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Abstract

Behavior during 3–4 Hz spike-wave discharges (SWDs) in absence epilepsy can

vary from obvious behavioral arrest to no detectible deficits. Knowing if behav-

ior is impaired is crucial for clinical care but may be difficult to determine

without specialized behavioral testing, often inaccessible in practice. We aimed

to develop a pure electroencephalography (EEG)-based machine-learning

method to predict SWD-related behavioral impairment. Our classification goals

were 100% predictive value, with no behaviorally impaired SWDs misclassified

as spared; and maximal sensitivity. First, using labeled data with known behav-

ior (130 SWDs in 34 patients), we extracted EEG time, frequency domain, and

common spatial pattern features and applied support vector machines and lin-

ear discriminant analysis to classify SWDs as spared or impaired. We evaluated

32 classification models, optimized with 10-fold cross-validation. We then gen-

eralized these models to unlabeled data (220 SWDs in 41 patients), where

behavior during individual SWDs was not known, but observers reported the

presence of clinical seizures. For labeled data, the best classifier achieved 100%

spared predictive value and 93% sensitivity. The best classifier on the unlabeled

data achieved 100% spared predictive value, but with a lower sensitivity of

35%, corresponding to a conservative classification of 8 patients out of 23 as

free of clinical seizures. Our findings demonstrate the feasibility of machine

learning to predict impaired behavior during SWDs based on EEG features.

With additional validation and optimization in a larger data sample, applica-

tions may include EEG-based prediction of driving safety, treatment adjust-

ment, and insight into mechanisms of impaired consciousness in absence

seizures.

Introduction

When examining electroencephalography (EEG) record-

ings, the most apparent marker of generalized epilepsy

syndromes is large-scale synchronous activity, which in

the case of absence epilepsy comes as spike-wave

discharges (SWDs) among other activity patterns.1 These

discharges are typically characterized by spike–wave
rhythms with frequencies greater than 2.5 Hz and are

often induced clinically via hyperventilation, photic stim-

ulation, or sleep deprivation. It is widely believed that the

SWD complexes arise out of thalamocortical oscillations
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which yield the episodes of impaired consciousness seen

in absence epilepsy.2,3

A crucial dilemma arises for many people with general-

ized epilepsy who reach a stage where they are considered

clinically seizure-free but continue to have epileptiform

discharges including SWDs on EEG.4 EEG discharges with

no obvious clinical deficits pose a great challenge to clini-

cians evaluating a patient’s ability to drive or complete

other activities affecting the quality of life.5 Although they

may be imperceptible, epileptiform discharges can result

in sudden and transient subtle lapses in cognitive func-

tion, which may greatly affect the patient and potentially

bring about a public safety concern.4,6

Recent work evaluating the behavioral impairment of

patients afflicted with absence epilepsy during these dis-

charges has shed some light on various characteristics of

EEG and fMRI recording that might be indicative of a

lapse in consciousness.7,8 To build on the findings of

these recent studies, we present an EEG-based machine-

learning approach that can be used in the future as a clin-

ical tool to effectively predict behavioral impairment.

Materials and Methods

Data acquisition

Overall data set description

EEG and behavioral data collected in four different stud-

ies that focused on absence epilepsy were employed in

this work. In particular, two of these studies were con-

ducted at Yale,7,8 and the other two were performed by

our collaborating institutions: the Danish Epilepsy Cen-

ter9 and the Comprehensive Epilepsy Center at the

Cincinnati Children’s Hospital Medical Center.10 We will

henceforth refer to these data sets as follows: cohort A

(Yale, Guo et al.7), cohort B (Yale, Cohen et al.8), cohort

C (Danish Epilepsy Center, Beniczky et al.9), and cohort

D (Cincinnati Children’s Hospital Medical Center, Glau-

ser et al.10). Table 1 shows the clinical and demographic

information of patients within each data set. Of these

data sets, cohorts A, B, and C have behavioral labeling for

each SWD, while the cohort D data set has labeling for

patients indicating if they are free of clinical seizures or

not, but not for each individual SWD and is subsequently

used to validate our model.

Yale CAE Study 1 (Cohort A)7

Patients were recruited subject to the following criteria:

age 6–19 years, diagnosis of either childhood or juvenile

absence epilepsy according to International League

Against Epilepsy classification, and the presence of 3–
4 Hz bilateral SWDs with normal background on EEG.

Exclusions were for subjects with additional seizure types

(myoclonic, tonic–clonic, partial), structural brain abnor-

malities, or other such neurological disorders.

EEG was recorded using a high-density 256-lead cap

at a sampling rate of 500 Hz while patients underwent

two behavioral measures of attention during absence epi-

sodes: continuous performance (CPT) and repetitive tap-

ping task (RTT). For both behavioral testing paradigms,

subjects watched letters on a screen, occurring at a rate

of 1 Hz. For the CPT assessment, the task was to press

a button whenever an “X” appeared on the screen out

of a random sequence of letters. In RTT, subjects were

merely asked to press the button every time a letter

appeared. With either task, more than one target letter

often occurred during any individual SWD. Therefore,

with either task, an SWD was defined as “spared” if the

correct response rate across all stimuli during the SWD

was greater than 75% and “impaired” if it was less than

25%.7

Table 1. Patient clinical and demographic information.

Labeled data

Study

Number of

Patients Females

Age, years

(Median � SEM) Number of SWD Spared SWD Impaired SWD

Cohort A7 15 7 10.0 � 1.0 54 28 26

Cohort B8 4 4 20.0 � 14.2 55 52 3

Cohort C9 15 10 14.0 � 1.9 21 1 20

Unlabeled data

Study

Number of

patients Females

Age, years

(Median � SEM) Number of SWD

Patients w/o

clinical SWD

Patients w/clinical

SWD

Cohort D10 41 27 7.6 � 0.3 220 23 18

SEM, standard error of the mean; SWD, spike-wave discharge.
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Yale CAE Study 2 (Cohort B)8

Inclusion criteria for this study were as follows: (1)

age ≥ 15 years, (2) diagnosed with generalized epilepsy,

and (3) at least one epileptiform discharge in routine

EEG recording taken within a year of recruitment. Fur-

thermore, patients were excluded for any of the following:

any clinical seizures in the month leading up to participa-

tion (because the study was aimed at asymptomatic

patients) or being diagnosed with any other neurological

defect which might inhibit driving ability.

The task paradigm for the study involved a realistic driv-

ing simulator in conjunction with real-time monitoring of

the patient’s EEG recording which was performed using a

128-electrode cap with a sampling rate of 1000 Hz.

The behavioral test was conducted while the patient

drove around a track in the realistic driving simulator.

When the onset of an SWD was detected, the experi-

menters triggered a red oval (akin to a stop sign) to

appear on the screen, prompting the driver to slow down

and pull over and thus signal their conscious perception

of that stimuli. A “spared” response thus corresponded to

an appropriate reaction to the stimuli and an “impaired”

response was a lack of reaction, as assessed by gas pedal

position, brake pedal force, and the car’s velocity.8

Danish Epilepsy Center Study (Cohort C)9

The study inclusion criteria required only that the partici-

pant demonstrate a history of absence seizures and 3–
4 Hz SWD during scalp EEG recording. The study uti-

lized cup electrodes positioned according to either the

10–20 system or the revised IFCN array11 with the data

collected at sampling rates of either 500 or 256 Hz.

Behavioral testing involved a line of questioning and

assessment of the responsiveness of the patient when it

was noted on a live recording of EEG that an SWD had

begun.9 Testing included any of the following during the

ictal period: test responsiveness by saying the subject’s

name or tapping them, test speech comprehension by ask-

ing the patient to raise their arms, verbal function by ask-

ing them to repeat a few words, responsiveness by asking

orientation questions such as “what is your name?” or

“where are you?” testing for anomia by presenting them

objects from a box, or asking the subject to count or

read/write. Once the SWD was complete, patients were

asked if he/she remembered which objects, words, or tests

were presented.

For the present study, video recordings of behavior

during SWDs were viewed by two reviewers (S.B. and

H.B.) and ratings were decided by consensus. SWDs in

which the subject was entirely responsive to testing were

deemed “spared” and those SWDs in which subjects were

entirely unresponsive to the above testing were thus “im-

paired.” The instance where the subject was responsive to

some parts of testing and not others were classified as

edge cases (e.g., patients who responded after an SWD to

stimuli presented during the SWD) and not used in fur-

ther analysis.

Childhood absence epilepsy Multi-center Study
(Cohort D)10

The study inclusion criteria required the following (1)

childhood absence epilepsy diagnoses as described by the

International League Against Epilepsy, (2) bilateral syn-

chronous, symmetric spike–wave complexes (2.7–5 Hz)

on EEG with a normal background, (3) at least one EEG-

recorded SWD lasting >3 s in a 1-h session. The data

were collected at 31 different sites, all using a sampling

rate of 256 Hz with a standard 10–20 electrode system.

Inclusion in the present study required the presence of

SWDs on EEG recordings performed at the 16/20-week

assessment stage. A patient was classified as spared if no

clinical seizures were observed by family or caregivers or

induced by hyperventilation. Impaired patients had clini-

cal seizures or seizures induced by hyperventilation

reported by family or caregivers.

Data analyses and machine-learning
classification

SWD marking and behavioral analysis

EEGs were reviewed for SWD identification and marking

by consensus of two reviewers (M.S. and H.B.) in Cz ref-

erence, with SWD onset and end times marked within

0.1 s, blinded to behavioral testing. EEG recordings were

then exported and analyzed in MATLAB 2019b (Math-

Works).

Individual SWDs were labeled according to the behav-

ioral studies described above, with a binary rating of

0 = normal response (spared), or 1 = lack of response

(impaired). As noted previously, the marked SWDs from

the cohort D data set were not labeled individually, rather

the patients were labeled as either without (spared) or

with (impaired) clinical seizures.

Pipeline for EEG analysis and machine learning

A detailed description of the analysis pipeline including

preprocessing, feature extraction, feature selection, classifi-

cation, and performance evaluation is provided in the

Data S1 (see Supplementary Materials and Methods in
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Supporting Information online). These steps are summa-

rized in Figure 1.

Overall description of machine-learning approach

Our objective was to develop a machine-learning model

to predict whether an SWD will yield a lapse in con-

sciousness, defined as impaired responsiveness to external

stimuli. Such a predictor could potentially be used for

driving safety, so we required that the predictor should

never classify SWDs (or patients) as behaviorally spared if

in fact they were impaired. Equivalently, we sought a pre-

dictor with a zero false discovery rate (or perfect positive

predictive value) for spared classification. To be conserva-

tive about driving safety, this criterion was considered

more important than the sensitivity of the detector. In

other words, it was essential to only classify SWD or

patients as spared if they were truly spared, even if this

was at the expense of not successfully detecting a substan-

tial number of other truly spared SWD or patients.

To achieve this goal, we tested several classifiers with

different strategies (Fig. 1). This included classification

based on four different types of feature sets (basic fea-

tures, extended features, common spatial pattern [CSP]

features, and all features; see Feature Extraction section in

Data S1), and four different combinations of preictal and

ictal data (preictal, ictal, concatenation, and probabilistic

fusion), fed into either support vector machines (SVM)

or linear discriminant analysis (LDA). This resulted in a

total of 4 9 4 9 2 = 32 classification models (see Fig. 2).

To determine if preictal or ictal periods or both are

needed to achieve the best possible classification perfor-

mance, we evaluated the performance of the model using

the preictal features only, ictal features only, and both

preictal and ictal features. Preictal and ictal features were

combined using two different approaches. In the first

approach, feature vectors of preictal and ictal windows

were concatenated to form one feature vector while in the

second approach preictal and ictal feature vectors were

projected into scalar scores using either LDA or SVM and

those scores were combined using weighted Bayesian

fusion. This probabilistic fusion approach assumes that

the distributions of the preictal and ictal scores are inde-

pendent but may not have equal importance in determin-

ing the severity of the seizure, and therefore, finds the

optimal weighting of preictal and ictal feature score distri-

butions to attain correct behavioral classification (see

Weighted Probabilistic Bayesian Fusion section in Data S1

for full details).

The classification was developed and tested in two

stages. First, the behaviorally labeled data sets from

cohorts A, B, and C were used to find the optimal preic-

tal and ictal window sizes and other classifier parameters

that maximize the classification performance for individ-

ual SWDs. This first classification was done using 10-fold

cross-validation, by dividing the labeled data repeatedly

into training data sets (90% of data) and testing data sets

(10% of data). Second, we validated the model perfor-

mance on the unlabeled data set of patients from cohort

D. This was done by training the model on the behav-

iorally labeled SWDs (cohorts A, B, and C) and then

applying the model to the unlabeled SWDs in cohort D.

Figure 1. Electroencephalography (EEG) processing pipeline. Workflow

diagram of the proposed machine-learning approach. Preprocessed EEG

data corresponding to each seizure was separated into preictal and ictal

periods. Different sets of features were extracted independently from

preictal and ictal periods, and feature selection was used to identify the

significant features. Performance was evaluated based on the preictal

window only, the ictal window only, and both preictal and ictal win-

dows (concatenated and probabilistically fused).
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Data and code availability

The data sets generated for this study are available from

the corresponding author on reasonable request. The codes

generated for the analyses in the study are also available

from the corresponding author on reasonable request.

Results

We first evaluated the performance of the feature sets from

the three labeled data sets (cohorts A, B, and C) in which

behavioral impairment was known for each SWD, to find

the optimal parameters (preictal and ictal window sizes)

that maximize the classification performance. Using the

optimal set of parameters, we next evaluated the perfor-

mance of the proposed machine-learning approach using

10-fold cross-validation on the three labeled data sets.

Finally, we demonstrated how the proposed approach gen-

eralizes on the unlabeled data set from cohort D that was

not included in the parameter optimization phase.

Optimization of preictal and ictal window
size

The main objective of the proposed machine-learning

approach is to conservatively label an SWD as spared

(potentially safe for driving) only if there truly was no

behavioral impairment while at the same time detecting

as many spared SWD as possible. Therefore, we sought

preictal and ictal window sizes yielding the maximum

spared predictive value (equivalent to minimal false dis-

covery rate), while also attempting to maximize sensitiv-

ity. Preictal window sizes ranging from 100 to 5000 msec

and ictal window sizes ranging from 100 to 1000 msec

were tested for the extended feature sets. Window size

optimization was not performed on basic features sepa-

rately because basic features are a subset of the extended

features. Preictal windows of 100–1000 msec and ictal

windows of 100–500 msec were tested for the CSP fea-

tures (see Methods). We found that the optimal window

size for CSP features was 1000 msec preictal and

500 msec ictal, which yielded corresponding spared pre-

dictive value maxima of 100.00% for both intervals. Addi-

tionally, we found that the optimal length for the

extended feature set was 100 msec preictal and 500 msec

ictal, yielding spared predictive values of 80.99% and

83.05%, respectively. However, to be consistent with the

optimal findings for the CSP features, we increased the

preictal window for the extended features as well to

1000 msec, giving a spared predictive value of 73.90%.

Thus, for all subsequent analyses, the basic, extended, and

CSP features (and shared features which included all

above) were ultimately extracted from the same periods

of the EEG recordings for each trial.

Feature selection

For both basic and extended features, average feature val-

ues were calculated (Table 2). To select features for opti-

mal classification, we compared the feature values for

behaviorally spared versus impaired SWDs in the labeled

data using a Wilcoxon rank-sum test. A p value criterion

of 0.001 yielded the best spared predictive value and

sensitivity and was, therefore, used to select features for

classification.

As for CSP features, the optimal number of spatial filters

that maximize the classification performance was found to

be five filters, resulting in 10 CSP features in total (five

preictal and five ictal) to be used for classification.

Performance evaluation of labeled data sets

Using the optimal preictal and ictal window sizes and

other parameters as determined above, we tested the

model in a 10-fold cross-validation scheme using the

three labeled data sets, cohorts A, B, and C consisting of

130 SWD in 34 patients (Fig. 2). We used the two key

outcome measures, spared predictive value and spared

sensitivity, to determine performance for each implemen-

tation of the model. We tested both the LDA and SVM

classifiers, using four different combinations of preictal

and ictal data (preictal only, ictal only, concatenation,

probabilistic fusion) and four different types of feature

sets (basic, extended, CSP, and all features) to yield a

total of 32 classification models (Fig. 2).

The optimal metric of 100.00% spared predictive value

was achieved only for classifiers using CSP or all features

(bottom two rows of Fig. 2). Considering spared sensitiv-

ity, the best overall performance was achieved by classi-

fiers using weighted probabilistic fusion, with feature sets

of CSP or all features (right column, bottom two rows).

Thus, with probabilistic fusion, a spared predictive value

of 100% was achieved together with excellent spared sen-

sitivities for CSP (93% sensitivity for LDA and 91% for

SVM) and for all features (89% for LDA and 90% for

SVM) (Fig. 2). The optimal preictal window weightings

for each of these classifiers were a = 0.73 (CSP-LDA),

0.48 (CSP-SVM), 0.70 (All-LDA), and 0.28 (All-SVM).

The other classifiers which achieved 100% spared pre-

dictive value were the following: only the ictal window,

CSP features yielded spared sensitivities of 92% for LDA

and 90% for SVM; only the ictal window, all features

yielded a spared sensitivity of 90% with SVM; and con-

catenation of the preictal and ictal windows and using

CSP features yielded a sensitivity of 90% with LDA
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(Fig. 2). The detailed performance metrics for all classi-

fiers are presented in Tables S2 and S3.

Common spatial pattern visualization

Given the role of the CSP features in the successful classi-

fications obtained either with CSP features or all features

(Fig. 2), we were interested in examining the properties

of the CSP features that distinguish spared from impaired

SWDs. Figure 3 shows the top five spatial filters from the

CSP projection matrix used to discern the EEG data for

spared and impaired discharges for both the 1000 msec

preictal and 500 msec ictal windows. The filters are pre-

sented as color topographic plots of channel weights,

Figure 2. Ten-fold cross-validation results with the labeled data sets. Performance was evaluated using 10-fold cross-validation on the labeled

impaired and spared data (n = 130 SWDs) from cohorts A, B, and C. Displayed is the spared predictive value and spared sensitivity from the best-

performing LDA and SVM classifiers for the combinations of feature sets and time windows. Each row corresponds to a feature set and columns

represent an EEG time window. Horizontal green bars are indicative of results that achieved the desired performance of 100% spared predictive

value. For additional performance metrics see Tables S1–S3. CSP, common spatial pattern; FP, false positive; FN, false negative; LDA, linear dis-

criminant analysis; SVM, support vector machine; TP, true positive.
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shown from top to bottom in decreasing order in terms

of the percent variance explained between the two classes.

These filters demonstrate a clear anterior–posterior, left–
right, or outer–inner topographic weighting contributing

to the successful classification for both the preictal and

ictal time series. For example, the top spatial filter for

both preictal and ictal EEG show positive weights for the

posterior EEG channels and negative weights for the ante-

rior channels (Fig. 3A and F), implying that the maxi-

mum difference in variance between the impaired and

spared SWDs can be obtained by applying a transform to

the SWDs that positively weight the EEG data samples

from posterior electrodes and negatively weights the EEG

data samples from anterior electrodes.

Additionally, the projections of an example spared and

an example impaired SWD for the 1000 msec preictal

and 500 msec ictal time windows are displayed in Fig-

ure 3. The projected SWD signals were obtained by mul-

tiplying the zero-mean original data by the channel

weights for each filter. Examining the projected time

courses, we see that the spatial filters identified by CSP

maximize the impaired class variance while minimizing

the spared. In both the preictal and ictal projections, we

see close to baseline time courses for the spared class

while the impaired class exhibits high amplitude and

rhythmic activity. To provide a more intuitive view of

these differences, Figure 4 shows the original example

SWDs used to obtain the CSP time course projections in

Figure 3, displayed using a standard 10–20 EEG montage.

Here we can clearly see the SWD morphology, present in

both spared and impaired SWD from the same patient, as

well as characteristics that allow for discerning the two.

These include the duration, amplitude of rhythmic activ-

ity, and topographic distribution of the signals, well cap-

tured by the classification model.

Validation with unlabeled data set

We next applied the optimized model from the labeled

data sets to an unlabeled data set from cohort D where

the behavior for individual SWD was unknown (n = 220

SWD in 41 patients). As described in Methods, classifica-

tion of the unlabeled data was done on the patient level

by considering a patient to be impaired if they had any

SWD determined by the model to be impaired, and a

patient was considered spared only if all their SWD were

determined by the model to be spared. These results were

compared to observations by family or caregivers who

Table 2. EEG features of behaviorally spared versus impaired SWDs.

Feature

Preictal Ictal

Spared Impaired Rank-sum Spared Impaired Rank-sum

(Mean � SEM) (Mean � SEM) p-Value (Mean � SEM) (Mean � SEM) p-Value

Spike power 56.9 � 4.8 47.6 � 6.0 0.458 183 � 18 378 � 77 0.004

Wave power 27.5 � 2.6 90.8 � 15.7 <0.001 661 � 79 2624 � 403 <0.001

SWD duration – – – 947 � 46 4336 � 467 <0.001

Hjorth activity 200 � 15 321 � 42 0.041 924 � 97 4307 � 622 <0.001

Hjorth mobility 0.14 � 0.01 0.08 � 0.00 <0.001 0.09 � 0.00 0.07 � 0.00 <0.001

Hjorth complexity 3.31 � 0.14 4.08 � 0.15 <0.001 3.75 � 0.11 3.80 � 0.16 0.279

Mean Vrms 12.8 � 0.56 19.1 � 1.69 0.051 31.6 � 1.83 57.7 � 4.83 <0.001

Delta power 66.1 � 6.3 254 � 44 <0.001 859 � 102 2911 � 432 <0.001

Theta power 39.7 � 3.8 81.6 � 15 0.040 435 � 46 1720 � 239 <0.001

Alpha power 37.5 � 2.7 42.5 � 5.8 0.713 144 � 14 336 � 60 <0.001

Beta power 18.1 � 1.8 10.8 � 1.6 0.525 74.3 � 7.9 128 � 28 0.009

Low gamma power 4.63 � 0.49 3.55 � 0.51 0.388 16.4 � 1.7 18.2 � 3.4 0.034

High gamma power 12.5 � 1.4 4.29 � 0.66 0.014 16.2 � 1.7 18.3 � 3.1 0.522

Voltage mean �0.64 � 0.43 �0.92 � 0.56 0.608 0.37 � 1.21 3.42 � 2.57 0.119

Voltage variance 200 � 15 321 � 42 0.041 924 � 97 4307 � 622 <0.001

Voltage skewness �0.11 � 0.04 0.03 � 0.06 0.094 �0.02 � 0.04 �0.09 � 0.05 0.351

Voltage kurtosis 3.53 � 0.1 3.00 � 0.08 0.005 2.73 � 0.06 2.47 � 0.07 0.006

Power mean 0.06 � 0.01 0.06 � 0.01 0.561 0.84 � 0.08 0.79 � 0.11 0.166

Power variance 0.05 � 0.01 0.06 � 0.02 0.172 17.6 � 2.9 4.84 � 1.17 0.584

Power skewness 2.52 � 0.08 2.14 � 0.10 0.014 1.95 � 0.06 1.42 � 0.05 <0.001

Power kurtosis 12.1 � 0.60 9.08 � 0.66 0.004 7.91 � 0.35 5.23 � 0.25 <0.001

Multiscale permutation entropy 2.69 � 0.02 2.56 � 0.04 0.002 2.39 � 0.03 2.14 � 0.04 <0.001

Features are calculated for the preictal and ictal windows independently. Results are mean � SEM for all spared and impaired SWD in the labeled

data sets from cohorts A, B, and C. Features with p < 0.001 are shown in boldface.

EEG, electroencephalography; SEM, standard error of the mean; SWD, spike-wave discharge.
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thought the patients were having clinical seizures (18 of

41 patients) or not (23 of 41 patients). Our conservative

criterion for classifier success was once again a spared

predictive value of 100%, but now at the patient level,

meaning that no patient should be classified as spared if

in fact they were reported to have clinical seizures. This

100% spared predictive value criterion was achieved

mainly by classifiers using weighted probabilistic fusion

(Fig. 5, right column). The conservative 100% safety-

oriented criterion, however, came with relatively low sen-

sitivity to detecting spared patients. The most successful

classifier with 100% spared predictive value had a spared

Figure 3. Common spatial pattern (CSP) visualization of features distinguishing spared versus impaired SWD. Top spatial filters were obtained by

applying the CSP algorithm on the 1000 msec preictal windows prior to SWD onset (A–E) and the 500 msec ictal windows following SWD onset

(F–J). Color topo plots on the left of each panel show spatial filters displayed for the preictal and ictal periods, sorted in descending order in

terms of variance, and demonstrate the weightings of each channel in defining each spatial filter. Voltage time courses on the right of each panel

show an example of spared SWD and an example of impaired SWD from a single patient projected onto the corresponding spatial filters.
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sensitivity of 35% (8 of 23 spared patients), achieved by

SVM with probabilistic fusion and all features (Fig. 5,

lower right). In other words, by the conservative criteria

used here, when our most successful classifier was applied

to the unlabeled SWD in the 23 patients who were con-

sidered by family and caregivers to have no clinical sei-

zures, 8 were successfully classified as spared, however, 15

were not classified as “safe” (spared) based on our model.

On the other hand, all 18 patients who were observed by

patients or caregivers to have clinical seizures were classi-

fied by our model as impaired.

Discussion

For people with absence epilepsy and no obvious behav-

ioral seizures, clinicians currently decide on driving privi-

leges and other factors such as medication adjustment

solely based on commonsense EEG characteristics, such as

the presence of many SWDs with longer durations.12

While previous studies have been successful in identifying

EEG and fMRI characteristics that are correlated with

behavioral impairment,7,8,13 none have attempted to

devise a machine learning-based system that can predict

behavioral impairment by learning from labeled seizure

examples as originally proposed by Antwi et al.4 Here we

introduce a promising machine-learning approach that

can be built upon in the future for use as a clinical tool

to accurately assess the risk of behavioral impairment in

those diagnosed with absence epilepsy but without obvi-

ous clinical episodes. Using EEG data, our approach suc-

cessfully predicted spared behavioral responsiveness with

a false discovery rate of zero (positive predictive value of

100%) for four different data sets. Our goal was to mini-

mize the false discovery rate because if such a tool is used

in the future to evaluate driving safety, it is imperative to

eliminate the possibility of incorrectly classifying an

impaired patient as free from clinical seizures.

Considering the 10-fold cross-validation analyses per-

formed on the three labeled data sets with behavioral test-

ing, the most basic feature set (spike power, wave power,

and SWD duration) achieved a maximum spared predic-

tive value of 98% with a spared sensitivity of 65%. Inclu-

sion of additional features in the “extended” feature set

led to a maximum spared predictive value of 93% but

Figure 4. Electroencephalographies of impaired and spared spike-wave discharges (SWD). Examples of SWD with spared and impaired responses

to behavioral testing. Data are displayed on a reduced 16-channel subset of the 10–20 system used for computational analysis via common spatial

pattern methods. Recordings were re-referenced to a common average reference. The scale bar is 500 lV. (A) An example of an SWD, which

was behaviorally classified as impaired and (B) spared. (A) and (B) are the same data as displayed in the projected voltage time course SWD exam-

ples in the right panels of Figure 3 and drawn from the same patient.
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with an increase in sensitivity up to 89%. The use of

CSP-based features alone or in conjunction with the

extended feature set as “all features,” yielded the best per-

formance, particularly when using a weighted probabilis-

tic fusion of preictal and ictal data, providing a positive

predictive value of 100% and sensitivity of up to 93%.

Thus, the machine-learning approach introduced in this

work was highly successful in correctly classifying SWD

for which behavioral responsiveness was known based on

ictal behavioral testing.

In previous studies, the CSP algorithm has been used

predominantly for the purposes of brain–computer inter-

facing and motor control studies.14–17 In this work, we

have extended the applications of CSP to include EEG

analysis of absence epilepsy. Examining the CSP analysis

outcomes, the time course projections retain some

Figure 5. Validation of classifiers on unlabeled data set. Classifiers were optimized with the labeled data (Fig. 2) and applied to the unlabeled

data set of cohort D (n = 41 patients, 220 SWDs). Displayed are the spared predictive value and spared sensitivity from the LDA and SVM

classifiers for all the combinations of feature sets and time windows. Each row corresponds to a feature set and each column represents an EEG

time window. Horizontal green bars indicate the combinations that achieved the desired performance of 100% spared predictive value. CSP,

common spatial pattern; FP, false positive; FN, false negative; LDA, linear discriminant analysis; SVM, support vector machine; TP, true positive.
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rhythmic activity and spike-wave-like dynamics, especially

for the impaired class, consistent with prior work showing

larger amplitude for SWD with impaired behavior.7,8,13 In

addition, the top spatial filters retain spatial information

that aligns well with the literature on absence epilepsy. In

particular, for both the preictal and ictal time periods,

CSP identifies a strong localizing component to discern

the two classes, which aligns well with literature arguing

against the uniform generalized spatial distribution of

SWDs.18,19 It is also of interest that the identified spatial

filters for both the preictal and ictal windows have signifi-

cant overlap in terms of channel weightings which could

be indicative of similar spatial activity before, during, and

after a discharge and could thus be predictive of the onset

itself.20

In validating our model on the unlabeled data from

cohort D, we see once again that the inclusion of CSP

features in the all features-based classification using prob-

abilistic fusion yielded to the best classifier. This classifier

was hesitant to label a patient as entirely spared when

experiencing discharges but was absolutely confident

when electing to make such a decision (zero false discov-

ery rate/100% spared predictive value). Such a classifica-

tion approach is optimal as a clinical tool as it would

ease restrictions only on patients who are predicted to

retain consciousness awareness and responsiveness during

a discharge with high confidence.

Although we have achieved an optimal value of 100%

spared predictive value corresponding to a false discovery

rate of zero in validating our model on unlabeled data,

the sensitivity of identifying patients with spared behavior

in the unlabeled data was quite low (35%). Of note, the

patients felt to be spared of clinical absence seizures based

on observations by family and caregivers did have SWD,

but these were not formally assessed for more subtle

behavioral impairment. Such incomplete characterization

of the behavioral effects of SWDs might explain the low

sensitivity of the model in identifying patients with spared

behavior. Moreover, it is possible that some of the

patients considered to be free of absence seizures by fam-

ily and caregivers, but classified as impaired by our

model, might in fact have had behavioral impairments

that would make driving hazardous during SWD. To

investigate this possibility further, additional investigation

will be needed in a larger cohort, and with behavioral

testing during SWD in all participants. The decreased sen-

sitivity of our classifier in detecting spared patients might

also be due to the relatively small sample size of the

labeled data sets used for training the proposed model. In

particular, the selected features for classification as well as

the spared and impaired patterns learned by the classifiers

for this data set may not generalize very well to the larger

population due to overfitting the small training data set

and thus can result in a degradation in some of the met-

rics determining model performance when applied to a

separate patient group. In addition, the fact that the data

sets have clinically notable differences because the patients

in these data sets have different epilepsy syndromes could

be a factor in the degraded model performance due to

the existence of various SWD patterns with a small num-

ber of training examples per each pattern. In case a large

data set is used to train the model, this heterogeneity is

expected to yield a classifier with better generalizability as

it will be trained on various patterns that are represented

by a sufficient number of training examples. Generally, a

large sample size that is more representative of SWD glo-

bal characteristics is expected to allow improved spared

sensitivity and overall model performance.

Additionally, a large sample size would allow the use of

more robust classification approaches that are expected to

have better generalizability such as deep-learning

approaches that require large training data sets to per-

form efficiently. Previously, convolutional neural networks

have been used for similar EEG analyses including pre-

dicting seizure onset.20–22 Instead of using hand-crafted

features, deep-learning approaches automatically learn

features from the data to distinguish the classes of inter-

est. This will allow the discovery of relevant features that

were not identified before by human observers. A draw-

back of these approaches, however, is the loss of explain-

ability in modeling. In other words, deep-learning

features that are extracted automatically may be difficult

to interpret in relation to the biological processes driving

seizure activity. Common sense features, such as SWD

duration, magnitude, and frequency of occurrence, have

been examined previously in relation to behavioral

impairment,7,8,12,13 and more rigorous identification of

these and possibly additional predictive features would be

highly clinically useful.

Another future direction that has the potential to

improve classification performance across patients is to

use transfer learning for identifying the optimal training

data to be used with each subject. This would involve

devising a metric for measuring similarity between the

data of each subject in the training set and the data in

the test set and train on those patients who have the

highest similarity with the patient being tested. The

methodology would overcome obstacles pertaining to data

variability across subjects and sessions within a subject.23

Although fMRI data are in a sense more difficult and

time-consuming to obtain than a scalp EEG, and thus less

efficient as a clinical tool, they could provide greater

insight into the underlying mechanisms of impaired con-

sciousness.7,24–27 In conjunction with EEG data, a more
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precise machine-learning model might be developed,

although cost and general availability of fMRI may be

prohibitive for many people with epilepsy.

Future work might also include the generalization of our

approach to more broad diagnoses outside of childhood

and juvenile absence epilepsy. The present study focuses

only on the SWD and its characteristics, however, many

other forms of epilepsy exist with a plethora of EEG mark-

ers such as poly-spike wave activity, rhythmic slowing

or higher frequency rhythmic activity. Epilepsy is charac-

terized by large-scale synchronous behavior in the brain

and as a result, more advanced machine-learning strategies

should be implemented on a comprehensive data set to

pinpoint more generalized characteristics of lapses in con-

sciousness. With additional future work, hopefully, such

approaches will increase understanding of epilepsy patho-

physiology and lead to better practical guidance that will

improve the quality of life for people with epilepsy.
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