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RNA  chaperones  are  proteins  able  to rearrange  nucleic  acid structures  towards  their  most  stable  confor-
eywords:
NA-chaperone
IV-1
ucleocapsid protein
at

mations.  In  retroviruses,  the  reverse  transcription  of the  viral  RNA  requires  multiple  and  complex  nucleic
acid rearrangements  that need  to be  chaperoned.  HIV-1  has  evolved  different  viral-encoded  proteins
with  chaperone  activity,  notably  Tat and  the  well  described  nucleocapsid  protein  NCp7.  We  propose  here
an  overview  of the  recent  reports  that examine  and  compare  the  nucleic  acid  chaperone  properties  of
Tat and  NCp7  during  reverse  transcription  to  illustrate  the  variety  of  mechanisms  of  action  of  the  nucleic
acid chaperone  proteins.
. Introduction: RNA chaperones to resolve RNA misfolding

RNA chaperones are proteins that interact with RNA molecules
o solve the RNA folding problem (Herschlag, 1995; Cristofari and
arlix, 2002; Schroeder et al., 2004). RNA molecules are synthesized
s linear polymers that require appropriate folding to reach their
ctive (native) conformations. Along the folding trajectory, RNA
avigates through a rugged funnel-like landscape biased toward

ew native structures (Fontana et al., 1993; Chen and Dill, 2000;
ussell et al., 2002). Intermediate conformations with stabilities
lose to the native functional states usually coexist such that a
raction of the molecules rapidly folds into their native structures
hile many others are kinetically trapped in misfolded intermedi-

te conformations (Fig. 1) (Thirumalai et al., 1997). RNA molecules
re thus prone to adopt stable and persistent alternative secondary
tructures which have to overpass thermodynamic barriers to cor-
ectly fold (Treiber and Williamson, 1999). This is why  assistance
ppears to be necessary to reach the active RNA conformations.
NA chaperones were thus postulated to direct the correct folding

f RNA molecules and to resolve RNA misfoldings (Herschlag, 1995).
oday’s view is that RNA chaperones are nucleic acid binding pro-
eins present in all living organisms, including viruses, where they

Abbreviations: HIV-1, human immunodeficiency virus-type I; NCp7, nucleocap-
id  protein of HIV-1; ZF, zinc finger; NA, nucleic acid; TAR, transactivation response
lement; PBS, primer binding site; AA, amino acids.
∗ Corresponding author. Tel.: +33 03 90 24 42 63; fax: +33 03 90 24 43 12.

E-mail address: yves.mely@unistra.fr (Y. Mély).
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perform multiple functions (Cristofari and Darlix, 2002; Schroeder
et al., 2004). Questioning the structure-function paradigm (Wright
and Dyson, 1999; Dyson and Wright, 2005), it was found that
the prevalence of functional regions in RNA chaperones without
a well defined 3D-structure was very high and such intrinsically
disordered domains (IDD) were proposed to support the chap-
erone activity (Tompa and Csermely, 2004; Tompa, 2005). Since
RNA chaperones do not share common sequences, motifs or struc-
tures, their identification is hardly predictable, and thus requires
adequate assays to establish their chaperoning activity. Several
in vitro assays are routinely used (Cristofari and Darlix, 2002;
Rajkowitsch et al., 2005) and include annealing, helix destabiliza-
tion, strand displacement (Cristofari and Darlix, 2002; Rajkowitsch
et al., 2005, 2007; Rajkowitsch and Schroeder, 2007a, 2007b; Godet
and Mély, 2010), cis or trans-splicing (Coetzee et al., 1994; Zhang
et al., 1995; Mayer et al., 2002; Semrad et al., 2004; Belisova
et al., 2005; Grohman et al., 2007) and hammerhead-ribozyme RNA
cleavage (Bertrand and Rossi, 1994; Herschlag, 1995). Fewer in vivo
assays also exist, such as intron folding trap or transcription anti-
termination (Clodi et al., 1999; Lorsch, 2002; Rajkowitsch et al.,
2005). The latter tests investigate simultaneously several if not all
the components that account for the chaperoning activity.

In vitro studies show that RNA chaperones function by repet-
itive transient interactions with RNA (Cruceanu et al., 2006a; Wu
et al., 2010; Doetsch et al., 2011b). This property results in transient

destabilization of the metastable NA conformations and in acceler-
ating the annealing of complementary sequences. The fast binding
kinetics is thus likely to be a critical component of the chaperoning
activity. Monitoring the fast association and dissociation rates of

dx.doi.org/10.1016/j.virusres.2012.06.021
http://www.sciencedirect.com/science/journal/01681702
http://www.elsevier.com/locate/virusres
mailto:yves.mely@unistra.fr
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ig. 1. Scheme illustrating the RNA energy landscape. RNA energy landscape is rugg
NA-chaperones smoothen the landscape by destabilizing metastable conformation
he  folding of RNA towards the native conformation.

haperones from NA substrates is a challenging issue but none of
he currently used assays can yet provide direct measurements of
he on- and off-binding rates. Indirect evidence of this property has
een nevertheless gained from single molecule stretching experi-
ents investigating the chaperone properties of HIV-1 Gag and NC

Williams et al., 2001; Cruceanu et al., 2006a),  and the nucleocapsid
rotein of the yeast Ty3 retrotransposon (Chaurasiya et al., 2012).

At the same time, RNA chaperones promote molecular aggrega-
ion, also known as molecular crowding. RNA-chaperones usually
resent basic domains, ensuring that a significant part of the
inding is provided by nonspecific electrostatic interactions. RNA
haperones can bind to highly diverse nucleic acid (NA) sequences
nd by so doing can coat NA molecules, which is required for
unction. This has been termed the window of RNA chaperone
ctivity (reviewed in Darlix et al., 2011). This binding mode causes
he formation of high molecular weight nucleoprotein complexes,
here fuzziness appears to be a major trait in addition to molecu-

ar crowding (Fuxreiter and Tompa, 2012; Ivanyi-Nagy and Darlix,
012). Fast binding kinetics, molecular crowding and fuzziness
ause a high local concentration of the partners and a smoother
nergy landscape resulting in a large increase in the RNA folding
ate (Woodson, 2010) (Fig. 1).

Multiple functions have been assigned to cellular RNA-
haperones, such as transcription regulation, RNP assembly,
re-mRNA processing, RNA nuclear export and translation, and in
iRNA metabolism. RNA-chaperones are also present in the viral
orld, where they have major roles in virus structure and replica-

ion (Zúñiga et al., 2009). The first reported viral RNA-chaperones
re the nucleocapsid (NC) proteins of avian and murine retroviruses
Prats et al., 1988). Later, a similar chaperone activity was  shown
or the HIV-1 NC protein (Darlix et al., 1990; De Rocquigny et al.,
992; Barat et al., 1993; Dib-Hajj et al., 1993; Lapadat-Tapolsky
t al., 1993). The intense research efforts on HIV/AIDS benefited to
he characterization of chaperones since a large part of our current
nderstanding was gained during the past 20 years from studies
n HIV-1 NC protein. Other virus-encoded RNA chaperones have
ince been characterized, notably the nucleoprotein N of Coronavi-

us (Zúñiga et al., 2007), the 3AB protein of Poliovirus (DeStefano
nd Titilope, 2006), the Core protein of Flaviviridae (Cristofari et al.,
004; Ivanyi-Nagy et al., 2006, 2008; Sharma et al., 2011), the nucle-
protein N of Hantavirus (Mir  and Panganiban, 2005, 2006) or the
th many local minima that correspond to suboptimal kinetic trap foldings (b and c).
lowering the activation energy between the different conformations, thus directing

small delta antigen SdAg of Hepatitis D Virus (Huang and Wu,  1998;
Huang et al., 2003, 2004; Wang et al., 2003) (for a review see Zúñiga
et al., 2009). Moreover, viruses are capable of highjacking cellular
factors with RNA chaperoning activity in the course of viral RNA
synthesis and translation (Zúñiga et al., 2009). All these examples
highlight the variability of chaperone proteins selected through
evolution to solve the folding problem and to assist the large nucleic
acid rearrangements occurring throughout viral life cycles.

Here, we review the mode of action of HIV-1 NCp7 in parallel
with that of the Trans-Activator of Transcription Tat, another potent
nucleic acid chaperone encoded by HIV (Kuciak et al., 2008; Boudier
et al., 2010) to illustrate the variety of the mechanisms of action of
the nucleic acid chaperone proteins.

2. Two HIV-encoded proteins with chaperone activity

2.1. HIV-1 nucleocapsid protein NCp7

HIV-1 NCp7 is a small (55 amino acids) basic protein resulting
from the protease-mediated cleavage of the Pr55Gag polyprotein
precursor. NCp7 is characterized by two conserved ‘CX2CX4HX4C’
zinc fingers (ZFs) (Fig. 2A), flanked by small domains rich in basic
residues. Interestingly the basic ZF linker and the N- and C-terminal
domains appear to be disordered indicating that NCp7 belongs to
the IDP family (Darlix et al., 2011). At the same time, a hydrophobic
plateau can form at the top of the ZFs in the native protein (Morellet
et al., 1992, 1994; Mély et al., 1994), which is composed of residues
Val13, Phe16, Thr24 and Ala25 of the proximal ZF and residues
Trp37, Gln45 and Met46 of the distal ZF. This ZF plateau plays a
key role in the selection of the viral sequences during genomic RNA
packaging and contributes to NCp7 chaperoning properties (Godet
and Mély, 2010; Darlix et al., 2011). NCp7 can cause nucleic acid
destabilization (Bernacchi et al., 2002; Azoulay et al., 2003; Beltz
et al., 2003; Cosa et al., 2004, 2006) and can transiently interact with
nucleic acids with fast binding and dissociation kinetics (Cruceanu
et al., 2006a).  NCp7 also activates the annealing of complementary
sequences (Darlix et al., 1993, 1995; You and McHenry, 1994) and

the cleavage of a cognate substrate by a hammerhead ribozyme
(Bertrand and Rossi, 1994; Kuciak et al., 2008), and efficiently res-
cues the splicing of a group I intron mutant in the T4 phage td gene
in vivo (Clodi et al., 1999).
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Fig. 2. Sequence (A) and sequence logo (B) of NCp7. NCp7 is a basic protein of 55 amino acids. The two  zinc fingers, ZF1 and ZF2 (green) and the highly basic linker (orange) are
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trongly  conserved whereas much more variability is allowed in the poorly folded N
he  positions of the basic amino acids in the N-terminal domain are strictly conserv

The destabilizing activity of NCp7 mainly relies on the ZFs (Beltz
t al., 2005) while the nucleic acid annealing and condensation
roperties are largely dependent on the basic residues of the dis-
rdered regions (Fig. 2A) (De Rocquigny et al., 1992; Stoylov et al.,
997; Williams et al., 2001). The importance of the various NCp7
mino acids can be easily seen on the sequence logo plot result-
ng from the alignment of 3120 NCp7 HIV sequences of the Lanl
IV database (http://www.hiv.lanl.gov/).  Fig. 2B shows that the

nformation content associated to the amino acids composing the
wo ZFs and the linker are close to their theoretical maximum
log2(20) ≈ 4.32 bits). In contrast, the N-terminal domain is less
onserved although the positions of the positively charged amino
cids are essentially conserved, suggesting that a precise distribu-
ion of basic amino acids in the N-terminal and basic linker domains
s required for NC function (Darlix et al., 2011; Doetsch et al., 2011a).

The Gag precursor also exhibits nucleic acid chaperone activity
Rein, 2010; Wu et al., 2010). The comparative chaperone activ-
ties of recombinant Gag (or more precisely Gag �P6 (Campbell
nd Rein, 1999)) and of the differently processed cleavage prod-
cts have been investigated. Gag can bind nucleic acids with higher
ffinity than NCp7, while in contrast, the nucleic acid chaperone
ctivity improves greatly as the Gag precursor is progressively pro-
essed to give NCp15, NCp9 and NCp7 (Cruceanu et al., 2006b; Rein,
010; Wu et al., 2010). Modification of the chaperone activity of
C during the viral cycle likely accounts for the modifications in

he virus structure and function consecutive to the Gag cleavage
vents during maturation (Mirambeau et al., 2010). In particular,
ritical architectural changes of the viral core result from the nucle-
proteic complex condensation as Gag is progressively processed
Mirambeau et al., 2007). The progressive decrease of binding affin-
ty as Gag is processed is likely ascribed to the loss of the specific
igh affinity binding mode required for selective vRNA encapsida-
ion to favour a less specific and transient binding mode mandatory
o facilitate the nucleic acid rearrangements during reverse tran-
cription. The mature NCp7 is characterized by highly dynamic
inding properties (Cruceanu et al., 2006a). Effective strand anneal-

ng activity is notably correlated with NC’s ability to rapidly bind
nd dissociate from nucleic acids. Indeed, NC variants with slow
n/off rates are poorly efficient in rearranging nucleic acids, even
hough they are still capable of binding with high affinity to
ucleic acids and to aggregate nucleic acids (Cruceanu et al., 2006b;

tewart-Maynard et al., 2008).

In the inner core of the mature viral particle, approximately
500–2000 copies of NCp7 are coating the genomic RNA (Briggs
t al., 2004; Chertova et al., 2006; Chen et al., 2009), thus
inal (grey) and C-terminal (purple) domains. In spite of the amino acid variability,

corresponding to an average occupancy of 5–7 nt per NCp7
molecule. Such an occupancy value was  found to be required for
optimal NC chaperoning activities in vitro (reviewed in Darlix et al.,
2011), notably in the annealing reactions taking place during viral
DNA synthesis by RT. During reverse transcription which occurs in
this viral nucleoprotein assemblage called the reverse transcrip-
tion complex (RTC), NCp7 is thought to direct most of the critical
nucleic acid rearrangements, namely primer tRNALys,3 annealing
to the viral PBS (Barat et al., 1989, 1993; De Rocquigny et al., 1992;
Hargittai et al., 2004), the first and second DNA strand transfers
(You and McHenry, 1994; Lapadat-Tapolsky et al., 1995; Auxilien
et al., 1999; Ramalanjaona et al., 2007; Godet et al., 2011) and to
assist the formation of the central DNA flap (Charneau et al., 1994;
Hameau et al., 2001). In addition, NC appears to assist the viral DNA
polymerase activity of RT throughout viral DNA synthesis, notably
by relieving RT pausing at the initiation step corresponding to ss-
cDNA synthesis (Liang et al., 1998; Rong et al., 2001; Bampi et al.,
2004; Liu et al., 2010), by increasing the polymerization rate and
stimulating the RT-RNase H activity (Bampi et al., 2006; Grohmann
et al., 2008), and by promoting the fidelity of plus-strand priming
(Jacob and DeStefano, 2008; Post et al., 2009) as well as that of (−)
and (+) strand DNA synthesis (Kim et al., 2012). Thus, the overall
efficiency of reverse transcription is increased by NCp7 which by
forming a condensed but highly mobile ribonucleoproteic complex
increases the molecular crowding of the nucleic acids generated
during reverse transcription and thus, facilitate their annealing
(Lapadat-Tapolsky et al., 1995; Tanchou et al., 1995). However,
direct demonstration of these nucleic acid rearrangements in the
viral context is still missing.

2.2. The transcription trans-activator Tat

Tat is a small basic protein that has multiple key roles in virus
replication and pathogenesis (Karn, 1999). Tat is encoded for by two
exons and is composed of 101 (clinical isolates) or 86 amino acids
(laboratory isolates). The full-length Tat is composed of six differ-
ent regions which composition and functions are briefly described
below (Fig. 3). Region I (aa 1–20) is acidic and proline rich and
is involved in Tat-mediated immune suppression (Wrenger et al.,
1997). Region II (aa 21–40) contains seven conserved Cys residues,
where all of them but Cys31 are required for transcription trans-

activation (Kuppuswamy et al., 1989; Jeang et al., 1999). These Cys
residues interact with two  Zn2+ ions (Frankel et al., 1988a, 1988b),
conferring to Tat the property to trigger apoptosis (Egelé et al.,
2008). Region III (aa 41–48) represents the highly conserved core

http://www.hiv.lanl.gov/
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Fig. 3. Domains and sequence logo of Tat. Sequence logo generated from the a

hat is critical for Tat binding to tubulin (Chen et al., 2002), which
riggers the mitochondrial pathway of apoptosis and neuronal
ytoskeletal changes leading to AIDS-associated dementia (Chen
t al., 2002; Giacca, 2005). Region IV (aa 49–64) is Arg-rich and
ediates the binding of Tat to the 5′ TAR sequence (Kuppuswamy

t al., 1989; Betti et al., 2001). This region also contains the Tat
uclear localization signal (Vivès et al., 1997). The C-terminal region
ontains a glutamine-rich domain (aa 57–72) that contributes to
he transactivating activity of Tat (Kuppuswamy et al., 1989). This
egion is also involved in induction of apoptosis in T-lymphocytes
pon binding to tubulin (Campbell et al., 2004). Finally, region VI
aa 73 to 86 or 101) can interact with the integrin-mediated sites
f cellular adhesion and with integrin and fibronectin receptors. It
s also involved in the cell penetration properties of Tat (Barillari
t al., 1993).

Tat binding to TAR RNA (Trans Acting Responsive element)
ctivates viral DNA transcription initiation and elongation from
he 5′ LTR promoter (Laspia et al., 1989; Feinberg et al., 1991).
he Tat/TAR nucleoprotein complex promotes the recruitment of

 series of transcription factors leading to the formation of very
ctive elongating transcription machinery (Chun and Jeang, 1996;
kamoto et al., 1996). Beyond its role in viral DNA transcription,
at/RNA interactions were reported to influence viral mRNA cap-
ing and splicing, and translation (Chiu et al., 2002; Berro et al.,
006; Charnay et al., 2009). Moreover, Tat could possibly act as a
NA silencing suppressor via interactions with DICER, TRBp, siRNA
nd mRNA (Bennasser et al., 2005; Bennasser and Jeang, 2006).

Tat belongs to the IDP’s family (Shojania and O’Neil, 2006).
onformational disorder and flexibility may  confer to Tat its abil-

ty to interact with numerous viral and cellular partners (Dunker
t al., 2005; Dosztányi et al., 2006). Together with its nucleic acid
inding properties, the disordered nature of Tat suggests that this

rotein is also a nucleic acid chaperone (Kuciak et al., 2008). Tat
nd several Tat-derived peptides were found to efficiently activate
NA annealing, ribozyme-mediated RNA cleavage and RNA trans-

plicing in vitro (Kuciak et al., 2008). Tat was also found to induce
ent of 1143 Tat sequences. Tat is composed of 6 regions differently conserved.

the displacement of an imperfect DNA strand by a perfectly comple-
mentary sequence in a DNA exchange assay (Kuciak et al., 2008),
while no strand-displacement activity was found in assays using
complementary RNA sequences (Doetsch et al., 2011a), suggesting
a nucleation-limited strand exchange activity. The inability of Tat
to exchange RNA strands is likely explained by the limited ability
of Tat to destabilize RNA structures. Therefore, Tat likely promotes
nonspecific nucleic acid annealing reactions when destabilization
is not or poorly required. Amino acids responsible for the chaper-
one activity spanned from residues 44 to 61. Tat(44–61) was  found
to be the shortest known sequence with nucleic acid chaperon-
ing activity. Interestingly, a panel of alanine-scanning mutations
from amino acids 45 to 54 evidenced a striking correlation between
the conservation of these amino acids (Fig. 3) and the positions of
the mutations that prevent virus to initiate the natural endoge-
nous reverse transcription (NERT) in a cell-free virus supernatant
assay (Apolloni et al., 2003). The selection pressure on the central
stretch of basic amino acids may  thus be related to its implication in
reverse transcription. The substantial nucleic acid chaperone prop-
erties exhibited by Tat may  account for its ability to promote the
annealing of the primer tRNA to the viral RNA (Kameoka et al., 2002)
and intervene in the first strand transfer (Boudier et al., 2010) and
by this way, to stimulate RTion as does NCp7 (Harrich et al., 1997;
Ulich et al., 1999; Apolloni et al., 2007).

3. Chaperoning reverse transcription

During reverse transcription, major and complex nucleic acid
rearrangements are required to allow the full-length genomic
dsDNA, also called vDNA, to form. All along these steps, the nucleic
acid chaperone activity of NCp7 was evidenced to assist and to facil-
itate the synthesis of the vDNA. Tat was  also found to promote most

of these steps in vitro. In the following sections, we  will briefly
outline the chaperone properties of Tat and NCp7 regarding their
mechanism to chaperone in vitro the rearrangements of the nucleic
acid sequences involved in critical steps of reverse transcription.
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Fig. 4. Schematic diagram of particular events occurring in reverse transcription.
A. During initiation, the tRNALys,3 is placed on the vRNA and serves as a primer to
be  further elongated by RT. B. During the first strand transfer, the minus-strand
strong-stop DNA is translocated to the 3′ end of the viral RNA genome, in a reaction
mediated by base-pairing of the repeat R sequences at the 3′ ends of the RNA (con-
taining TAR) and cDNA (containing cTAR) reactants, to allow reverse transcription
to  resume.
C. The second strand transfer involves (1) the synthesis of plus strand strong-stop
DNA that terminates after copying the 3′ end of the tRNA sequence; (2) tRNA Lys,3

primer removal and (3) the annealing of (−)PBS to the (+)PBS sequence. The anneal-
ing  of the two complementary PBS DNA stem-loops enables RT to complete viral
DNA synthesis.

3

(
s
t
c
f

et al., 2009). This necessary chaperoning of reverse transcrip-
tion priming thus appears as a key regulatory step which can
.1. Chaperoning the initiation of reverse transcription

At the early events of vDNA synthesis, the reverse transcriptase
RT) elongates a primer tRNA annealed to the viral primer-binding
ite (PBS), a 18-nt conserved sequence in the 5′ leader region of
he genomic RNA, to later synthesize the minus-strand strong-stop
DNA (minus ss-cDNA) (Fig. 4A). These steps are facilitated by dif-

erent viral chaperones.
 169 (2012) 349– 360 353

3.1.1. Positioning the replication primer tRNA onto genomic RNA
During assembly, cellular tRNALys isoacceptors are selectively

incorporated into virions (Jiang et al., 1993; Mak  and Kleiman,
1997; Pavon-Eternod et al., 2010). The chaperone properties of the
NC domain in Pr55gag are thought to facilitate the specific place-
ment of the tRNALys,3 primer on the primer binding site (PBS) of
the viral RNA (Cen et al., 1999; Feng et al., 1999; Cruceanu et al.,
2006b; Guo et al., 2009; Wu et al., 2010). In vitro, NCp7 directs
the annealing of the tRNALys,3 primer to the PBS (Li et al., 1996),
by facilitating the strand exchange at the level of the tRNA accep-
tor stem and by unlocking in the presence of the complementary
genomic RNA sequence, the highly stable interactions at the level
of the T�C loop (Chan and Musier-Forsyth, 1997; Tisné et al., 2003,
2004; Hargittai et al., 2004; Tisné, 2005; Barraud et al., 2007). The
kinetics of the tRNALys,3 annealing on the PBS sequence follow a
nucleation-limited bimolecular reaction. The reaction is enhanced
by five orders of magnitude by NCp7, largely due to its ability to
strongly promote duplex nucleation (Hargittai et al., 2004). The NC
ZFs specifically interact with the T�C loop. Although NC ZFs do
not promote unwinding of tRNALys3, the truncated form of NCp7
was found to destabilize two base pairs that could serve as nucle-
ation points for the annealing of tRNALys3 to the viral RNA (Tisné
et al., 2001). Contrary to NC ZFs, a SSHS mutant of NC, which lacks
the folded ZFs, poorly destabilizes the tRNA tertiary core (Hargittai
et al., 2001). It was nevertheless able to anneal more efficiently
than NCp7 the tRNALys,3 primer onto the PBS (Hargittai et al., 2004).
Mutants with complete ZF deletions are also able to efficiently
anneal tRNALys,3 primer to the PBS, provided that the basic N- or C-
terminal domains are present (De Rocquigny et al., 1992). These ZF
mutants suggest that the destabilization of the tRNA core does not
appear to be critical in vitro and that multivalent cationic peptides
might be sufficient for efficient tRNA primer annealing to the PBS.
This conclusion is also supported by the minimal alterations of the
annealing kinetics induced by mutations which alter the secondary
or tertiary structure or the stability of the tRNA (Hargittai et al.,
2004) and by the greater tRNA-annealing activity of an N-terminal
extended form of NCp7 protein in vitro (Roldan et al., 2005). Though
the ZFs appear dispensable in vitro, it cannot be excluded that as
for the second strand transfer (see below), the ZFs can induce a
specific reaction pathway that is critical for a timely and controlled
tRNALys,3/PBS annealing reaction.

In full line with its ability to facilitate RNA annealing, Tat was
also reported to increase the efficiency of primer tRNA placement
onto genomic RNA. In vitro, Tat could even replace NCp7 at this step
(Kameoka et al., 2002) in a largely electrostatically driven tRNA
annealing promotion. This was confirmed by mutational analysis
showing that deletion of the basic domains of Tat resulted in the loss
of the annealing property (Kameoka et al., 2002). Nonetheless, initi-
ation of reverse transcription from Tat-annealed tRNALys,3 occurred
less efficiently than from heat-annealed tRNALys,3 (Kameoka et al.,
2002). Specific formation of the initiation complex is mediated
by extended interactions between the HIV-1 RNA and tRNALys,3

(Goldschmidt et al., 2002). Although variable among HIV strains
(Goldschmidt et al., 2004), these extended interactions (Isel et al.,
1996, 1998, 1999, 2010; Li et al., 1996; Beerens and Berkhout,
2002; Huthoff et al., 2003) are decisive for the efficiency of
the initiation of reverse transcription. Formation of the initia-
tion complex requires rearrangements in the 5′UTR vRNA that
may  be promoted by the fully processed NC (Iwatani et al., 2003;
Guo et al., 2009). Indeed, tRNALys,3 annealed by Gag exhibits a
strongly reduced ability to initiate reverse transcription and binds
less tightly to viral RNA than the NCp7-annealed tRNALys,3 (Guo
only be catalysed when a significant amount of NCp7 has been
processed.
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.1.2. Primer tRNA extension
Once the primer is placed, the subsequent synthesis of vDNA

an start. The primer is initially extended by 6 nt in a slow and
istributive initiation phase where the DNA polymerization is char-
cterized by a rapid dissociation of RT and early kinetic pausing
vents at positions +3 or +5 nt (Isel et al., 1996; Lanchy et al., 1996,
998). NCp7 reduces RT pauses at these positions, although with
ifferent efficiencies. Interestingly, an additional pause at +1 nt
as observed in vitro when the tRNA was heat-annealed on PBS

ut not when the annealing reaction was performed using NCp7.
n contrast, the pause at +1 position was not affected with ZF

utants of NC, suggesting again that all the chaperone proper-
ies of the native NCp7 protein are important for promoting an
ctive tRNALys,3/vRNA initiation complex (Rong et al., 2001). On
he contrary to the +1 nt pause, NC was not able to help RT to
scape the +3 pausing event (Liang et al., 1998; Rong et al., 2001;
iu et al., 2010). The strong +3 nt pause has been proposed to orig-
nate from the template structure and notably from the folding of
he A-rich stem-loop located upstream the PBS (Liang et al., 1998;
iu et al., 2010). NCp7 induced a partial and transient disruption
f the stem secondary structure, as evidenced by a decrease of the
igh-throughput SHAPE footprinting reactivity and a broadening
f the stem end-to-end FRET distribution (Wilkinson et al., 2008;
iu et al., 2010), but this destabilization appeared nevertheless not
ufficient to prevent the +3 nt pause event. In sharp contrast to
Cp7, multimerization of Gag or Gag-related proteins dramatically
ompromises reverse transcription since the cooperative binding
nd the slow dissociation rate of the multimerized Gag proteins
mpaired RT processivity (Wu et al., 2010). Similarly, full-length
wo-exon Tat (86- or 101-amino acid) but not the truncated one-
xon Tat (72 amino acid) was found to suppress the elongation of
he tRNALys,3/vRNA initiation complex (Kameoka et al., 2001, 2002).
nterestingly, peptides resulting from the cleavage of Tat by the
IV-1 protease were able to enhance the synthesis of the (−)ssDNA

n a natural endogenous reverse transcription assay (Apolloni et al.,
003). Thus, as envisioned for Gag, the protease cleavage of Tat

s also needed for promoting primer elongation in vitro. Tat was
herefore hypothesized as a reverse transcription accessory factor
nvolved in the spatio-temporal control of the reverse transcrip-
ion. Whether or not these findings are biologically relevant, they
learly underline the need for small basic proteins which can bind
ransiently and remain mobile on the nucleic acid lattice to allow
rimer extension.

Taken together, these observations suggest that if tRNA posi-
ioning can be promoted by different partners, primer extension
equires a structurally well-defined initiation complex and a
ynamic reverse transcription complex, which are likely promoted
y the highly dynamic NCp7 (Cruceanu et al., 2006a).  Initiation of
everse transcription could thus constitute a key regulatory step of
hich timing is finely regulated by the processing of the Gag pre-

ursor. This hypothesis is ascertained by observations showing that
ost of the annealed tRNALys,3 in immature extracellular particles

re only extended by a few nucleotides (Oude Essink et al., 1996;
uang et al., 1997).

.2. Chaperoning minus strand DNA transfer

The first strand transfer constitutes a critical step in reverse
ranscription. This transfer occurs from region R at the 5′-end
f the genome to a redundant R region at the 3′-end (Fig. 4B).
n HIV-1, the R region consists of two strongly structured hair-
ins, namely the TAR and poly(A) hairpins (Baudin et al., 1993;

atts et al., 2009). TAR is especially critical for efficient strand

ransfer (Berkhout et al., 2001). Indeed, the antisense cTAR DNA
further referred as cTAR) of the (−)ssDNA has to anneal to the
omplementary TAR RNA sequence located at the 3′ end of the
h 169 (2012) 349– 360

vRNA to allow DNA synthesis to resume on the acceptor strand
(Negroni and Buc, 2000; Basu et al., 2008). cTAR and TAR are imper-
fect stem-loops defined by double-stranded segments separated
by numerous conserved bulges, mismatches and an internal loop
(Baudin et al., 1993). Reacting TAR and cTAR in vitro does sponta-
neously lead to the cTAR/TAR duplex, but at an extremely slow rate
(You and McHenry, 1994; Godet et al., 2006; Vo et al., 2006, 2009).
Through its chaperone activity, NCp7 plays a major role in promot-
ing the annealing reaction (Tsuchihashi and Brown, 1994; You and
McHenry, 1994; Rein et al., 1998; Guo et al., 2000) by enhancing
the annealing rate by about 3000-fold at physiological temperature
and salt conditions (Darlix et al., 1993; You and McHenry, 1994;
Driscoll and Hughes, 2000; Urbaneja et al., 2002). The stability of
TAR and cTAR local structures appeared of key importance to mod-
ulate the strand transfer (Wu et al., 2007). In full line with its ability
to bind more transiently and dynamically to nucleic acids than Gag,
the fully processed NCp7 promotes the first strand transfer more
efficiently than Gag or Gag-derived proteins at low protein con-
centrations (Wu et al., 2010). Whereas the annealing reaction was
facilitated as the NCp7 concentration increased, the strand transfer
was drastically inhibited in the presence of increasing quantities
of Gag or Gag-derived proteins. As Gag and partially processed
Gag proteins containing the NC domain showed destabilizing and
annealing activities almost as effective as NCp7, the inhibition of
the strand transfer likely results from a strong restriction of the
elongation step, suggesting that Gag reduces the ability of RT to tra-
verse the template (‘roadblock’ mechanism). Once again, the ability
of NCp7 to remain highly flexible and mobile within the nucleo-
proteic reverse transcription complex appears critical for reverse
transcription to proceed (Levin et al., 2005).

Detailed mechanistic investigations of the cTAR/TAR annealing
reaction showed that cTAR and TAR anneal in the absence of NCp7
through formation of an unstable loop–loop interaction that further
converts into an extended duplex (Vo et al., 2006, 2009; Kanevsky
et al., 2011). NCp7 switches the reaction pathway by directing the
hybridization of these sequences through the end of their double-
stranded stems, as a consequence of NCp7 ability to destabilize the
structure of the cTAR stem (Godet et al., 2006; Vo et al., 2009). The
destabilizing activity of NCp7 induces complex secondary struc-
ture fluctuations of the cTAR ends (Azoulay et al., 2003; Cosa et al.,
2004, 2006), leading to the formation of the open reactive species
required for the annealing process. The NCp7-induced mechanistic
switch shows that the reaction pathway is selected on the basis of
the available reactive intermediates and is governed by the inter-
mediates which require the least bp melting prior annealing (Vo
et al., 2009). These observations constitute a nice example of how
nucleic acid chaperones may  remodel annealing reactions to facil-
itate the formation of the most stable nucleic acid conformations.

The mechanism by which Tat and Tat-derived peptides acti-
vate the annealing of the complementary TAR sequences (in the
form of DNA) was  also thoroughly investigated (Kuciak et al., 2008;
Boudier et al., 2010). Like NCp7 or Gag, Tat(1–86) promotes the
hybridization of cTAR to TAR DNA. Tat peptides corresponding
to the N-terminal acidic domain and to the Cys-rich domain are
poorly active in annealing. On the contrary, peptides Tat(44–61)
and Tat(48–86) promote TAR DNA/cTAR annealing, Tat(44–61)
being the most active of the two. This suggests that the basic RNA
binding domain of Tat is critical to promote the annealing reac-
tion. Unlike NCp7, neither Tat nor Tat(44–61) are able to destabilize
cTAR. Tat(44–61) is however able to modify the annealing mecha-
nism of cTAR with TAR (in a DNA/DNA annealing context at least)
since the analysis of cTAR and TAR DNA mutants clearly evidenced

that the reaction is initiated at the bottom of the two  reacting
species (Boudier et al., 2010). In addition, Tat(1–86) and the mature
NC were found to show comparable efficiency in promoting the
annealing of cTAR with the DNA equivalent of TAR. Taken together,
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Fig. 5. Detailed analysis of the PBS(+)/PBS(−) annealing mechanism. A. (−) PBS and (+)PBS sequences. B. In the presence of NCp7, the PBS(+)/(−) annealing reaction proceeds
mainly  through the loop pathway (cyan). In the absence of NCp7, this pathway appears negligible and the PBS(+)/(−) sequences spontaneously anneal through their single-
strand  overhangs (blue). The single-stranded overhang pathway is also largely dominant when the reaction is promoted by Tat(44–61). C. PBS mutational analysis in the
absence  and in the presence of NCp7, NC mutants and Tat(44–61). Dotted bars represent the annealing rate in the presence of the native (−) and (+)PBS. NCp7 and NC(11–55)
but  not SSHS2NC or Tat(44–61) exhibit destabilizing activity. Mutating the (−)PBS single strand overhang strongly affects the rate of annealing, except if NCp7 or NC(11–55)
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romotes the reaction. On the contrary, in the presence of intact NC ZFs, the annea
fficiently in the absence of NC or in the presence of SSHS2NC or Tat(44–61). These 

or  the switch in the annealing pathway.

ata on Tat indicates that in the cTAR/TAR DNA reaction, the stim-
latory effect of Tat on the first strand transfer resembles that of
Cp7, though the hybridization reaction is differently nucleated.
urthermore, Tat and NCp7 were shown to cooperatively activate
he annealing of cTAR to TAR DNA, supporting a potent accessory
ole of Tat in the stimulation of the reverse transcription.
.3. Chaperoning the plus strand DNA transfer

A second strand transfer reaction is required for reverse tran-
cription to resume. The plus strand transfer involves a sequence
eaction is prevented by mutating the (−)PBS loop while the annealing occurs very
learly evidenced that the destabilizing activity carried by the NC ZFs is responsible

of synchronized events (Fig. 4C) consisting in (i) the synthesis of
plus strand strong-stop DNA that terminates after copying the
3′ end of the tRNA sequence, (ii) the necessary removal of the
tRNA primer and (iii) the subsequent annealing of the minus (−)
and plus (+) DNA copies at the level of the 18 nt primer binding
site (PBS) sequence (Basu et al., 2008). NCp7 chaperoning assis-
tance is involved in many of the steps above described but we will

focus here only on the (+)/(−)PBS annealing reaction. The DNA PBS
sequence folds into a bulged stable 4-bp stem-loop hairpin with
a partially ordered pentanucleotide loop and a 4-nt single- strand
overhang (Johnson et al., 2000). Using fluorescently labelled (+)PBS
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ith various (−)PBS mutants, the properties of NCp7 and Tat on
he (+)/(−)PBS hybridization were comparatively investigated. In
itro, (+)PBS can spontaneously anneal to (−)PBS (Ramalanjaona
t al., 2007). The PBS(+)/(−) annealing reaction proceeds mainly
hrough the single-strand overhangs of the PBS sequences while
ucleation through loop–loop interaction appears negligible in the
bsence of peptides (Fig. 5A). This was ascribed from a PBS muta-
ional analysis showing that hybridization rates of loop mutants
ere poorly affected while mutations that decreased the sequence

omplementarity in the ss overhangs almost completely impaired
he reaction (Fig. 5B). In sharp contrast to the nucleic acid sequences
nvolved in the first strand transfer, NCp7 does not melt the stable
−)PBS stem (Egelé et al., 2004, 2005). Nevertheless, NCp7 strongly
romotes the annealing of (+)/(−)PBS stem-loops by increasing
he annealing rate by about 60-fold, mainly by accelerating the
oop pathway. As a consequence, NCp7 modifies the mechanism of
he (+)/(−)PBS annealing reaction by activating the loop–loop kiss-
ng pathway that is negligible without NCp7 (Ramalanjaona et al.,
007) (Fig. 5A and B). The ability of NCp7 to switch the annealing
eaction from the single strand overhang pathway to the loop–loop
issing pathway strongly correlates with the ability of NCp7 to rear-
ange the PBS loop and to restrict the dynamics of the PBS loop
ases (Bourbigot et al., 2008; Godet et al., 2011). The latter were

nvestigated using 2-Aminopurine, a structural fluorescent probe
hat minimally affects the folding of the PBS loop and its binding
arameters with NCp7. In full line with NMR  data (Bourbigot et al.,
008), comparison of the 2Ap fluorescence quantum yields in the
bsence and in the presence of NCp7 clearly evidenced that NCp7
ignificantly rearranged the PBS loop, notably by decreasing base
tacking. Time-resolved fluorescence anisotropy also revealed that
Cp7 restricts the picosecond to nanosecond dynamics of the PBS

oops by limiting the overall flexibility of the loops and freezing the
ocal mobility of the bases where NCp7 is bound. Local structural
earrangement and freezing of the local base dynamics of the loop
re strictly dependent on the integrity of the zinc finger hydropho-
ic platform and constitute general features of the destabilizing
ctivity of NCp7 (Avilov et al., 2008, 2009; Godet et al., 2011). Thus,
he destabilizing activity of NCp7 is directly responsible for the
witch to the loop–loop annealing pathway.

As for the first strand transfer, Tat(44–61) is able to strongly
romote the annealing reaction of (+)/(−)PBS. In the presence of
nly 2 Tat(44–61) molecules per PBS, the annealing rate constant
as found six times faster than the one observed for NC(11–55)
nder saturating concentrations (Fig. 5A) to reach a rate close
o that observed in the presence of the full-length NCp7. But in
harp contrast to NCp7, Tat(44–61) was not able to stimulate the
nnealing pathway through the loop pathway (Fig. 5A and B), likely
ue to its very limited ability to rearrange the PBS loops (unpub-

ished data). Tat(44–61) shows striking similarities with SSHS2NC
r SSHS2NC(11–55), two NC mutants where the cysteines have
een substituted by serines to prevent zinc binding and which
onsequently do not exhibit destabilizing activity. Like Tat, these
wo zinc finger mutants do not modify the ODN dynamics and
tructure (Godet et al., 2011). Thus, Tat(44–61) stimulates the
−)/(+)PBS annealing through already available existing pathways
n the absence of peptides (i.e. through the ss overhangs). Taken
ogether, these data show that Tat is able to promote the anneal-
ng reaction of the complementary PBS sequences, albeit through a
ifferent mechanism from that observed in the presence of NCp7.

. Conclusion
The activities of Tat-derived peptides and NCp7 in the different
n vitro models reviewed here are macroscopically very similar.
oth Tat peptides and NCp7 promote the annealing of different
h 169 (2012) 349– 360

complementary sequences, as well as the placement of primer
tRNA on the viral RNA. Nonetheless, comparison of the mech-
anism of action of Tat and NCp7 evidences striking differences
in their ability to chaperone nucleic acid rearrangements. The
most important differences result from the inability of Tat, unlike
NC, to destabilize transiently nucleic acids and modify the local
dynamics of the nucleobases. So, even if both proteins are able to
aggregate nucleic acids and promote their annealing, the destabi-
lizing activity of NCp7 mediated through its folded zinc fingers is
responsible for specific nucleic acid rearrangements and annealing
pathways. Taken together, these data evidence that chaperoning
mechanisms are multiple and if the RNA-chaperone concept is rela-
tively straightforward, its expression appears quite diverse. A direct
consequence is that no simple or consensual assay exists for evi-
dencing and characterizing the RNA chaperone activity. Moreover,
characterization of the HIV-1 chaperone activities in vivo appears
highly challenging due to the fact that the HIV-1 genome encodes
for at least three proteins (NCp7, Tat and Vif) exhibiting redun-
dant NA chaperone activities, highlighting the critical necessity of
chaperones for viral replication. Due to the differential abundance
of these proteins along the viral life cycle, it is likely that these
proteins exhibit their NA chaperoning activities at different steps
of viral replication. Therefore, spatio-temporal regulation (Henriet
et al., 2007) and possible cooperativity (Boudier et al., 2010) within
these different “chaperone solutions” selected to solve the “folding
problem” represent very exiting fields to explore.
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