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A B S T R A C T

Solar radiation is a critical requirement for all solar power plants. As it is a time-varying quantity, the power
output of any solar power plant is also time variant in nature. Hence, for the prediction of probable electricity
generation for a few days in advance, for any solar power plant, forecasting solar radiation a few days into the
future is vital. Hourly forecasting for a few days in advance may help a utility or ISO in the bidding process. In this
study, 1-day-ahead to 6-day-ahead hourly solar radiation forecasting was been performed using the MARS, CART,
M5 and random forest models. The data required for the forecasting were collected from a solar radiation resource
setup, commissioned by an autonomous body of the Government of India in Gorakhpur, India. From the results, it
was determined that, for the present study, the random forest model provided the best results, whereas the CART
model presented the worst results among all four models considered.
1. Introduction

Electricity is a very important element of modern urban and rural life.
Rising demand and environmental considerations have prompted the
examination of renewable solutions for energy production. Currently,
renewable energy power sources have entered the picture and have
received much attention from researchers and governments. Due to the
intermittent nature of renewable energy resources, such methods are
vulnerable to power imbalances [1]. Solar power is a very important
source of renewable energy because of its sustainable and non-polluting
nature, along with its abundance [2]. The main drawback of solar power
is its variability, which is due to the intermittent nature of solar radiation.
Solar radiation is a key indicator of solar energy availability. Hence, for
power management, forecasting of solar radiation is very important.
Forecasting helps a utility to predict how much electricity will be pro-
duced from a given plant in the upcoming hours or days [3]. This may
help ISOs in making decisions regarding which peak-load plants need to
be in operation and which may be put on standby. With this approach,
generation costs may decrease and users may ultimately benefit finan-
cially [4]. Machine learning models are used for various types of fore-
casting and continue to produce improved forecasting results.
(R. Srivastava).
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1.1. Solar radiation forecasting models

In recent years, many techniques have been developed for solar ra-
diation prediction, and can be broadly classified into two broad cate-
gories, cloud imagery combined with physical models and machine
learning models. The choice between these two is mainly based on the
time horizon for which the forecasting is required. For the short term (up
to 6 h-ahead), forecasting extrapolation and statistical processes using
satellite images or ground-level measurements and sky images are
generally suitable [5]. The numerical weather prediction (NWP) model is
a combination of post-processing modules and real-time measurements
or satellite data. The NWPmodel is suitable for forecasting up to two days
ahead or beyond [6]. Time-series models (such as ARMA and SARMA)
have also been used in various literature reports for solar radiation
forecasting and provide suitable results, but the main drawback of these
models is that they are not able to consider nonlinearity in the data.

Machine learning is a subfield of computer science. Machine learning
models have various advantages over other types of models, and they can
model nonlinearities in data and establish relationships between inputs
and outputs without requiring prior information. Due to these advan-
tages, machine learning models are used for classification and regression
purposes. Due to this, various machine learning models have been used
for solar radiation forecasting in recent years. Artificial neural networks
tober 2019
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Fig. 1. Google earth image of the site location.
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(ANN), nearest neighbour neural networks (k-NN), support vector ma-
chines (SVM) and Markov chain models have been detailed in the liter-
ature [7, 8, 9, 10]. The regression tree and random forest models have
been rarely used model types but show good results. A detailed com-
parison and performance of these models are available in [2]. Some
important research work conducted by various researchers in this area is
presented here:

Behrooz Keshtegar et al. [11] compared four machine learningmodels
for solar radiation forecasting. The data were acquired over 391 months
at the Adana and Antakya stations in Turkey. Various combinations of
maximum temperature, minimum temperature, sunshine hours, wind
speed and relative humidity were selected as input variables for various
forecasting models. The MARS, M5Tree, RSM (response surface method)
and kriging models were compared on the basis of various statistical
indicators. From their analysis, the authors found that, for forecasting at
the Adana station, the MARS model showed the best forecasting results
among all models considered.
Fig. 2. Pictorial view of the solar radiation resource setup.
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Lunche Wang et al. [12] presented two forecasting models for solar
radiation forecasting at 21 stations in China. Seven methodological
variables were taken as inputs to fit the adaptive-neuro-fuzzy inference
systems (ANFIS) and M5 models. The models were examined for data
forecasting for 21 stations. From the analysis, it was found that, for
different stations, different models presented better results. For station
number 51777, the M5 model provided the best forecasting results.

M. Zamo et al. [13] compared 6 machine learning models for fore-
casting the PV power generation for the next day for power plants in
France. The machine learning models used were the binary regression
tree model, the Bagging model, the random forest model, the boosting
model, the support vector machine model and the generalized additive
model. The authors used the R software for modelling. The root mean
squared error (RMSE), mean absolute error (MAE) and mean bias error
(MBE) are indicators which were used for selection of the best model.
From the comparison, the author found that the random forest model
provided the best results among all of the models analysed.

Geoffrey K.F. Tso [14] compared the regression tree, linear regression
and the ANN models for forecasting electricity consumption in Hong
Kong, China. Comparison of the models was conducted using the square
root of the average squared error. From the comparison, it was found that
the regression tree model provided the best results.

From the literature review, it was found that the MARS, M5, regres-
sion tree and random forest models presented better results than other
machine learning models. It was also found that one to a few day-ahead
forecasting with hourly granularity is useful for unit commitments,
transmission scheduling, and day-ahead markets [15]. In this paper,
forecasting of the 1-day-ahead to 6-day-ahead solar radiation levels has
been achieved using four machine learning models using a 12-month
dataset for Gorakhpur, a site that is situated in the northern region of
India. Forecasting was accomplished using theMARS, M5, regression tree
and random forest models, as they were found to provide the best results,
as has been indicated in different publications. For modelling purposes,
the statistical software R [16] and its associated packages were used in
this paper.

Thispaper isdivided intofive sections; the second section isdedicated to
the description of site locations and data structures. The third section fo-
cuses on various machine learning models and statistical indicators. In the
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fourth section, the results and a comparison of all four machine learning
models studied are presented. The fifth section is dedicated to the conclu-
sions and a discussion of outcomes from this study.

2. Study area

In this paper, solar radiation forecasting has been conducted for a site
in Gorakhpur, India. Gorakhpur is located in the northern region of India
and it is very close to Nepal. The mean annual temperature at Gorakhpur
varies from 19.6 �C to 31.9 �C and the mean annual precipitation is
1,228.1 mm. The Madan Mohan Malaviya University of Technology
(MMMUT) is a state university located in Gorakhpur. The solar radiation
resources setup is located on the roof of the electrical engineering
department of MMMUT, Gorakhpur. Site location of the setup is shown in
Fig. 1. The setup is located at a latitude of 26�43050.4100 N and a longi-
tude of 83�2602.800 E. The altitude of the setup is 59 m above the sea level.
A pictorial view of the setup is shown in Fig. 2. The setup was installed by
the National Institute of Wind Energy (NIWE), an autonomous R&D
institution that is under the Ministry of New and Renewable Energy
(MNRE), Government of India [17]. The standards of the setup can be
seen from [18].

For the present study, one year (1st Jan 2017–31st Dec 2017) of data
was collected using the setup shown. Nine data parameters were
collected from the setup, namely minimum temperature (�C), maximum
temperature (�C), average temperature (�C), wind speed (m/sec), rainfall
(mm), dew point (�C), global solar radiation (W/m2), atmospheric
pressure (mb), and solar azimuth (�). The setup collected the data in a
minute-wise format but for proper fitting to the models, the minute-wise
data were converted into hourly data. The temperature, wind, dew point,
pressure and azimuth angle data were converted into hourly data by
averaging the minute-wise data, whereas the rainfall and radiation data
were converted into hourly data by summing the minute-wise data. 1-
day, 2-day, 3-day, 4-day, 5-day, and 6-day-ahead forecasting were con-
ducted in the present study. For this, the data from the earlier days of the
month were used for model training, whereas the data from the latter
Fig. 3. Structure of data f
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days of the month were used for testing the models. For example, for 5-
day-ahead forecasting in May, data from the 1st to 26th of May were used
for model training and data from the 27th to 31st of May were used for
model testing. Fig. 3 shows the data profile for the month of May.

3. Methodology

3.1. MARS model

The multivariate adaptive regression splines (MARS) algorithm was
first introduced by Friedman in 1991 [19]. MARS is a nonlinear and
nonparametric regression model. This model estimates the relationships
between the dependent and independent variables by the use of piece-
wise linear splines. MARS simulates the model by the use of basic func-
tions (BFs). BFs are defined in the form of pairs based on a knot to define
an inflection region [20]. MARS generates a linear combination of BFs,
which are shown below [19, 21]:

f ðxÞ¼ β0 þ
Xn

j¼1

βjBFj (1)

where,βj (j ¼ 0, 1, 2…….n) are unknown coefficients and can be esti-
mated by the least-square method, nis a number of terms in the final
model and can be estimated by the forward-backward stepwise process,
andBFjis jth basis function, which is given as:

BFj ¼f ��x� cj
��þ ;

��Cj � x
��þ g (2)

where
��x � cj

��þ ¼ maxð0;x � cjÞ
��Cj � x

��þ ¼max
�
0;Cj � x

�
The model is fitted based on n number of BFs that provides the lowest

generalized cross-validation (GCV). The GCV can be formulated ass
or the month of May.



Fig. 4. Example of MARS model.
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GCV ¼ SSEj

ð1� vnj=mÞ2 (3)
where,
SSEjis the sum of square error andvis the smoothing function.
The beauty of this model is that it does not require assumptions to

establish a relationship between the input and output variables. In this
model, the resulting piecewise curves enable greater flexibility because
this model allows bends and thresholds which are not present in linear
regression models. The MARS model fits in two stages, the first stage is
Fig. 5. Example of a Regression Model tre
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the forward stage, in which functions are added and potential knots are
detected to facilitate accuracy and to avoid an overfitted model. The
second stage is the backward stage, in which the lower effective terms are
eliminated. Details of the model can be seen in the work of Zhang and
Goh [22].

Fig. 4 shows an example of a MARS model. In this example, we can
observe that if we apply a linear regression model to such data, the
overall error (e) is quite high, but if we apply a MARSmodel containing 3
separate splines and 2 hinge functions, the resulting model has a lower
overall error (e) and this matches the pattern of the data in more eloquent
e for splitting the Input Space X1�X2.



Fig. 6. Example of an M5 model tree, (a) Splitting the input space X1�X2 by the M5 model tree algorithm, (b) Diagram of the model tree with six linear regression
nodes at the leaves.
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manner. The MARS model has been used in many applications in
research, such as prediction modelling, financial management, and time
series analysis [11, 23, 24]. In this paper, the MARS model was used for
solar radiation forecasting.
3.2. Classification and regression tree (CART)

The advantage of CART is that it is able to explore and highlight
complex or hidden relationships in the data. The CARTmodel is based on
if-then rules. This is one of the most popular models used in machine
learning for classification as well as for regression [25]. The CART model
creates a single regression or classification tree by repeatedly splitting the
data into groups by maintaining homogeneity in the output as much as
possible using a set of decision rules that are applied to a specific
explanatory variable [26]. The homogeneity in the output is measured
through the residual sum of the squares, also known as the impurity of a
node. First, the input variable is selected for splitting the node that
maximizes the homogeneity in the child nodes that are related to the
parent nodes, then other input variables are chosen as child nodes [27].

Once the optimal regression tree has been constructed, it is necessary
to prune the tree to avoid overfitting. To select the optimal tree size, a
cross-validation process is used. The cross-validation process helps to
select the model with smallest prediction error. For better understanding,
a simple example of the CART model is presented in Fig. 5, which shows
the splitting of the input space X1�X2 (independent variables) into six
subspaces (leaves) by the above-described algorithm.

In addition, the CART model is widely used to solve regression
problems in domains as diverse as engineering, medicine and the envi-
ronment [28, 29, 30]. For example, A. Troncoso has used the CART
model to predict wind speeds for a wind farm in northern Guadalajara,
5

Spain [25]. Choi et al. used the CARTmodel to predict air pollution levels
for the south coast of California by using various meteorological variables
as inputs to the model [31].
3.3. M5 model

The M5 model was first introduced by Quinlan in 1992 [32]. This
model is based on a binary decision tree having linear regression func-
tions at the terminal (leaf) nodes, and develops a relationship between
the independent and dependent variables. The decision tree is only
applicable for categorical data but this model can also be applied to
quantitative data [33]. The M5 model uses two stages to fit the model. In
the first stage, the data are split into subsets and form a decision tree. The
splitting of the decision tree is based on treating the standard deviations
of the class values that reach a node as measures of the error at the nodes
and by calculating the expected reduction in this error as a result of
testing each attribute at the node. The standard deviation can be calcu-
lated as:

SDR¼ sdðTÞ �
X��Tj

��
jT j sdðTjÞ (4)

where T is a set of examples that reach the node, Tjis the subset of ex-
amples that have the jth outcome of the potential set, and SD is the
standard deviation.

Due to the splitting, the standard deviation of a child node will be less
than that of the parent node. After checking various splitting processes,
the one that maximizes the expected error reduction is be chosen. The
division tree has become overfitted. To overcome this overfitting, in the
second stage, the overgrown tree is pruned and then the pruned sub-trees



Fig. 7. MARS Model fitness graph for 1-day-ahead Forecasting on May Month.
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are replaced with linear regression functions [34, 35]. Fig. 6(a) shows the
splitting of the input space X1�X2 (independent variables) into six
subspaces (leaves) by the M5 model tree algorithm. Fig. 6(b) shows their
relationships in the form of a tree diagram, in which LM1 to LM6 are at
the leaf level.

The M5 tree model is analogous to the piecewise linear functions of
regression trees. The advantage of the M5 model over the CART model is
that the M5 model learns efficiently and can challenge and tackle prob-
lems having very high dimensionality and complexity. The M5 tree
model is of smaller size than the CART model and its best trait is that the
regression functions of the M5 model do not typically consist of many
variables. The M5 model has also been used for many applications in
recent years, such as engineering, medical and agricultural purposes.
Recently, the M5 model has been successfully used for estimating refer-
ence evapotranspiration (ET0) [27], forecasting SO2 concentrations [36],
pan evaporation modelling [37] and for daily river flow forecasting for
the Sohu Stream, Turkey [38].

3.4. Random forest model

The random forest model is the most popular technique for regression
and classification in decision tree learning. It is very efficient and, at the
same time, its regression accuracy is better than the other regression
methods. The random forest (RF) model was proposed by L. Breman in
1984 [39]. The random model constructs a large number of decorrelated
decision trees in the training phase. After developing a number of deci-
sion trees, the output of the model is obtained by averaging the output
values of all of the individual trees. For training any single tree, the
learner bagging algorithm is used in the random forest model. Here,
bagging repeatedly selects Bbootstrap samples of the training set and fits
tbtrees using the Gini impurity in these samples. After the training pro-
cess, the predicted values for unseen examplesx are calculated by aver-
aging the prediction results from all regression trees by:

y¼ 1
B

XB
b¼1

tbðxÞ (5)

By modelling different trees instead of a single tree, the random forest
model presents better and more accurate predictions [14, 16]. The
ranking of variables obtained with this methodology is unbiased and is
more accurate than the CART results.

The random forest model is used in various classification and
regression applications, such as estimations of metropolitan NO2 expo-
sures in Japan [40], landslide susceptibility assessments in China [41],
and mapping of groundwater potentials for Iranian [42] crop yield pre-
dictions [43].

3.5. Statistical indicators

All models were evaluated according to several comparison statistics,
namely, the mean bias error (MBE), root mean squared error (RMSE) and
the mean absolute error (MAE). The expressions for these criteria are
given below:

MBE¼
Xn

k¼1

ek=n (6)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

e2k=n

s
(7)

MAE¼
Xn

k¼1

jekj = n (8)

where ek represents the error between the true value and the predicted
value and n is the number of observations.
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4. Results and discussion

1-day-ahead, 2-day-ahead, 3-day-ahead, 4-day-ahead, 5-day-ahead,
and 6-day-ahead solar radiation forecasting was conducted for every
month of 2017. The MARS, CART, M5 and random forecast machine
learning models were used for this forecasting. To fit these models, nine
parameters, namely, time, minimum temperature, maximum tempera-
ture, average temperature, wind speed, rainfall, dew point, atmospheric
pressure and solar azimuth were taken as the input variables, and the
global solar radiation was used as the output variable. These nine input
variables were selected because they represent superior correction fac-
tors. The RMSEs were used to measure the deviations between the
forecasted and actual values. The RMSE values represent the short-term
performance of the model. Lower RMSEs indicate a more accurate model.
The RMSE % is used to evaluate the performance of the model for
different months with different levels of available solar radiation. The
MBE provides long term correlations between the forecasted and actual
values, term by term. The MBE is used to describe whether the model is
under or overpredicted. A negative value for the MBE indicates that the
model is underpredicted and a positive MBE indicates that the model is
overpredicted. The ideal value for MBE is zero [44]. The MAE shows the
absolute value of the MBE. Four models were evaluated on the basis of
these three statistical indicators to observe the performances of these
models under various forecasting conditions.

4.1. Performance of the MARS model

First, the MARS model was applied for 1-day-ahead to 6-day-ahead
solar radiation forecasting. For fitting the MARS model, the “earth”
package in the R software was used [45]. Fig. 7 presents a fitness vs.
residual graph generated from the 1-day-ahead forecasting for May 2017.
From Fig. 8, it can be observed that the model fits quite well and that the
residuals are quite low. Fig. 8 presents the graph for (a) 1-day-ahead, (b)
2-day-ahead, (c) 3-day-ahead, (d) 4-day-ahead, (e) 5-day-ahead and (f)
6-day-ahead forecasted and actual values for May 2017. In this figure, the
x-axis represents the hourly global solar radiation incidence at the sur-
face in W/m2, and the y-axis represents time (in hours). From Fig. 8, it
can be observed that this model shows good results, even for the 6-day-a-
head forecasting.

Table 1 is a matrix representation of the statistical errors in fore-
casting for various months and for various forecasting time spans. Table 1
shows that for 1-day-ahead forecasting, the lowest RMSE was seen for
June, the highest RMSE was observed for January and the average RMSE
for all months was 83.9%. For 2-day-ahead forecasting, the lowest RMSE
was found in November, the highest RMSE was for January and the
average RMSE for all months was 89.29%. For 3-day-ahead forecasting,
the lowest RMSE was found for the month of October, the highest RMSE
was found for May and the average RMSE for all months was 84.02%. For
4-day-ahead forecasting, the lowest RMSE was seen for October, the
highest RMSE was found for January and the average RMSE for all
months was 83.86%. For 5-day-ahead forecasting, the lowest RMSE was



Fig. 8. (a) 1-day-ahead (b) 2-day-ahead (c) 3-day-ahead (d) 4-day-ahead (e) 5-day-ahead (f) 6-day-ahead Forecasted and Actual value graphs from the MARS Model
for May 2017.
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in October, the highest RMSE was in February and the average RMSE for
all months was 83.39%. For 6-day-ahead forecasting, the lowest RMSE
was for October, the highest RMSE was for January and the average
RMSE for all months was 90.92%.
Table 1
MARS model forecasting results.

Jan Feb Mar Apr May J

1-day a-head MBE -39.86 106.66 -4.81 -32.55 35.60 -8
RMSE 102.66 151.32 95.36 113.04 79.97 4
MAE 70.45 106.66 59.65 50.96 58.69 3

2-day a-head MBE 94.98 94.98 9.35 -33.91 41.11 -0
RMSE 143.30 143.30 67.02 101.79 123.54 6
MAE 96.36 96.36 40.61 47.35 92.94 5

3-day a-head MBE -19.38 80.80 -1.94 -23.12 -4.79 6
RMSE 100.85 118.81 63.86 80.08 141.42 7
MAE 63.67 83.89 38.90 46.01 99.89 4

4-day a-head MBE 13.90 75.20 -16.15 -23.58 7.64 8
RMSE 110.73 119.00 66.26 79.30 125.15 7
MAE 75.01 78.54 38.93 49.89 86.75 5

5-day a-head MBE 5.24 69.29 -22.07 -15.47 6.48 1
RMSE 97.52 119.17 65.22 78.24 126.62 7
MAE 65.15 74.39 36.98 53.53 85.68 5

6-day a-head MBE -75.85 68.42 -14.01 8.31 9.57 4
RMSE 174.53 121.04 61.64 74.43 117.99 1
MAE 114.77 74.84 36.96 52.40 81.99 7
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4.2. Performance of the CART model

The classification and regression tree model is the basic decision tree
model. To fit the MARS model, the “rpart” and “RWeka” packages of the
un July Aug Sep Oct Nov Dec Avg

.97 -0.70 38.81 22.19 20.11 3.64 -11.16 10.75
7.28 106.62 73.93 73.96 47.94 54.03 60.67 83.9
9.21 63.36 50.34 53.94 37.30 42.60 45.42 56.55
.78 -13.19 -17.67 -10.45 2.98 1.56 -13.58 12.95
6.94 94.48 89.05 78.66 48.48 46.98 67.97 89.29
0.14 53.15 60.38 58.70 35.49 36.46 49.83 59.81
.28 -14.09 -39.46 -13.04 9.91 17.22 -4.91 -0.54
4.00 92.84 86.39 84.55 47.19 58.75 59.48 84.02
9.29 54.53 60.96 69.46 36.08 44.61 44.56 57.65
.75 6.24 -25.97 -9.08 19.07 20.59 21.62 8.19
8.60 82.41 80.12 91.54 48.01 61.49 63.75 83.86
4.36 52.27 57.93 73.69 36.17 46.26 51.19 58.42
5.14 -24.18 -18.33 -5.41 22.31 25.98 2.28 5.11
9.11 83.73 76.85 83.81 53.57 68.72 68.12 83.39
8.45 54.86 57.27 65.35 40.44 49.90 51.51 57.79
2.71 -36.27 -18.75 2.73 30.99 18.34 5.79 3.5
01.88 87.30 72.13 94.99 55.60 66.45 63.07 90.92
2.66 61.28 52.09 64.29 43.24 49.24 47.25 62.58



Fig. 9. Regression Tree Structure used for 1-day-ahead Forecasting in May.

Fig. 10. (a) 1-day-ahead (b) 2-day-ahead (c) 3-day-ahead (d) 4-day-ahead (e) 5-day-ahead (f) 6-day-ahead Forecasted and Actual value graphs from the CART Model
for May 2017.

R. Srivastava et al. Heliyon 5 (2019) e02692
R software were used [46, 47]. The CART model was applied for 1-day-a-
head to 6-day-ahead solar radiation forecasting for all months of 2017.
Fig. 9 represents the regression tree structure employed for 1-day-ahead
8

forecasting for May. Fig. 10 presents (a) 1-day-ahead, (b) 2-day-ahead,
(c) 3-day-ahead, (d) 4-day-ahead, (e) 5-day-ahead and (f) 6-day-ahead
forecasting results for May 2017. The x-axis represents the hourly



Table 2
CART model forecasting results.

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Avg

1-day a-head MBE -14.49 32.23 0.94 -32.59 22.21 16.57 -12.21 17.23 70.92 37.01 11.65 -12.56 11.41
RMSE 51.79 117.69 97.35 121.56 123.02 62.51 114.84 73.58 136.76 111.81 59.93 45.63 93.04
MAE 29.77 76.22 59.58 73.15 76.57 43.06 68.26 46.29 77.57 69.93 28.71 25.74 56.24

2-day a-head MBE -16.81 31.38 17.63 -16.78 -12.09 18.34 22.71 -37.75 46.75 21.49 29.51 -15.13 7.44
RMSE 66.25 69.93 84.80 98.14 154.35 80.71 135.07 111.17 108.20 67.06 83.58 59.63 93.24
MAE 35.37 41.61 51.59 58.87 93.62 54.52 69.76 65.11 61.39 46.78 46.78 31.83 54.77

3-day a-head MBE -11.79 21.04 -5.54 5.72 -50.33 19.25 -1.16 -27.45 36.14 28.10 24.20 -10.61 2.3
RMSE 60.23 54.50 100.58 95.04 159.28 81.38 118.60 102.13 94.88 94.85 74.39 54.21 90.84
MAE 33.21 35.12 64.15 58.60 95.68 55.50 61.46 60.54 54.52 58.33 43.31 29.89 54.19

4-day a-head MBE 11.12 34.66 -13.36 9.08 -10.62 36.40 -2.96 -20.46 38.96 27.74 23.54 4.11 11.52
RMSE 67.51 93.00 72.30 106.36 139.89 81.88 99.97 96.83 100.84 109.14 71.32 75.90 92.91
MAE 40.83 59.97 45.73 65.59 81.36 56.77 59.97 58.56 58.56 67.37 43.06 45.42 56.93

5-day a-head MBE -21.96 41.89 -14.14 14.82 -31.67 24.71 2.33 -3.27 14.94 27.11 19.04 -19.76 4.5
RMSE 107.64 100.11 68.69 104.13 135.60 84.00 92.21 103.36 98.32 60.78 86.66 96.88 94.87
MAE 55.02 66.55 43.09 66.22 76.20 57.93 54.84 63.10 57.14 38.68 49.00 49.52 56.44

6-day a-head MBE -16.74 39.17 -46.56 17.75 -20.64 35.96 -4.91 -2.00 9.95 23.15 16.70 -15.06 3.06
RMSE 112.93 107.71 120.36 103.74 128.06 83.65 108.68 104.24 116.94 59.95 99.14 101.63 103.92
MAE 64.30 74.28 84.96 67.29 72.63 56.59 59.85 61.29 67.15 38.63 54.93 57.87 63.31
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global solar radiation incidence on the surface in W/m2 and the y-axis
represents time (in hours).

Table 2 shows a matrix representation of the various statistical
errors observed from the 1-day-ahead to 6-day-ahead forecasting in
various months. From Table 2, it can be observed that for the 1-day-
ahead forecasting, the lowest RMSE was seen in December, the high-
est RMSE was observed for May and average RMSE for all months was
93.04%. For 2-day-ahead forecasting, the lowest RMSE was in
November, the highest RMSE was in July and the average RMSE for all
months was 93.24%. For 3-day-ahead forecasting, the lowest RMSE
was in January, the highest RMSE was in July and the average RMSE
for all months was 90.84%. For 4-day-ahead forecasting, the lowest
RMSE was observed for January, the highest RMSE was seen in May
and the average RMSE for all months was 92.91%. For 5-day-ahead
forecasting, the lowest RMSE was seen in October. The highest
RMSE was in May and the average RMSE for all months was 94.87%.
For 6-day-ahead forecasting, the lowest RMSE was observed in
October, the highest RMSE was found in January and the average
Fig. 11. Tree structure used for 1-day-ahead
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RMSE for all months was 103.92%.

4.3. Performance of the M5 model

M5 is a modified version of the CART model and is also known as the
leaf regression tree model. For modelling with the M5 model, the “rpart”
and “RWeka” packages of R software were used [46, 47]. The M5 model
was employed for 1-day-ahead to 6-day-ahead solar radiation fore-
casting. Fig. 11 represents the regression tree structure generated for the
M5 model fitting for 1-day-ahead forecasting in May. Fig. 12 represents
1-day-head to 6-day-ahead forecasted and actual results for May. The axis
labels are the same as those in Fig. 9.

Table 3 presents a matrix representation of the various errors
observed in the 1-day-ahead to 6-day-ahead forecasting cases for various
months. Table 3 shows that for 1-day-ahead forecasting, the lowest RMSE
was in February, the highest RMSE was seen in the April and the average
RMSE for all months was 70.15%. For 2-day-ahead forecasting, the
lowest RMSE was in February, the highest RMSE was observed in August
forecasting in May with the M5 Model.



Fig. 12. (a) 1-day-ahead (b) 2-day-ahead (c) 3-day-ahead (d) 4-day-ahead (e) 5-day-ahead (f) 6-day-ahead forecasted and actual value graphs for the M5 model for
May 2017.

Table 3
M5 model forecasting results.

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Avg

1-day a-head MBE -19.40 -5.06 -15.18 -46.18 26.95 -26.74 -4.72 37.32 -22.44 -3.86 23.12 -16.30 -6.04
RMSE 35.70 30.15 113.80 126.31 86.87 51.70 118.54 89.96 58.33 41.38 57.55 31.52 70.15
MAE 21.48 20.07 71.89 64.15 51.77 41.41 71.03 57.21 35.56 25.80 34.06 18.95 42.78

2-day a-head MBE -32.01 2.87 2.87 -36.00 30.34 -3.31 13.72 -46.20 -27.33 -2.60 14.58 -28.81 -9.32
RMSE 63.73 40.79 40.79 87.07 120.19 57.23 108.49 131.56 61.64 46.96 47.87 57.36 71.97
MAE 38.93 25.48 25.48 42.05 72.47 43.40 61.40 80.97 38.18 30.28 27.61 35.04 43.44

3-day a-head MBE -22.86 11.98 9.47 -34.80 -17.08 4.33 -6.97 -60.73 -17.51 -2.01 -0.61 -20.58 -13.11
RMSE 56.88 45.99 84.77 79.45 146.73 57.95 96.47 131.58 52.29 52.81 64.45 51.19 76.71
MAE 35.87 28.52 47.90 43.79 85.07 41.89 54.43 81.65 34.84 34.22 38.46 32.28 46.58

4-day a-head MBE 0.02 23.91 -4.81 -30.44 4.42 10.64 -33.85 -53.85 -13.03 -6.17 1.16 5.86 -8.01
RMSE 52.32 60.07 64.27 74.04 129.39 65.38 99.03 120.78 59.13 51.86 62.30 60.11 74.89
MAE 31.13 34.24 38.27 42.02 75.09 46.54 59.40 75.36 40.77 33.90 38.13 36.47 45.94

5-day a-head MBE -27.30 25.47 -9.32 -17.94 0.68 6.56 -40.43 -47.72 -11.80 -4.16 7.39 -24.57 -11.93
RMSE 81.23 64.91 59.92 66.19 124.02 67.36 97.46 114.28 55.67 54.79 54.34 73.10 76.11
MAE 48.57 37.26 36.09 37.84 75.29 48.86 62.84 67.27 39.82 35.69 34.48 43.71 47.31

6-day a-head MBE -26.47 15.69 -20.14 -2.80 -1.50 -3.93 -46.06 -37.71 -11.27 -0.07 7.11 -23.82 -12.58
RMSE 77.52 61.16 67.41 72.12 119.92 58.78 105.44 123.45 65.34 58.17 60.02 69.77 78.26
MAE 46.06 37.62 43.55 46.13 70.80 44.85 68.31 71.03 45.76 37.56 37.74 41.45 49.24
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and the average RMSE for all months was 71.97%. For 3-day-ahead
forecasting, the lowest RMSE was in February, the highest RMSE was
in August and the average RMSE for all months was 76.71%. For 4-day-
10
ahead forecasting, the lowest RMSE was observed for October, the
highest RMSE was in May and the average RMSE for all months was
74.89%. For 5-day-ahead forecasting, the lowest RMSE was seen for



Fig. 13. Error vs. Number of Regression Tree Graph.
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November, the highest RMSE was in August and the average RMSE for all
months was 76.11%. For 6-day-ahead forecasting, the lowest RMSE was
in November, the highest RMSE was in July and the average RMSE for all
months was 78.26%.
4.4. Performance of the random forest model

The random forest model is also a modified regression tree model, in
which many regression trees are pruned in place of a single regression
tree and the result is obtained by averaging all trees. 1-day-ahead to 6-
Fig. 14. (a) 1-day-ahead (b) 2-day-ahead (c) 3-day-ahead (d) 4-day-ahead (e) 5-day-a
Model for May 2017.
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day-ahead solar radiation forecasting was conducted for all months of
2017 using of the random forest model. For the regressions, the “ran-
domForest” package of the R software was used [48]. For 1-day-ahead
solar radiation forecasting in the month of May, a total of 500 trees
were pruned. A graph of the errors and the numbers of trees is shown in
Fig. 13. Fig. 13 shows that, by increasing the number of trees, the errors
decrease but after including a sufficient number of trees, the graph flat-
tens out. Fig. 14 depicts a graph showing the actual and forecasted values
for 1-day-ahead to 6-day-ahead solar radiation forecasting for May.

Table 4 shows a matrix representation of the various errors observed
from 1-day-ahead to 6-day-ahead forecasting in various months. Table 4
shows that for 1-day-ahead forecasting, the lowest RMSE was in
December, the highest RMSE was seen in April and the average RMSE of
62.88% was observed for the remaining months. For 2-day-ahead fore-
casting, the lowest RMSE was in October, the highest RMSE was in May
and the average RMSE for the remaining months was 66.4%. For 3-day-
ahead forecasting, the lowest RMSE was in October, the highest RMSE
was observed for May and the average RMSE for all months was
approximately 65.08%. For 4-day-ahead forecasting, the lowest RMSE
was in January, the highest RMSE was observed for May and the average
RMSE for all months was 60.38%. For 5-day-ahead forecasting, the
lowest RMSE was in March, the highest RMSE was in May and the
average RMSE for all months was 72.65%. For 6-day-ahead forecasting,
the lowest RMSE was seen in October, the highest RMSE was in May and
the average RMSE for all months was 78.77%.
head (f) 6-day-ahead Forecasted and Actual value graph from the Random Forest



Table 4
Forecasting results with random forest model.

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Avg

1-day a-head MBE -9.20 12.20 -6.10 -21.44 39.02 -9.17 17.55 28.84 13.92 27.80 12.53 -6.66 8.27
RMSE 24.46 26.50 93.98 118.01 104.65 34.00 117.46 59.28 58.67 48.83 46.30 22.47 62.88
MAE 15.74 16.90 59.97 54.92 67.69 25.47 66.26 32.61 32.26 29.57 27.42 14.42 36.94

2-day a-head MBE -23.13 20.25 17.72 -16.06 16.36 2.54 21.19 -30.02 -9.04 7.45 -1.92 -20.11 -1.23
RMSE 55.12 40.27 91.04 90.73 120.04 31.16 112.95 92.01 56.75 16.12 40.69 49.91 66.4
MAE 28.14 26.01 61.28 41.92 73.50 21.91 60.48 50.53 35.16 9.84 27.31 25.43 38.46

3-day a-head MBE -18.97 22.64 4.96 -6.61 -22.97 11.84 4.71 -39.51 -7.80 7.01 0.04 -16.78 -5.12
RMSE 53.25 44.80 81.63 76.05 133.85 48.16 94.67 93.76 52.76 16.62 39.06 46.32 65.08
MAE 30.51 27.55 54.59 35.38 82.85 29.35 51.59 54.40 33.95 9.70 27.06 26.97 38.66

4-day a-head MBE 0.95 28.55 -3.89 -0.21 -0.80 21.73 -25.55 -30.40 -1.51 11.51 0.47 0.47 0.11
RMSE 24.82 52.92 29.25 69.21 121.94 64.79 95.63 83.82 65.74 26.62 35.67 54.19 60.38
MAE 13.63 32.66 18.15 35.62 76.43 40.68 58.77 49.86 40.67 15.17 23.70 30.88 36.35

5-day a-head MBE -38.45 34.55 -4.58 8.42 6.19 20.91 -23.42 -23.43 -4.44 20.56 2.20 -34.45 -3
RMSE 104.26 64.72 27.13 68.60 118.39 67.24 88.75 87.07 62.89 39.20 49.76 93.80 72.65
MAE 60.31 41.01 16.54 39.29 75.72 43.25 55.04 53.90 40.18 22.65 32.81 54.21 44.58

6-day a-head MBE -30.21 32.95 -35.30 28.01 5.89 23.75 -22.20 -23.94 -7.70 26.15 -1.66 -26.98 -2.6
RMSE 96.50 67.47 90.14 86.50 109.43 67.72 90.44 81.30 65.85 48.85 54.88 86.17 78.77
MAE 52.97 46.81 61.54 54.45 68.07 44.33 54.90 51.69 42.04 29.47 35.22 47.86 49.11

Fig. 15. Comparison of the MARS, regression tree, M5 and random forest models.
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4.5. Comparison of various models

In this section, a comparison of the forecasting outcomes obtained
from the different models is made. All four models were compared on the
basis of their average RMSEs generated during the 1-day-ahead to 6-day-
ahead solar radiation forecasting scenarios. The root mean square error
(RMSE) value is the most significant statistical indicator for regression.
Averaging of the results was done in such a way that, for generating the
average RMSEs for 1-day-ahead forecasting, the results of the 1-day-
ahead forecasting in the months of January to December were aver-
aged. Fig. 15 shows the average RMSE graph for the forecasting outcomes
as obtained from the various models considered. Fig. 15 shows that, in all
cases, the random forest model produced the lowest RMSEs, the M5
model produced the second lowest RMSEs, the MARS model produced
the third lowest RMSEs and the CART model produced the greatest
RMSEs.

We conclude that in this case study, the random forest model
produced the best results among all models considered. The M5
model generated better results than the MARS and CART models.
The MARS model produced better results than the CART model and
inferior results compared to the M5 and random forest models. The
CART model had the worst results among all models considered.
4.6. Validation of results

Although these statistical errors are sufficient to compare the per-
12
formances of the various models, they do not indicate whether the
forecasted results were statistically significant. The t-static error provides
information of whether the results are at a significant confidence level.
The t-static error is formulated as:

t¼
� ðn� 1ÞðMEÞ2
ðRMSEÞ2 � ðMEÞ2

�1=2
(9)

Lower t-static errors mean better model performances. The standard
t-table provides the standard t-static error values (tα/2 at α level of sig-
nificance and (n-1) degrees of freedom) to check the significance of the
results. Those models that presented lower t (calculated) values than the
standard t (tabulated) values are statistically significant [49].

Table 5 presents the t-static errors from the various models and the
standard critical t-static values at the 95% confidence level. Table 5
shows that all models presented lower t-static errors than the standards in
all cases. This means that all results were statistically significant. It can
also be observed that in the months of January, February and December
(winter season), the t-static errors were higher because, in the northern
region of India, fog deposition is high and the availability of solar radi-
ation is lower and naturally varies.
4.7. Discussion

A close examination of the results shows that all models presented
good results. When viewing the differences between the 1-day-ahead



Table 5
t-static Errors from the Various Models and the Standard t-static Error Values.

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Standard t-static error
values at 95% confidence
level [50]

MARS Model
1 Day a-head 1.114 -1.647 0.059 0.412 -0.438 0.101 0.009 -0.516 -0.289 -0.242 -0.066 0.414 2.069
2 Day a-head 1.508 -1.892 -0.163 0.547 -0.762 0.012 0.273 0.330 0.201 -0.049 -0.041 0.626 2.013
3 Day a-head 0.772 -1.874 0.043 0.450 0.113 -0.123 0.381 0.892 0.317 -0.203 -0.570 0.227 1.994
4 Day a-head -0.577 -1.908 0.416 0.518 -0.195 -0.197 -0.193 0.686 0.258 -0.449 -0.793 -0.924 1.984
5 Day a-head -0.241 -1.918 0.633 0.382 -0.190 -0.385 0.783 0.548 0.177 -0.586 -1.157 -0.111 1.98
6 Day a-head -0.859 -1.965 0.431 -0.232 -0.298 -1.251 1.328 0.631 -0.096 -0.892 -0.900 -0.294 1.976
M5
1 Day a-head 0.851 0.066 0.201 0.592 -0.333 0.294 0.064 -0.507 0.271 0.047 -0.433 0.817 2.069
2 Day a-head 1.510 -0.052 -0.270 0.600 -0.608 0.052 -0.311 1.285 0.484 0.043 -0.385 1.510 2.013
3 Day a-head 1.014 -0.271 -0.228 0.668 0.421 -0.084 0.205 1.285 0.389 0.041 0.019 1.014 1.994
4 Day a-head -0.001 -0.634 0.134 0.664 -0.121 -0.239 1.037 1.325 0.342 0.148 -0.042 -0.276 1.984
5 Day a-head 1.238 -0.745 0.288 0.440 -0.021 -0.239 1.316 1.293 0.360 0.110 -0.312 1.238 1.98
6 Day a-head 1.255 -0.486 0.657 0.077 0.047 0.109 1.642 1.188 0.386 0.002 -0.335 1.255 1.976
Random Forest Model
1 Day a-head 0.395 -0.161 0.081 0.275 -0.488 0.101 -0.246 -0.376 -0.182 -0.339 -0.227 0.377 2.069
2 Day a-head 1.162 -0.369 -0.340 0.271 -0.329 -0.039 -0.493 0.541 0.165 -0.119 0.049 1.124 2.013
3 Day a-head 0.839 -0.518 -0.121 0.130 0.573 -0.228 -0.144 0.541 0.175 -0.140 -0.001 0.829 1.994
4 Day a-head -0.039 -0.756 0.106 0.005 0.022 -0.486 0.802 0.764 0.040 -0.269 -0.017 -0.022 1.984
5 Day a-head 1.721 -1.015 0.139 -0.209 -0.198 -0.530 0.787 0.671 0.138 -0.538 -0.095 1.709 1.98
6 Day a-head 1.429 -1.048 1.178 -0.779 -0.191 -0.670 0.828 0.780 0.263 -0.765 0.078 1.421 1.976
Regression Tree Model
1 Day a-head 0.620 -0.423 -0.012 0.427 -0.269 -0.187 0.156 -0.215 -1.010 -0.456 -0.204 0.617 2.069
2 Day a-head 0.865 -0.575 -0.321 0.283 0.224 -0.284 -0.513 0.659 -0.937 -0.358 -0.814 0.865 2.013
3 Day a-head 0.510 -0.477 0.124 -0.114 1.171 -0.372 0.034 0.593 -0.859 -0.584 -0.794 0.510 1.994
4 Day a-head -0.476 -0.926 0.347 -0.208 0.281 -0.813 0.093 0.509 -1.077 -0.656 -0.892 -0.193 1.984
5 Day a-head 0.954 -1.240 0.411 -0.374 0.925 -0.611 -0.080 0.093 -0.456 -0.724 -0.818 0.954 1.98
6 Day a-head 0.771 -1.265 1.508 -0.489 0.631 -0.998 0.182 0.066 -0.332 -0.678 -0.775 0.771 1.976
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forecasting results and the 6-day-ahead forecasting results, we observe
that in the case of random forest forecasting, the differences between
the RMSEs of the 1-day-ahead and the RMSEs of the 6-day-ahead
forecasting were 15.89%, which were within acceptable limits. This
shows that if we increase the day-ahead span for forecasting, accept-
able results would be found. Moreover, a longer day-ahead forecasting
period was beneficial. If we want to estimate the availability of solar
radiation up to 6 days in advance, we can estimate its value accurately
(within standard prescribed limits). These results can be useful for
various applications, such as in solar power availability calculations,
atmospheric energy-balance studies, analyses of the thermal loads on
buildings, farming aspects and solar-dependent industries. For
example, for power bidding by an ISO, a solar power plant must bid its
rate and the amount of power to be injected into the grid at 1–6 days
before on an hourly basis. The plant has a solar radiation measurement
facility and can calculate the ratio by which the solar radiation is
converted to available power. By having this information available, a
plant can accurately predict values for solar power on an hourly basis.
Hence, these results are very useful for power bidding up to 6 days
before the power needs to be transmitted.

It can also be observed that the month is also a significant factor for
forecasting in the northern region of India. In the summer season, clear
solar radiation is available that the models were able to accurately
predict. However, in the winter season, the solar radiation is lower and
is non-uniform in nature; due to these factors, the models were not
able to predict accurate results. In the rainy season, the maximum
variations are sometimes seen when clear non-dusty skies are present,
which facilitate high solar radiation that is otherwise available due to
a cloudy atmosphere, for which low solar radiation is present; because
of these effects, the models were not able to provide very good fits and
contained lower prediction accuracies. In the northern region of India,
in general, the winter season is from November to February, the
summer season is from March to June and the rainy season is from
July to October. In this paper, for the graphical representation of the
actual and predicted values, the results for May were shown because of
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the maximum variations present in the actual solar radiation (This can
be easily observed in the graph of actual values shown in Fig. 8), and if
the models are able to fit in such variable data, then the model can
easily fit the datasets for other months.

5. Conclusions

The performances of the CART, MARS, M5 and random forest models
have been analysed for solar radiation forecasting in this case study. The
model performances were examined on an hourly basis for 1-day-ahead
to 6-day-ahead solar radiation forecasting for the site location at Gor-
akhpur, India. Forecasting was performed considering all months of 2017
so that the performance of forecasting could be evaluated in a more
detailed manner. Nine metrological variables were taken as inputs to
build the models and the results were compared through several
comparative statistics, including the mean bias error (MBE), the root
mean squared error (RMSE) and the mean absolute error (MAE). The
outcomes of this case study are given below:

� All four models provided sufficiently accurate results for 1-day-ahead
to 6-day-ahead forecasting.

� To check the feasibility of the results, t-static tests were also carried
out. From the t-test errors, it was found that the results from the
various forecasting models were statistically significant at the 95%
confidence level.

� When increasing the day-ahead span, the errors did not increase
rapidly. Hence, these models were applicable for up to 6-day-ahead
forecasting.

� Forecasting errors were higher in the cloudy season because the
variations in solar radiation were due more to clouds, whereas in the
winter and summer seasons, the forecasting errors were low because
the variations in solar radiation were lower due to the clear skies.

� The order of the performance results is random forest>M5>MARS>
CART (best to worst)
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� The results suggested that the random forest model can be used as an
alternative to the CART, MARS, and M5Tree models for modelling
solar radiation.

� Hourly solar radiation forecasting will be helpful for estimations of
the available solar power during every hour of the day. Such fore-
casting results are certainly beneficial for independent system oper-
ators (ISO) in their bidding processes.
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