to disease etiology in this family.
Indeed, compelling cases can be made for further exam-
ination of the three other gene variants found in the
affected but not unaffected siblings. Of particular interest
is the finding that the variant in the ER stress protein,
ERN1, is paternally, not maternally derived. Given the
important role of the unfolded protein response in the

etiology of diabetes (reviewed in Gosh et al.50), it is pos-
sible that this variant may have contributed to the earlier
onset of diabetes in the affected siblings relative to their
mother, who does not carry this ERN1 substitution. The
evidence for a role of the magnesium ion transmembrane
transporter, NIPAL1, in diabetes is scant; it was shown to
positively influence glucose stimulated insulin secretion in
pancreatic β-cell-like mouse cell line51. And SPTBN4, a
spectrin that links cytoskeletal actin to the plasma
membrane, does not yet have a known role in diabetes.
In summary, we have shown that the diabetic members

of a non-penetrant PDX1-MODY family exclusively har-
bor a very rare damaging mutation in the necroptosis
MLKL protein. Our in vitro assays confirm the deleterious
effect of the mutation on MLKL activation via RIPK3-
mediated phosphorylation and its subsequent necroptotic
activity. We, therefore, postulate that compromised
necroptosis contributes to diabetic disease pathogenesis
by conferring full penetrance on the PDX1 mutation.

Methods
Sample collection and processing
Sample and data collection were performed under Sidra

IRB protocol 1601002512 and the subjects consented to
the research and publication of findings. For DNA ana-
lysis, saliva was collected in Oragene OG-500 tubes (DNA
Genotek, Ottawa, Canada). DNA was isolated using
QIAsymphony DSP DNA MIDI kit (Qiagen, Hilden,
Germany), following the manufacturer’s recommenda-
tions. DNA quantity and quality were checked using a
Nanodrop spectrophotometer (Thermo). DNA processed
for whole genome sequencing was subjected to Illumina
HiSeq sequencing, generating 150 bp paired end reads
with 30x coverage. For RNA analysis, whole blood was
collected in PAXgene Blood RNA tubes (BD Biosciences,
San Jose, CA, United States). Blood was first centrifuged
for 10min at 5000 × g using a swing out rotor to collect
the pellet. After decanting the supernatant, the pellet was
resuspended in 300 μl of BR1 buffer by vortexing and
processed on the QIAsymphony SP platform for auto-
mated extraction. To obtain mRNA libraries, polyA RNA
selection is performed using an Oligo-dT magnetic bead
system, followed by fragmentation and first strand
synthesis using Superscript IV and second strand synth-
esis. The cDNA obtained after reverse transcription is
ligated with TruSeq RNA Combinatorial Dual Index
adapters and amplified for 15 cycles. cDNA was then
sequenced on Illumina HiSeq4000 to an average of 18
million reads per sample.

Genomic data processing
Genomic data were aligned to GRCh37 using bowtie52.

SNPs and indels were called with GATK;53 CNVs were
detected with NxClinical software v5.1 (BioDiscovery,
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Hawthorne, CA). Pathogenic variant analysis was done
with Ingenuity Variant AnalysisTM software (QIAGEN,
Inc.), NxClinical, and other open source tools. CNVs
overlapping segments in the Database of Genomic Var-
iants (DGV)54 or are common in our internal database of
Middle Eastern subjects were excluded. We applied the
following filters for SNPs indels: read depth >20, MAPQ
> 30, base quality >20, Minor Allele Frequency (MAF)
< 0.01 (1%), in silico prediction of pathogenicity by SIFT55

and PolyPhen56, and lack of common structural variation
in the region (as per DGV).

Cell lines, reagents and antibodies
MLKL−/− HT29 human adenocarcinoma cell lines and

MLKL−/− U937 human monocytic cell lines were gener-
ated in house using CRISPR-Cas9 technology39. Recom-
binant hTNF was produced in-house and used at a final
concentration of 100 ng/mL. Smac mimetic (Compound
A), and the caspase inhibitor IDN-6556 were provided by
TetraLogic (Malvern, PA, USA). Rat-anti hRIPK3 1H2
(1:1000)24,57 and rat anti-MLKL 3H1 (1:2000)16 (biotiny-
lated and non-biotinylated forms) were produced in-
house (3H1 available from Millipore as catalog number
MABC604). Anti-human MLKL pS358 (1:1000,
ab187091) and anti-Actin (1:10,000, ab5694) were pur-
chased from Abcam. Horseradish peroxidase (HRP)
conjugated goat anti-rat IgG (Southern Biotech 3010-05),
HRP-conjugated goat anti-mouse IgG (Southern Biotech
1010-05), HRP-conjugated goat anti-rabbit IgG (Southern
Biotech 4010-05) and HRP-conjugated streptavidin (Mil-
lipore SA202) were used for the secondary detection of
primary antibodies (all 1:10,000).

Expression constructs and cell culture
Genes encoding full length human MLKL (residues 1 to

471) were cloned into the lentiviral expression vector
pFTRE3G PGK Puro16. Wild-type MLKL was encoded as
before;39 the G316D substitution was introduced by
oligonucleotide-directed PCR. The insert sequences in the
arising constructs were verified by Sanger sequencing
(AGRF, Melbourne). Cells were maintained at 37 °C, 10%
CO2 in DMEM (HT29) or RPMI (U937) cell culture
medium containing 8 % Fetal Calf serum and 2.5 μg/mL
Puromycin as described previously36,39. Cell lines were
routinely verified as free of mycoplasma contamination
by PCR.

Measuring cell death kinetics using quantitative live cell
imaging
Both HT29 (adherent) and U937 (suspension) human

cell lines were seeded at a density of 1.5 × 104 cells/well in
a 96 well plate and allowed to attach/settle for 48 h or 1 h
respectively. Cells were stimulated as indicated in media
containing Sytox Green (500 nM, ThermoFisher

Scientific) and imaged at 1 h intervals using an IncuCyte
S3 Live cell imager.
Numbers of Sytox positive cells, percentage confluence

(for HT29) and total cell number (for U937) were quan-
tified using IncuCyte measurement of green fluorescent
and phase contrast signals and IncuCyte image analysis
software. HT29s cultures were inspected for similar
confluence and cell death quantified as number of Sytox
Green positive cells/mm2. U937 cultures were assessed as
number of Sytox Green positive cells/mm2 as a propor-
tion of total phase contrast objects /mm2.

Measuring protein levels in cells
HT29s were seeded at a density of 4 × 105 cells/well in a

24 well plate and allowed to attach for 48 h. U937s were
seeded at a density of 4.5 × 105 cells/well in a 48 well plate
and allowed to settle for 1 h. Doxycycline (100 ng/mL),
TNF (100 ng/mL), Smac mimetic (500 nM) and IDN-6556
(5 μM) were added simultaneously. Cells were collected
after 5 h and directly boiled in reducing sample loading
buffer for separation by SDS-PAGE and western blotting.

Statistics (cell death assays)
All cell death data are plotted as mean ± SEM with

number of independent experiments (n) indicated in fig-
ures. Independent experimental repeats (“n”) include both
biological repeats (independently generated MLKL−/− cell
lines used on the same day) and experimental repeats
(same cell lines used in experiments repeated on
different days).
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