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Developmental genes significantly 
afflicted by aberrant promoter 
methylation and somatic mutation 
predict overall survival of late-stage 
colorectal cancer
Ning An1,*, Xue Yang1,*, Shujun Cheng1, Guiqi Wang2 & Kaitai Zhang1

Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, 
including genomics (majorly caused by somatic mutation and copy number variation), DNA 
methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not 
sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public 
available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to 
systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, 
promoter methylation, somatic mutation and gene expression. In this study, paired samples in each 
genomic level were retrieved to identify differentially expressed genes with corresponding genetic or 
epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the 
differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation 
were both functionally concentrated upon developmental process, suggesting the intimate association 
between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant 
development-related genes were retrieved from a priori-knowledge based biological network. In five 
independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed 
that the expression of these genes was significantly associated with overall survival of Stage III/IV 
colorectal cancer patients.

Colorectal cancer (CRC) is the third most common cancer in men (746,000 cases, 10.0% of the total) and the 
second in women (614,000 cases, 9.2% of the total) worldwide, accounting for roughly 694,000 deaths per year1. 
The initiation of CRC is an incredibly complicated biological process, involving multiple genomic and epigenomic 
alterations, occurring over an extended time period of usually a decade2. Patient survival is limitedly dependent 
on the tumor stage at the time of diagnosis, and reduced sensitivity to chemotherapy is still a major obstacle in 
effective treatment of advanced disease. Therefore, the discovery of novel molecules promoting CRC progression 
and indicating prognostic status, is still urgently needed3.

It is putatively accredited that carcinogenesis is caused by multi-level dysregulations, including genomics 
[majorly caused by somatic mutation and copy number variation (CNV)]4,5, DNA methylomics6,7, and tran-
scriptomics8,9. CNV plays a significant role in tumorigenesis in many cancers10–14, whose accumulation during 
oncogenesis might be a result of preferential selection by which transforming cells gain evolutionary advantages15. 
Somatic mutation, together with CNV, could contribute to genomic instability4. It could also activate additional 
downstream pathways in many types of cancer to acquire proliferative advantages16–18. DNA methylation is sub-
stantially important in promoting embryonic development19, aging20, and nearly all types of cancer21–24, by influ-
encing DNA and chromatin structures25. Numerous investigations indicated that the dysregulation of promoter 
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region, especially promoter hypermethylation of tumor suppressor genes, was the essential epigenetic events in 
carcinogenesis, prognostic marker discovery, and therapeutic utilities26–29.

CNV, aberrant promoter methylation and somatic mutation could all influence gene activation or suppres-
sion, thereby influencing the process of carcinogenesis. CNVs may alter gene dosage by changing the number of 
copies of a gene that is present in the genome30–33, explaining in most circumstances, CNV and corresponding 
gene expression are positively correlated in CRC34. Promoter hypomethylation might lead to gene activation, and 
promoter hypermethylation might cause gene suppression35. Genes with somatic mutation could probably lead 
to the activation or suppression of downstream signaling pathways36. For example, in thyroid cancer, somatic 
mutation of BRAF could activate MAPK pathway, thus influencing the massive dysregulation of gene activity37.

The multi-level genomic dysregulations during carcinogenesis indicated that while looking into the dysreg-
ulation of gene expression in cancer, the aberrant patterns of multi-level events should also be paid considerable 
attention to shed light on the underlying intricate mechanisms of cancer initiation and deterioration. Therefore, the 
integrative analysis of cancer genomics, methylomics and transcriptomics is urgently needed to comprehensively 
dissect cancer etiology and provide clinical guidance.

The Cancer Genome Atlas (TCGA) database is an immeasurable source of knowledge launched in 2005, which 
provides publicly available cancer genomic datasets38. Based on abundant resources of RNA sequencing (RNAseq), 
DNA sequencing (DNAseq), single nucleotide polymorphism (SNP) based platforms and DNA methylation, inte-
grative analysis of cancer genomics was exuberantly emerging, for instance, in breast cancer39, ovarian cancer40, 
glioma41, lung cancer42, renal cancer43 and many other types of cancers. Multi-dimensional analyses (MDA) of 
the genome, epigenome, and transcriptome was proven to be greatly beneficial in facilitating the rational deduc-
tion of aberrant genes and pathways, delineating subtypes of cancer, and promoting derivation of diagnostic and 
prognostic signatures, which otherwise would be overlooked in single genomic dimension investigations44. Thus, 
the molecular abnormalities of multiple levels should be altogether taken into consideration and systematically 
identify genes or pathways critically important in carcinogenesis.

In this study, we first collected genes with significant dysregulations with regard to DNA copy number, DNA 
promoter methylation, gene expression, and somatic mutation from TCGA paired samples. Differentially expressed 
genes (DEGs) with consistent aberrant promoter methylation or somatic mutation were found both exhibiting 
remarkable functional unity in developmental process. Gene to gene regulatory network was constructed by means 
of merging Human Protein Reference Database (HPRD), and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
networks. By combining multi-dimensional genomic data of CRC and priori knowledge network, we applied a 
computational strategy, i.e. random walk with restart, to obtain the genes which were affected considerably by 
aberrant promoter methylation or somatic mutation. The most of these significant genes were connected in the 
network, and proven to hold profound prognostic information in late stage (Stage III/IV) patients, which might be 
helpful for constructing prognosis prediction models and providing novel tools to guide clinical implementations 
for this deadly disease.

Material and Methods
A schematic for the study is depicted in Fig. 1.

Data retrieval. The multi-dimensional data of CRC associated datasets were retrieved from The Cancer 
Genome Atlas (TCGA) database (https://tcga-data.nci.nih.gov/tcga/). Four levels of paired data (cancer and nor-
mal adjacent tissues from CRC patients) were downloaded, including 32 paired RNA sequencing level 3 data 
[raw counts and RNASeq by Expectation Maximization (RSEM) normalized read counts], 500 paired DNA copy 
number level 3 data [conducted with Affymetrix SNP 6.0 platform, and segmented by circular binary segmen-
tation (CBS) method45], 45 paired DNA methylation level 3 data [using Illumina HumanMethylation450 chips, 
and the methylation level of each CpG site was calculated as the ratio (β  value) of the signal of methylated probes 
relative to the sum of methylated and unmethylated probes, which ranged continuously from 0 (unmethylated) to 
1 (fully methylated)], and somatic mutation level 2 data of 300 patients (mutation information of 17,427 genes).

The raw data for five human CRC mRNA microarray studies with overall survival (OS) information (sample 
size > 60, referred to as Clinicinfo superset; Table 1) were downloaded from the National Center for Biotechnology 
Information Gene Expression Omnibus (GEO). The flowchart of Clinicinfo dataset retrieval is presented in 
Supplementary Figure S1. The combined data set contained a total of 940 samples (936 samples with clear OS 
information) hybridized to probe sets present on both the Affymetrix HG-U133A (with GEO accession number 
GPL96) and the HG-U133A Plus2 (GPL570) platforms, composed of data sets with accession numbers GSE39582, 
GSE17536, GSE29621, GSE39084, and GSE12945. In total, 22,277 probes were common in all data sets, and of 
which the expression values were retrieved via robust multi-array average (RMA) algorithm and further quantile 
normalized using the “affy” Bioconductor package. The ComBat algorithm was utilized to eliminate potential batch 
effects, and the expression levels of 12,500 genes were obtained as the median value of all the probes which could 
be mapped to this gene. All clinical information was extracted from the original publications.

Circos plot of TCGA colorectal data in terms of DNA copy number, DNA methylation and 
somatic mutation. Colorectal primary tumor datasets in TCGA database, including 617 DNA copy num-
ber data, 393 DNA methylation data, and 300 somatic mutation data, were enrolled for integrative Circos plot 
construction via Perl software “Circos plot” (Fig. 2). Bioconductor package “cghMCR” was used to compute the 
segment gain or loss (SGOL) scores to quantify chromosome regions showing common gains/losses by sum-
mation of the score in each patient. For DNA methylation, the whole genome was segmented into contiguous 
500,000 base pair (bp) bins, and the median and 75th percentile of methylation levels of CpGs which could be 
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mapped onto each bin were plotted. As for somatic mutation data, genes with mutation rate > 5% were shown in 
scatter plot.

Identification of candidate genes with significant alteration at multi-level. DEGs were identi-
fied using edgeR algorithm46 with RNA sequencing raw counts (FDR <  0.01, fold change > 2). As for DNA copy 
number data, Bioconductor package “CNTools” was used to process segmentation data and format the data into 
a gene-level matrix based on corresponding genomic location of 26,863 genes. Genes with genomic amplification 
and deletion were identified with paired t statistic test (FDR <  0.001, fold change > 1.2). In methylation analysis, 
promoter region was defined as the region between 1,000 bp upstream transcription start site (TSS) and 300 bp 
downstream TSS. The β  value of the probe which could be mapped to the CpG site located in the promoter region 
of a given gene was used to quantify the methylation level of this gene. If more than one probe could be mapped to 
the promoter region of a given gene, the mean value was adopted. In this manner, the methylation level of 16,996 
genes were obtained with DNA methylation data, and significant hypermethylated and hypomethylated genes 
were identified with paired t statistic test (FDR <  0.001, fold change > 1.5).

By virtue of dysregulation pattern at different levels, three groups of candidate genes of interest were collected: 
(i) genes with differential expression and corresponding copy number alteration (i.e. genes with overexpres-
sion and amplification, and genes with underexpression and deletion); (ii) genes with differential expression and 

Figure 1. Schematic of methodology applied in this study. Step I: Integration of genomic, DNA methylomic, 
and transcriptomic data to identify three candidate gene groups; Step II: Identification of gene ontology 
(GO) function term and corresponding gene groups of interest based on GO enrichment analysis; Step III: 
Identification of genes within the identified functional groups significantly afflicted by genetic or epigenetic 
dysregulation, by applying random walk with restart algorithm in the merged network. Step IV: Survival 
analysis of identified significant genes to evaluate their prognostic value.
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corresponding promoter methylation (i.e. genes with overexpression and promoter hypomethylation, and genes 
with underexpression and promoter hypermethylation); and (iii) genes with differential expression and somatic 
mutation.

Identification of significant genes through random walk. Gene ontology (GO) enrichment analysis 
was conducted using Bioconductor package “clusterProfiler”. The protein–protein interaction network was down-
loaded from HPRD database, and KEGG network was constructed with Bioconductor package “KEGGgraph”. 
Therefore, gene regulatory network was established by merging HPRD and KEGG network, including 10,479 
nodes and 60,689 edges after eliminating self-loops and duplicated edges.

Taking advantage of knowledge-based network topology, random walk algorithm was utilized to identify genes 
algorithmically most affected by aberrant promoter methylation and somatic mutation47. In the network, genes of 
interest were designated as information source (i.e., source nodes) and the remaining genes in the network as the 
information target (i.e., target nodes). The information flow originates from source nodes iteratively and randomly 
transmits to their neighbors with a probability proportional to their topological features. At each step, the infor-
mation can flow back to the source nodes with the same probability. The final steady-state probability assigned to 
each gene in the network reflects the integrated influence imposed by source nodes combining network topology. 
Formally, the random walk with restart is defined as:

= ( − ) + ( )+p r Wp rp1 1t t1 0

where W is the column-normalized adjacency matrix of network, and pt is a vector in which the genes in the 
network holds probability in the iterative process up to step t. Source nodes were weighted with initial probability 
vector p0 (the sum of its elements was equal to 1), and r represents restart probability (r =  0.7 in this study). All the 
genes in the network were ranked according to the values in the steady-state probability vector p∞. This was obtained 
at query time by performing the iteration until the difference between pt and pt + 1 (measured by the L1 norm) was 
lower than 10−10. In order to obtain genes with significantly high steady-state probability, 10,000 permutations 
of node labels (with network topology remained the same) were conducted to calculate the null distribution of 
final probability for each gene. The p value was termed as the ratio of random values that were greater than the 

Characteristics

Samples

GSE12945 GSE17536 GSE39582 GSE29621 GSE39084

Number 62 177 566 65 70

Year 2009 2009 2013 2014 2014

Country Germany American France American France

Gender

 Male 34 96 310 40 35

 Female 28 81 256 25 35

Age

 Mean ±  SD (years) 64.4 ±  11.8 65.5 ±  13.1 63.0 ±  19.0 NR 59.2 ±  18.3

T status

 T1 +  T2 16 NR 57 8 13

 T3 +  T4 46 NR 486 57 57

N status

 N0 36 NR 302 32 35

 N1 14 NR 134 25 20

 N2 12 NR 104 7 15

M status

 M0 56 NR 482 46 48

 M1 5 NR 61 18 22

AJCC stage

 Stage I +  II 36 81 297 29 31

 Stage III +  IV 26 96 265 36 38

Pathologic grade

 G I 0 16 NR 4 NR

 G II 31 134 NR 51 NR

 G III 31 27 NR 10 NR

AdjCTX

 Yes NR NR 233 38 NR

 No NR NR 316 27 NR

Table 1.  Colorectal cancer microarray datasets included in survival analysis. Abbreviations: SD =  standard 
deviation; AdjCTX =  whether chemotherapy was used; NR =  not reported.
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observed final probability. Genes with p <  0.01 were regarded as the genes significantly afflicted by these genetic 
or epigenetic abnormalities.

Validation of gene signature’s prognostic value in Clinicinfo superset. In order to assess the prog-
nostic value of the significant genes we obtained (suppose the signature contained n genes), the risk score formula 
for predicting OS was developed based on a linear combination of the expression level (x1, x2, …, xn) of a given 
patient weighted by the regression coefficients derived from the Cox regression analysis. GSE17536 was used as 
training cohort for Cox regression model construction and the remaining four Clinicinfo data sets were treated as 
test cohorts. The regression coefficient β was calculated with training cohort and the same coefficient was further 
applied to testing cohorts. The risk score r for Patient j was calculated as follows:

∑β=
( )=

rj x
2i

n

i ij
1

Five-fold cross validation was also conducted within training cohort to strengthen the validity of the test. We 
then divided patients into high-risk and low-risk groups using the median gene signature risk score. Patients with 
higher risk scores are expected to have significantly poor OS status, if the gene signature is closely related to OS. 
Kaplan–Meier survival analysis and log-rank test were performed to evaluate the prognostic difference between 
the two risk score assigned groups.

Figure 2. Circos plot in terms of DNA copy number, DNA methylation and somatic mutation. An ideogram 
of a normal karyotype is shown in the outermost ring. The next outermost ring represents DNA copy number 
at corresponding genomic coordinates, calculated by the segment gain or loss (SGOL) scores (red represents 
amplification and green represents deletion). The next ring represents the amount of DNA methylation. The 
whole genome was segmented into contiguous 500,000 base pair (bp) bins, and the median (dark blue) and 75th 
percentile (light blue) of methylation levels of CpGs which could be mapped onto each bin were plotted. The 
innermost ring is scatter plot illustrating somatic mutation data, genes with mutation rate > 5% were shown in 
black and those > 10% were shown in red.
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Results
Collection of genes with somatic mutation, differential expression, DNA copy number and pro-
moter methylation with paired TCGA samples. Due to abundant resources of TCGA database, paired 
samples of CRC were used to obliterate individual difference. DEGs, calculated using edgeR algorithm, were 
composed of 1,457 up-regulated genes and 2,584 down-regulated genes (Fig. 3A). In addition, 1,057 genes were 
significantly amplified and 843 genes were found significantly deleted (Fig. 3A). Integrative Circos plot indicated 
there were severe copy number alteration in Chromosome 7, 8, 13, 17, 18 and 20, highly consistent with previous 
investigations34,48–52 (Fig. 2). By means of paired t statistic test, 1,464 genes with promoter hypermethylation and 
498 genes with promoter hypomethylation were also identified (Fig. 3A), and 1,301 genes with mutation rate 
> 5% were regarded as mutated genes.

Figure 3. Identification of three gene groups with multi-omic data in the Cancer Genome Atlas (TCGA) 
database. (a) Heat maps of differentially expressed genes (DEGs) [log2 transformed RNASeq by Expectation 
Maximization (RSEM) normalized read counts], DEGs with copy number variation (CNV), and DEGs with 
aberrant promoter methylation in corresponding paired TCGA data, respectively. (b) Venn diagram illustrating 
three groups of candidate genes with differential expression and another altered molecular level, such as DNA 
copy number, promoter methylation and somatic mutation. (c) Integrated genetic and epigenetic alteration 
patterns of differentially expressed genes. Rows represent DEGs, and columns represent four dysregulation 
types. Red denotes the more in cancer (overexpression, promoter hypermethylation or DNA amplification) or 
mutated DEGs. Blue denotes less in cancer (underexpression, promoter hypomethylation or DNA deletion) 
or not mutated DEGs. (d) Gene ontology (GO) enrichment analysis of Group B genes [differentially expressed 
genes (DEGs) with abnormal promoter methylation]. Red bar represents enriched GO terms which are 
offspring of developmental process. (e) GO enrichment analysis of Group C genes (DEGs with somatic 
mutation).
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Identification of candidate gene groups associated with DNA copy number alterations, pro-
moter methylation, and somatic mutation. Three groups of DEGs with aberrant genetic or epigenetic 
dysregulations (Fig. 3B) were categorized as follows: (i) 104 genes with overexpression and copy number amplifi-
cation, and 95 genes with underexpression and copy number loss (altogether 199 genes, termed as Group A); (ii) 
46 genes with overexpression and promoter hypomethylation, and 522 genes with underexpression and promoter 
hypermethylation (altogether 568 genes, termed as Group B); (iii) 397 genes (termed as Group C) with somatic 
mutation and differential expression (115 overexpression and 282 underexpression). Genetic and epigenetic dys-
regulation of DEGs were shown in Fig. 3C. Consistent with classic knowledge of gene regulation, promoter meth-
ylation exerted trans-regulation, while DNA copy number exerted cis-regulation upon gene expression, and the 
promoter of DEGs tended to be hypermethylated in CRC (Fig. 3C).

The overlapping among these three gene groups was conducted, and hypergeometric distribution was used to 
assess the statistical significance. The formula of hypergeometric distribution is as follows:

( )
( )

( )
∑= − ( / , , ) = −

−
−

( )
=

−
p F x N K M

K
t

N K
M t
N
M

1 1

3
i

x

0

1

where N is the number of all DEGs (N =  4041, the background gene number since all candidate genes were DEGs); 
K is the gene number of one target gene groups; M is the gene number of the other target gene group; x is the 
number of common genes shared by the both gene groups. As shown in Supplementary Figure S2, the result of 
hypergeometric distribution test indicated that there was no significant overlapping between Group A and Group B 
(p =  0.966) or Group C (p =  0.398), while Group B significantly overlapped with Group C (n =  107, p =  6.309e-13).

Random walk in developmental process related network. GO analysis of aforementioned three 
gene groups indicated Group A was found no GO terms significantly enriched, whereas Group B (Fig. 3D, 
Supplementary Table S1) and Group C (Fig. 3E, Supplementary Table S2) were both significantly enriched with a 
variety of GO terms (Bonferroni adjusted FDR <  1e-07). The enriched GO terms were increasingly ordered with 
FDR value, and top 30 GO terms were shown in Fig. 3D,E. All the offspring GO terms of “developmental process” 
were highlighted in red. Among top 30 enriched GO terms, 76.67% (23/30) of these terms were the offspring of 
“developmental process” for both Group B and Group C. Moreover, 48.33% (232/480, Supplementary Table S1) 
of Group B genes and 52.39% (186/355, Supplementary Table S2) of Group C genes belonged to this GO term 
(Fig. 3D,E). Among the 107 overlapping genes between Group B and Group C, 54.2% (58/107) of these genes 
belonged to the GO term “developmental process.

Since DEGs with abnormal promoter methylation and somatic mutation were both functionally concentrated 
on developmental process, developmental process related genes (DPRG, n =  5,161) were extracted from GO term 
“GO: 0032502”. Developmental process related network (DPRN) was established by extracting DPRGs and edges 
between DPRGs from the aforementioned merged network. The biggest connected component (BCC) of DPRN 
containing 3,271 DPRGs and 20,652 edges was established as walking graph for random walk (Fig. 4A). Genes in 
Group B or C and also present in the BCC were used as source nodes (n =  249). Genes only afflicted with dysreg-
ulated promoter methylation or somatic mutation were scored as 1, and genes afflicted with both abnormalities 
were scored as 2. The initial probability vector p0 was obtained by normalizing the score vector (n =  249) so that 

Figure 4. Random walk of DEGs of Group B and C in developmental process related network (DPRN). 
(a) The biggest connected component (BCC) of DPRN containing 3,271 developmental process related genes 
(DPRGs) and 20,652 edges. DEGs with abnormal promoter methylation and DEGs with somatic mutation 
in DPRN were regarded as source nodes, and the rest of DPRGs in the network were target nodes. (b) The 
subgraph of DPRN composed of 37 significant genes retrieved via random walk with restart.
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the sum of the vector is equal to 1 (the input of random walk algorithm). When the steady-state was finally reached, 
all the genes in the BCC (including 249 source nodes) were scored with p∞ (n =  3271, output of random walk 
algorithm), and thus the genes with significantly high score were mostly affected by both of these dysregulations. 
Therefore, 37 significant genes in respect to steady-stage probability were collected through 10,000 permutations 
(Fig. 4B), and algorithmically these genes received the most influence imposed by source genes with severe genetic 
and epigenetic dysregulations.

Validation of significant genes’ prognostic value via survival analysis. We used GSE17536 in 
Clinicinfo superset as training cohort to train Cox regression model with 37 significant genes and then used the 
constructed model to evaluate the risk score of patients in test cohorts. Patients in each test data set were further 
divided into high risk and low risk subgroups based on the median of their risk score. Kaplan–Meier survival 
analysis was performed to evaluate the actual survival difference between the two risk score assigned groups in 
samples from all American Joint Committee on Cancer (AJCC) stages (Fig. 5A), Stage I/II (Fig. 5B), and Stage 
III/IV (Fig. 5C) in each data set, respectively. Risk score calculated in all stage and Stage I/II samples were not 
significantly or consistently associated with patient’s OS in both self-cross validation and four individual test 
cohorts (Fig. 5A,B). However, patients with higher risk score in Stage III/IV patient groups tended to live signifi-
cantly shorter than those with lower risk score. The ability of risk score to discriminate OS was quite satisfactory 
in Stage III/IV samples in each data set (Fig. 5C, GSE17536 cross validation, n =  96, p =  0.04; GSE39582, n =  264, 
p =  0.048; GSE29621, n =  36, p =  0.047; GSE39084, n =  38, p =  0.0093; GSE12945, n =  26, p =  0.18), suggesting 
the genes most influenced by promoter methylation dysregulation and somatic mutation probably hold great 
prognostic value in late stage CRC patients.

Confirmation of the prognostic value of these 37 genes by means of meta-analysis and Cox 
regression analysis. Meta-analysis of 37 significant genes and risk score in five Clinicinfo data sets also con-
firmed the result of survival analysis with both fixed-effect model (Fig. 6A) and random-effect model (Fig. 6B), 
corroborating the prognostic value of these significant genes in late stage (conducted with R package “meta”). 
Fixed-effect and random-effect model are the most commonly used methods in conducting meta-analysis. The 

Figure 5. Kaplan–Meier survival analysis of random-walk significant genes in five independent datasets of 
Clinicinfo. (a) Kaplan–Meier survival analysis of 37 significant genes with all-stage samples in five independent 
data sets of Clinicinfo superset. GSE17536 was treated as training cohort, and five-fold cross validation was 
conducted to calculate risk score. Survival analysis was performed to discriminate OS between risk score 
assigned groups. (b) Kaplan–Meier survival analysis of 37 significant genes in five independent data sets with 
Stage I/II samples. (c) Kaplan–Meier survival analysis of 37 significant genes in five independent data sets with 
Stage III/IV samples. Note: in Kaplan–Meier survival analysis, red curve represents the subgroup with higher 
risk score, and black curve represents lower risk score.
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two models are different from the way of pooling the effect sizes obtained from the individual studies into an 
overall effect size. The fixed-effect model assumes that the differences between the studies are so important that 
during the effect-size pooling process, individual effect sizes should be retained; while random-effect model 
assumed that the individual trial effect sizes are “random” quantities53,54. Additionally, overall concordance index 
(C-index) analysis was also meta-analytically conducted to evaluate its OS predictive ability55, and the result 
indicated that these 37 genes could significantly predict OS of late stage CRC patients (Supplementary Fig. S3). 
The Cox proportional hazards regression model was used to evaluate the independence of the prognostic factors 
in a stepwise manner (Table 2). We collected 122 Stage III/IV samples in Clinicinfo superset with definite infor-
mation of OS, age, gender, stage and grade, and univariate Cox regression analysis indicated stage [hazard ratio 
(HR): 4.384; 95% confidence interval (CI): 2.671 ~ 7.194; p =  7.894e-09] and the risk score (HR: 2.225; 95% CI: 
1.740 ~ 2.845; p =  4.047e-10) generated by these 37 significant genes were significantly associated with patient’s 
OS. Multivariate Cox analysis indicated the risk score was an independent prognostic factor (HR: 2.223; 95% CI: 
1.739 ~ 2.842; p =  1.831e-10).

Discussion
The booming amount of high-throughput and multi-dimensional genomic data usher us into a new era, when 
the tremendously complicated molecular mechanism of carcinogenesis were perceived and dissected in a more 
integrative perspective. In this study, we systematically analyzed CRC genomic data, including CNV, somatic muta-
tion, DNA promoter methylation and gene expression, to discover novel and important molecules and genomic 

Figure 6. Forest plots in Stage III/IV patients in terms of overall survival (OS). (a) Forest plot of 37 
significant genes with fixed-effect model with Stage III/IV patients in Clinicinfo superset. Meta-analysis of 37 
significant genes in five independent data set of Clinicinfo superset was conducted, and hazard ratio (HR), 95% 
confidence interval (CI), and corresponding p value of each gene and risk score was calculated and plotted in 
the forest plot for Stage III/IV samples. (b) Forest plot of 37 significant genes with random-effect model.

Factors

Univariate Cox regression Multivariate Cox regression

HR (95% CI) P HR (95% CI) P

Age 1.017 (0.998 ~ 1.037) 0.076 – –

Gender (Male/
Female) 1.245 (0.761 ~ 2.036) 0.380 – –

Stage (IV/III) 4.384 (2.671 ~ 7.194) 7.894e-09 4.709 (2.839 ~ 7.812) 1.960e-09

Grade (III/I +  II) 1.620 (0.974 ~ 2.696) 0.071 – –

Risk score 2.225 (1.740 ~ 2.845) 4.047e-10 2.223 (1.739 ~ 2.842) 1.831e-10

Table 2.  Univariate and multivariate analyses of overall survival in late stage CRC patients. Abbreviations: 
HR =  hazard ratio; CI =  confidence interval. Note: Significant P values were in bold (P <  0.05).
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dysregulations in a more comprehensive manner. Paired samples in TCGA database were used to identify differen-
tial gene expression and genetic or epigenetic abnormalities, respectively, and collected three groups of candidate 
genes with differential gene expression pattern and upstream corresponding dysregulations. The result of GO 
analysis indicated the functions of DEGs with abnormal promoter methylation (Group B) and somatic mutation 
(Group C) both majorly concentrated on developmental process, of which the outcome is an anatomical structure 
(which may be a subcellular structure, cell, tissue, or organ), or organism over time from an initial condition to a 
later condition56. Additionally, the DEGs with CNV didn’t significantly overlap with the other DEG groups, while 
the majority of the significantly overlapping DEGs between Group B and Group C belonged to the GO term “devel-
opmental process” (Supplementary Fig. S2). These common DEGs shared by Group B and Group C play a pivotal 
role in both development and carcinogenesis. For instance, the germline gain-of-function mutation of ALK could 
disrupt the development of central nervous system57, of which the same anomaly was also identified in sporadic and 
familial neuroblastoma cases58–61. TIAM1, expressed in the base of intestinal crypts, established a fundamental role 
for Wnt-signaling pathway in the development and maintenance of normal intestinal physiology62. Its expression 
was greatly elevated in mouse intestinal tumors and human colon adenomas, and the cross-talk between TIAM1 
and canonical Wnt-signaling pathways could significantly influence intestinal tumor formation and progression63. 
Based on GO and overlapping analyses, it is quite plausible that DEGs with aberrant promoter methylation and 
somatic mutation intimately cooperated together to facilitate the dysregulation of developmental process. DEGs 
with CNV, however, were not found functionally specific in terms of influencing certain biological process.

It has been more than 150 years since Rudolf Virchow first advocated that neoplasms arise “in accordance 
with the same law, which regulates development” in 1858. Emerging evidences supported the cellular behavioral 
similarity between ontogenesis and oncogenesis, for instance, in the process of epithelial-to-mesenchymal transi-
tion (EMT)64, mesenchymal-to-epithelial transition (MET)65 and immune-surveillance evasion66. The molecular 
resemblances have been documented between certain malignant tumors and developing tissues on the basis of 
transcription factor activity67, regulation of chromatin structure68 and cellular signaling69. Important molecules 
were reported to play substantial role in both development and carcinogenesis. For example, PTCH1 is a key reg-
ulator of development, whose overexpression could drive skin carcinogenesis70. Developmental animal models 
were used to uncover the complicated molecular mechanisms of carcinogenesis, and a variety of novel and pivotal 
molecules, pathways and biomarkers were discovered71–73. Many important signaling pathways, including Notch1 
signaling pathway, activated during development, are proven to be reactivated in the process of carcinogenesis74,75. 
In addition, there were some pioneering works discovering that mRNA and microRNA expression profile of cancer 
could recapitulate the expression pattern of development72,76–79. The intimate association between developmental 
process and carcinogenesis, together with astounding synchronization of promoter methylation dysregulation and 
somatic mutation in developmental process related genes (DPRGs), compelled us to propose the hypothesis that 
DPRGs affected most by the aberrance of promoter methylation and somatic mutation, probably hold meaningful 
explanation for the underlying mechanism of carcinogenesis, and might be intimately associated with clinico-
pathological characteristics, for instance, OS.

In our study, we adopted a simple and effective computational strategy to randomly walk DPRGs with aberrant 
promoter methylation or somatic mutation in HPRD and KEGG merged biological network. Random walk with 
restart was adopted to decipher gene to disease association in priori-knowledge based network, whose performance 
was proven to be much more superior to other methods, such as neighborhood approaches80–82. The advantage 
of this strategy is that it subtly combines observed multi-omic data with knowledge based regulatory network, 
tracing the information flow which would be greatly accumulated in significant genes.

The majority of these significant genes were connected to form a relatively compact biological module (Fig. 4B), 
implying enormous biological association existing among these genes. Many of these significant genes obtained 
through random walk algorithm were closely related to the initiation and progression of CRC. TGFBR1 is a 
central molecule in TGF-β pathway, whose alteration could strikingly enhance the susceptibility to CRC83. The 
high microsatellite instability and expressional loss of EP300 may be a feature of gastric and colorectal cancers84. 
PRKCA and PRKCB are both member of Protein kinase C (PKC) family, which have a role in cell proliferation, 
differentiation, angiogenesis, and apoptosis85. PRKCB inhibition by enzastaurin could lead to mitotic missegre-
gation and preferential cytotoxicity toward colorectal cancer cells with chromosomal instability; loss of PRKCA 
signaling is a general characteristic of colorectal tumors regardless of other underlying genetic defects, pointing 
to the importance of this pathway86.

Since candidate genes were collected based on aberrant patterns in multi-omic level of TCGA genomic data, 
we used microarray data sets with OS information from GEO database instead of TCGA to test the prognostic 
value of these significant genes. Recent expression profiling datasets lack of consistent results between the studies 
due to different technological platforms and lab protocols87,88, and the microarray expression value of a particular 
genes could only be calculated based on different type of probes, which could probably compromise the accuracy 
and robustness of the whole meta-analysis. In addition, the relatively small number of sample size and noisiness 
of microarray data could cause the inconsistency of biological conclusions. To address these challenges, we col-
lected five Affymetrix microarray data sets (n =  940, each sample number > 60) with 22,277 common probes to 
get robust result of their significant clinical relevance. The expression value of 37 significant genes was retrieved 
and the prognostic value was evaluated with Cox regression model. The result indicated these 37 genes were sig-
nificantly associated with OS in late stage (Stage III/IV) patients, rather than early stage (Stage I/II). According to 
AJCC staging system (7th edition)89, the lesion of early stage CRC (Stage I/II) is relatively contained with neither 
lymph node invasion nor distant metastasis; when tumor advances to late stage (Stage III/IV) , the involved area 
is greatly increased, lymph node is invaded (Stage III/IV), and distant organs might be afflicted via distant metas-
tasis (Stage IV). Because of the small size of tumor involvement, Stage I and Stage II patients only need to receive 
radical treatment to defuse the peril caused by molecularly chaotic tumors. However, with the deterioration of 
the disease, Stage III patients principally should be treated with neoadjuvant chemoradiation therapy followed 
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by surgery with or without adjuvant chemotherapy, and patients with Stage IV CRC are primarily treated with 
chemotherapy although a selected group of patients can be cured with metastasectomy90. Surgical resection of 
the primary tumor is not beneficial for most of Stage IV patients91,92. Prognostic genes have the ability to predict 
patient’s OS status, probably by means of exerting influence on or reflecting tumor encroachment in the patient. 
Suppose the tumor is completely removed from the patient, and then the expression of this gene signature would 
probably not precisely predict OS, since the persistent influence of the tumor is terminated along with the tumor 
excision. On account of the massive tumor involvement and potential metastasis of Stage III/IV CRC, surgical 
excision in late stage patients might not remove the tumor with extensive molecular dysregulation as completely 
as in early stage patients. Therefore indicative function of prognostic genes continues monitoring the interaction 
between the residual neoplasms and CRC patients, probably explaining the question why these genes were only 
significantly associated with the OS of late stage CRC patients.

In summary, with the increasing availability of multidimensional genomic data, we collected genes with high 
rate of somatic mutation, differential expression, promoter methylation dysregulation and significant CNV, using 
paired samples in TCGA database. Three groups of DEGs with corresponding genetic or epigenetic abnormalities 
were obtained; the GO enrichment and overlapping analysis suggested DEGs with aberrant promoter methylation 
or somatic mutation were both functionally centering on developmental process. Random walk with restart was 
used to extract significant developmental genes most affected by aberrant promoter methylation and somatic 
mutation in merged regulatory network. In addition, the significant genes were closely related to OS of late stage 
patient. It is also very tempting that the identification of the functional regulators of these genes might be profusely 
beneficial to the discovery of new drug targets for CRC treatment. It is our hope that our preliminary exploration 
would be helpful for the further study upon cancer etiology and treatment guidance.
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