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Distinct pseudokinase domain conformations
underlie divergent activation mechanisms
among vertebrate MLKL orthologues
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The MLKL pseudokinase is the terminal effector in the necroptosis cell death pathway.

Phosphorylation by its upstream regulator, RIPK3, triggers MLKL’s conversion from a dor-

mant cytoplasmic protein into oligomers that translocate to, and permeabilize, the plasma

membrane to kill cells. The precise mechanisms underlying these processes are incompletely

understood, and were proposed to differ between mouse and human cells. Here, we examine

the divergence of activation mechanisms among nine vertebrate MLKL orthologues, revealing

remarkable specificity of mouse and human RIPK3 for MLKL orthologues. Pig MLKL can

restore necroptotic signaling in human cells; while horse and pig, but not rat, MLKL can

reconstitute the mouse pathway. This selectivity can be rationalized from the distinct con-

formations observed in the crystal structures of horse and rat MLKL pseudokinase domains.

These studies identify important differences in necroptotic signaling between species, and

suggest that, more broadly, divergent regulatory mechanisms may exist among orthologous

pseudoenzymes.
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The necroptosis cell death pathway is thought to have ori-
ginated as an altruistic innate immunity mechanism
involved in host defense against pathogens1–5. The recent

implication of pathway dysregulation in the pathology of many
human diseases, including inflammatory diseases6–8, ischaemic
reperfusion injuries9,10 and inflammatory bowel disease11, has led
to increased interest in targeting necroptosis therapeutically. The
necroptosis pathway can be triggered by a number of stimuli,
including death ligands, such as tumour necrosis factor (TNF),
and pathogen-derived stimuli, such as lipopolysaccharides12. In
scenarios where the activities of the E3 ligase family, the inhibi-
tors of apoptosis proteins (IAPs), and the apoptotic proteolytic
enzyme, Caspase-8, have been compromised, the protein kinases,
RIPK1 and RIPK3, are incorporated into a large molecular weight
complex termed the “necrosome”13–15. Within the necrosome,
RIPK3 is believed to be activated by autophosphorylation16,17

before promoting the executioner function of the terminal
effector in the pathway, the Mixed Lineage Kinase domain-Like
(MLKL) pseudokinase18–20.

MLKL contains an N-terminal four-helix bundle (4HB)
domain, which enables MLKL’s membrane translocation21 and is
responsible for the plasma membrane permeabilization that
characterizes necroptotic cell death18,22–25. The 4HB domain
executioner function is regulated by the C-terminal pseudokinase
domain25, which serves as a receiver for upstream signals, such as
activation loop phosphorylation by RIPK318,19,26,27. Pseudoki-
nase domains are catalytically defective owing to the absence of
key catalytic motifs known to mediate phosphoryl transfer in
conventional protein kinases28–32. Instead these domains serve
functions as signal integrators and/or protein interaction
modules31,32. RIPK3-mediated MLKL phosphorylation has been
proposed to provoke a conformational change in the pseudoki-
nase domain that is transmitted to the 4HB domain via a two-
helix linker termed the brace helices18,25,33. By this mechanism,
MLKL undergoes a conversion from the dormant basal, cyto-
plasmic monomer into higher-order entities that translocate to,
and mediate, plasma membrane compromise25,33–35.

Here, we sought to shed light on the mechanisms governing
necroptotic signaling across the vertebrate phylogenetic tree.
Recently revealed differences between necroptosis signaling in
mouse and human cells12,15,33,34,36 indicate that the precise
mechanism of MLKL activation by RIPK3, and how they might
vary across vertebrates, remains incompletely understood. Mouse
MLKL activation relies on transient engagement of RIPK3 to
facilitate phosphorylation of the pseudokinase domain25–27, while
it appears that stable recruitment of human MLKL by necrosomal
RIPK3 is an additional crucial step in human MLKL
activation5,34. We sought to establish the molecular determinants
that govern RIPK3 recognition of MLKL by examining which

MLKL orthologues can communicate with the necroptosis
machinery in mouse and human cell lines. Although the capacity
of pseudokinase orthologues to complement signaling pathways
in other species has not been widely examined, here our studies
reveal remarkable selectivity among orthologues, with pig MLKL
able to be activated by human RIPK3 and horse MLKL by mouse
RIPK3. Unexpectedly, despite its high sequence identity to mouse
MLKL, rat MLKL was not able to reconstitute necroptotic sig-
naling in mouse cells. The molecular basis for RIPK3 selectivity
could be rationalized from knowledge obtained from the crystal
structures of the rat and horse MLKL pseudokinase domains. The
inability of rat MLKL to complement the mouse necroptosis
pathway could be attributed to the respective active kinase-like
and inactive kinase-like conformations of the rat and mouse
MLKL pseudokinase domains. The capacity of horse MLKL to
communicate with mouse RIPK3 is enabled by an additional helix
N-terminal to the αC helix in horse MLKL, which spatially
occupies the position of the mouse activation loop helix in the
mouse MLKL:mouse RIPK3 structure. Additionally, the activa-
tion loop of horse MLKL adopts an inactive-like conformation
that nestles within the pseudoactive site. These findings raise the
possibility that activation loop phosphorylation may promote
activation loop mobility, and destabilise inactive MLKL con-
formations, to facilitate molecular switch interconversion and
MLKL dissociation from RIPK3.

Results
Mouse and human RIPK3 selectively activate MLKL ortholo-
gues. To examine the compatibility of orthologous MLKL pro-
teins with the necroptosis machinery in mouse and human cells,
we introduced genes encoding human (Homo sapiens), mouse
(Mus musculus), rat (Rattus norvegicus), horse (Equus caballus),
pig (Sus scrofa), chicken (Gallus gallus), stickleback (Gasterosteus
aculeatus), frog (Xenopus tropicalis) and tuatara (Sphenodon
punctatus) MLKL into Mlkl−/− mouse dermal fibroblasts (MDFs)
and MLKL−/− human U937 cells. These orthologues were chosen
to maximize our sampling of phylogenetic diversity among ver-
tebrate MLKL sequences in nature, ranging in sequence identity
from 35%–85% to mouse and 36%–65% to human MLKL (Sup-
plementary Fig. 1, Table 1). Orthologue MLKL constructs were
stably introduced into these cell lines via a puromycin-selectable
lentiviral vector18, from which MLKL expression could be
induced using doxycycline (dox). Cells were stimulated with TNF,
Smac mimetic and the Caspase inhibitor, IDN-6556/emricasan
(TSI), to initiate necroptosis, as described before34,36, in the
presence or absence of dox-induced orthologous MLKL gene
expression. Cell death was measured by flow cytometry using
propidium iodide (PI)-uptake (exemplified in Supplementary

Table 1 Pairwise amino acid sequence identity and similarity of MLKL orthologues over full-length sequence and component
domains.

Species Mouse identity (similarity) % Human identity (similarity) %

Full length 4HB+ brace Pseudokinase Full length 4HB+ brace Pseudokinase

Mouse – – – 61.8 (84.0) 51.7 (82.6) 69.3 (86.6)
Rat 85.8 (96.3) 82.7 (97.1) 87.9 (96.2) 62.2 (84.2) 53.9 (80.3) 68.1 (87.9)
Pig 60.2 (83.2) 52.4 (77.5) 66.1 (87.3) 63.0 (88.6) 57.8 (87.2) 68.3 (91.8)
Horse 63.0 (83.3) 56.1 (78.1) 67.6 (87.1) 65.3 (88.3) 57.9 (87.4) 70.2 (89.0)
Chicken 39.4 (66.6) 31.7 (66.5) 50.8 (74.8) 40.2 (70.4) 32.4 (69.0) 50.5 (76.0)
Tuatara 39.8 (70.4) 29.1 (69.8) 49.1 (76.2) 41.0 (73.6) 30.5 (70.2) 52.9 (79.7)
Frog 36.0 (71.1) 23.5 (68.7) 45.7 (74.3) 35.9 (65.8) 23.8 (64.5) 45.2 (70.3)
Stickleback 35.1 (65.9) 28.1 (63.7) 41.8 (71.1) 35.8 (67.8) 24.2 (62.9) 44.4 (71.2)

Alignments performed with lalign (https://www.ebi.ac.uk/Tools/psa/lalign/)70.
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Fig. 2). Owing to sequence divergence, existing MLKL antibodies
did not recognize all orthologue sequences. To enable verification
of expression by western blot, chicken, stickleback, frog and
tuatara MLKL were C-terminally FLAG-tagged (Supplementary
Fig. 3a, b), because N-terminal tags are known to compromise the
killing function of mouse and human MLKL23,25. Mouse MLKL
bearing a C-terminal FLAG tag reconstituted necroptotic sig-
naling in Mlkl−/− MDF cells (Fig. 1a), supporting the notion that
C-terminal tagging does not compromise MLKL function.
Among orthologues tested, only mouse and horse, and to a
lesser extent pig, MLKL orthologues could reconstitute signaling
in Mlkl−/− mouse fibroblasts, with death only observed when
orthologue expression was induced and the necroptosis stimulus,
TSI, applied. Notably, horse MLKL killed cells less potently than
the mouse counterpart, and pig MLKL was only able to induce
low levels of cell death (12%) upon treatment with the necroptosis
stimulus, TSI. Remarkably, given the high sequence identity to

mouse MLKL (86% identical; 96% similar) and the high similarity
of rat and mouse RIPK3 sequences (Tables 1 and 2), rat MLKL
did not kill mouse cells (Fig. 1a). Expression of MLKL ortholo-
gues in human MLKL−/− U937 cells revealed only human and
pig MLKL could reconstitute necroptotic signaling in human cells
(Fig. 1b). This was also surprising, because human MLKL shows
greater sequence similarity to the horse protein than to pig MLKL
(Table 1). These data also confirm that mouse MLKL could not
substitute for human MLKL in the human necroptosis pathway,
as previously inferred from immunoprecipitation studies in which
human MLKL did not interact with mouse RIPK3 (ref. 37). We
note that while we could verify expression of the MLKL ortho-
logues by immunoblot (Supplementary Fig. 2a–d), it is not pos-
sible to estimate the relative abundance of each protein. Sequence
divergence precludes the use of the same antibody to detect
expression of each orthologue owing to epitope differences, and
even where antibodies cross-react, such as for the anti-MLKL
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Fig. 1 Few MLKL orthologues reconstitute necroptotic signaling in mouse and human cells. Genes encoding human, mouse, rat, horse, pig, chicken,
tuatara, frog and stickleback MLKL were stably introduced into Mlkl−/− mouse dermal fibroblast (MDF) (a) and MLKL−/− human U937 (b) cells and
expressed upon doxycycline treatment (induced). Cells were either untreated (UT) or treated with a necroptotic stimulus (TNF, Smc mimetic, IDN-6556;
TSI) to examine the capacity of each orthologue to reconstitute necroptotic signaling. Cell death was measured by propidium iodide (PI) uptake by flow
cytometry. Data shown are mean ± SEM of independent experiments on one U937 cell line (n= 3 for mouse, rat, horse and chicken MLKL; n= 4 for human
and frog MLKL; n= 5 for pig MLKL) or two biological replicate MDF lines (n= 6, except for n= 8 for mMLKL-FLAG). * represents statistical significance of
p < 0.05 using a paired, two-tailed t-test: a mouse-FLAG p= 0.000015, horse p= 0.0017, pig p= 0.0290; and b human p= 0.0104, pig p= 0.0003.
Source data are provided in a Source Data file. An example of the flow cytometry gating strategy used throughout this study is shown in Supplementary
Fig. 2. Expression of introduced genes was verified by western blot (Supplementary Fig. 3).
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3H1 clone, the epitopes differ between the mouse, rat, human and
horse sequences. Additionally, it remains to be established if there
is a threshold level of MLKL expression required for the execution
of necroptotic cell death, and whether yet-to-be-identified co-
effectors may differ between species and influence the kinetics of
cell death upon reconstitution with orthologues. Together, our
studies underscore the remarkable selectivity of RIPK3 ortholo-
gues for their cognate MLKL effectors, consistent with the idea
that RIPK3–MLKL cassettes have co-evolved in response to
selective pressures, such as those exerted by pathogens5.

Rat and horse MLKL exhibit conformational heterogeneity. It
was of interest to understand why horse, but not rat, MLKL could
reconstitute necroptotic signaling in Mlkl−/− MDFs, despite the
high sequence identity of mouse and rat MLKL sequences. To
obtain molecular insights into this selectivity, we crystallized the
pseudokinase domains of rat (residues 179–464) and horse MLKL
(residues 188–475), following their expression and purification
from insect cells, and solved their crystal structures at 2.2 and 2.7
Å resolution, respectively (Fig. 2, Supplementary Table 1). Both
structures exhibit typical features of the pseudokinase/kinase
domain fold: a smaller, N-terminal lobe comprising principally β-
strands and a larger C-lobe composed predominantly of α-helices.
The disposition of the αC helix in each structure was typical of
that of a conventional (catalytically active) protein kinase. The
conserved Glu of the αC helix in either structure forms a salt
bridge with the β3-strand Lys of the VAIK motif, which con-
tributes to assembly of an intact regulatory (R)-spine38.

We next compared the rat and horse MLKL pseudokinase
domain structures to those of mouse and human MLKL
previously reported18,39 (Fig. 2a–d). The mouse MLKL pseudo-
kinase domain contains a distinguishing activation loop helix that
abuts the αC helix (Fig. 2b) and displaces it from participating in
interactions present within the active sites of conventional protein
kinases18. In particular, in mouse MLKL, Q343 in the activation
loop helix forms a hydrogen bond to K219 of the β3-strand VAIK
motif, precluding engagement of the VAIK motif Lys (K219) in a
conventional ion pair with the αC helix Glu (E239). This
contrasts the human MLKL pseudokinase domain, which
contains the conventional VAIK-Lys:αC helix Glu interaction
(K230:E250) and exhibits an intact R-spine to resemble an active
protein kinase structure39 (Fig. 2a). Based upon overall structural
features, such as the αC helix position and the VAIK-Lys:αC helix
Glu ion pair, the rat and horse MLKL pseudokinase domain
structures reported herein more closely resemble the human
MLKL pseudokinase, with respective RMSD of 0.962 and 0.712 Å
across Cα atoms. Considering the high sequence similarity
between rat and mouse MLKL, this is surprising, and the
structural divergence of rat and mouse MLKL pseudokinase

domains may explain why rat MLKL cannot reconstitute the
necroptosis signaling pathway in mouse cells lacking Mlkl.

While grossly topologically similar to rat and human MLKL
pseudokinase domain, the horse MLKL pseudokinase domain
structure revealed unexpected features (Fig. 2d). In the N-lobe, we
observed an unconventional helix in the β3-strand-αC helix loop
that is positioned adjacent to the αC helix between S233 and I238.
Additionally, although typically unstructured in protein kinase
and pseudokinase structures, a substantial portion of the
activation loop (residues L351-I358) was well resolved in the
horse MLKL pseudokinase domain structure (Supplementary
Fig. 4). This loop folded back from a conventional position
adjacent to the αC helix towards the hinge and was buried within
the “pseudoactive”/ATP-binding pocket. Crucially, two key
residues, T356 and S357, are buried in this cleft (Fig. 2d, cyan),
and these residues correspond to the residues phosphorylated by
RIPK3 in human MLKL (T357 and S358), whose phosphorylation
are widely considered hallmarks of MLKL activation.

Horse MLKL β3-αC loop helix facilitates mouse RIPK3 bind-
ing. To deduce how horse MLKL could communicate with mouse
RIPK3 to induce its activation in Mlkl−/− mouse fibroblasts, we
superimposed the horse MLKL pseudokinase domain structure
upon the mouse MLKL pseudokinase domain within the previously
described mouse MLKL:RIPK3 kinase domain crystal structure40

(Fig. 3a). We observed that the β3-αC loop helix, only observed in
horse MLKL to date, spatially occupied the position of the mouse
MLKL αC helix, leading us to hypothesize a role for this helix in
mediating RIPK3 recognition. In particular, S233 of horse MLKL is
structurally proximal to S228 of mouse MLKL, which forms a
hydrogen bond with S89 of mouse RIPK3 in the MLKL:RIPK3 co-
crystal structure40 (Fig. 3b). We also postulated that R242 of horse
MLKL may recapitulate the π–π stacking interaction of F27 (mouse
RIPK3) and F234 (mouse MLKL) with a cation–π stacking inter-
action, and therefore also contribute to the N-lobe RIPK3 binding
interaction. The intervening residues in horse MLKL, R236 and
S237, were also oriented to face the RIPK3 N-lobe in the structural
overlay (Fig. 3b). Therefore, we generated Ala substitution mutants
of the predicted RIPK3 interactors, S233, R236, S237 and R242
(Fig. 3b), within full-length horse MLKL and examined whether
their expression in mouse Mlkl−/− MDF cells could induce cell
death in the presence or absence of necroptotic stimuli (Supple-
mentary Fig. 3, Fig. 3d). Each mutant could reconstitute the
necroptosis pathway in Mlkl−/− mouse fibroblasts except S233A
horse MLKL, while R242A horse MLKL exhibited constitutive
activity in the absence of a necroptotic stimulus. These data support
a role for the novel β3-αC loop helix structurally positioning specific
residues of the horse MLKL N-lobe to facilitate the mouse RIPK3
interaction. We speculate that this conformation, which is a

Table 2 Pairwise amino acid sequence identity and similarity of full length or kinase domains of RIPK3 orthologues.

Species Mouse identity (similarity) % Human identity (similarity) %

Full length Kinase domain Full length Kinase domain

Mouse – – 60.0 (76.1) 70.0 (85.7)
Rat 76.4 (88.0) 82.1 (91.6) 60.4 (76.7) 70.8 (84.3)
Pig 58.6 (77.1) 69.3 (85.3) 62.7 (79.6) 71.2 (85.8)
Horse 60.9 (78.0) 71.7 (87.3) 64.5 (80.1) 74.2 (87.4)
Chicken – – – –
Tuatara 40.2 (67.5) 42.0 (67.9) 41.2 (65.7) 43.8 (68.0)
Frog 33.8 (59.5) 38.4 (64.9) 33.8 (62.1) 38.2 (64.8)
Stickleback 23.2 (53.6) n/a 23.2 (53.6) n/a

Alignments performed with lalign (https://www.ebi.ac.uk/Tools/psa/lalign/)70.
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distinguishing feature of horse MLKL, precludes interaction with
human RIPK3 and contributes to species specificity.

Within the C-lobe of MLKL, we recently implicated the
hydrophobic residue, F384, of human MLKL in the engagement
of human RIPK3 for necroptotic signaling in human U937 cells5.
Here, we observed that Y385 of horse MLKL and F373 of mouse
MLKL are positioned within the αEF-αF loop in analogous positions
to facilitate mouse RIPK3 engagement (Fig. 3c). To test this idea, we
introduced Ala substitutions of Y385 in full-length horse MLKL and
F373 in full-length mouse MLKL and examined their capacity to
reconstitute the necroptosis pathway when expressed in Mlkl−/−

MDF cells (Fig. 3d, e). These substitutions completely abrogated
necroptotic signaling, supporting a conserved function for this
aromatic residue in contributing to the RIPK3 binding interface.
Collectively, our mutational analysis of horse MLKL indicates that
the acquisition of an atypical N-lobe helix that mimics the unusual
mouse MLKL αC helix position enables selective activation of horse
MLKL by mouse RIPK3. In addition, mutation of horse MLKL Y385
and mouse MLKL F373 supports the previously proposed idea5 that
this aromatic residue, conserved in many MLKL orthologues, but
not stickleback and frog MLKL (Supplementary Fig. 1), is essential
for the C-lobe RIPK3 interaction.

Function of MLKL phosphorylation differs amongst ortholo-
gues. RIPK3-mediated phosphorylation of the MLKL pseudoki-
nase domain activation loop is a recognized hallmark of

necroptosis pathway activation18,19,27,41. However, the precise
function it serves in MLKL activation remains unclear. In the case
of mouse MLKL, activation loop phosphorylation on S345 is
thought to be sufficient to convert MLKL into a killer protein18,26.
By contrast, phosphomimetic or phospho-ablating mutations of
the activation loop residues, T357 and S358, prevented human
MLKL’s participation in necroptosis signaling, presumably by
prohibiting RIPK3-mediated activation34. Here, we sought to test
whether rat and horse MLKL behave like mouse MLKL, where
phosphomimic mutants can trigger constitutive cell death, or like
human MLKL, where mutation of phosphosites blocks killing.
We introduced the S345D mutation into rat MLKL to mimic
substitution in its mouse MLKL counterpart (Supplementary
Fig. 3e). When inducibly expressed in Mlkl−/− MDF orMLKL−/−

U937 cells, cell death was significantly elevated ~2-fold above
background levels of death (Fig. 4a). These data support the idea
that a phosphomimetic substitution in the rat MLKL pseudoki-
nase domain can trigger interconversion to a pro-necroptotic
state, albeit less effectively than the counterpart mutation within
mouse MLKL. In horse MLKL, we introduced Ala or Glu sub-
stitutions of T356 and S357, the horse counterparts of the
RIPK3 substrates in human MLKL, T357 and S35819, and found
that these mutations completely abrogated the capacity of these
constructs to participate in necroptotic signaling in mouse cells
(Fig. 4a). The lack of activity by the Ala substitution mutant
suggests that the activity of horse MLKL in mouse cells is reliant
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on RIPK3-mediated phosphorylation of those residues. The
phosphomimetic data suggest that, unexpectedly, the horse
MLKL T356E-S357E mutant behaves more similarly to the
human MLKL phosphomimetic mutant, which is inactive, than
the constitutively active mouse counterpart.

In our horse MLKL pseudokinase domain structure, we
observed nestling of the activation loop within the pseudoac-
tive/ATP-binding site (Fig. 4b–d). To our knowledge, such an
activation loop orientation in the ATP-binding cleft has not been
reported in earlier pseudokinase or kinase domain structures.
More broadly, such a conformation raises the prospect that
MLKL might sequester its activation loop within the ATP-
binding site, and phosphorylation by RIPK3 might trigger the
conformational change that underlies transition of MLKL from
dormant monomer to a pro-necroptotic oligomer. Accordingly,
we mutated residues in the activation loop and proximal residues
in the “pseudoactive” site of horse MLKL to explore their role in
necroptotic signaling. Crucially, unlike mouse MLKL18, mutation
of the activation loop residue equivalent to Q343 in mouse
MLKL, horse MLKL Q355, which mediates H-bonding between

the activation loop and the hinge region in the horse MLKL
structure, did not impact necroptotic signaling (Fig. 4e). The
rotamer of T356 could not be assigned with certainty in our
structure, and appeared to form a hydrogen bond with either the
backbone carbonyl group of L207 or the hydroxyl group of the
T208 side chain in different chains of the asymmetric unit.
Mutation of T208 to Ala did not perturb the function of horse
MLKL in mouse cells, which may indicate that T356 hydrogen
bonds with the backbone of L207, or that the N-lobe:Q355 and
T356 activation loop hydrogen bonds that stabilize the activation
loop in this conformation are not essential for horse MLKL
function (Fig. 4e). We further explored the molecular basis for
these observations by subjecting the pseudokinase domain of
horse MLKL to molecular dynamics simulations.

Unbiased simulations of the phosphorylated and depho-
sphorylated horse MLKL were performed starting from the
crystallized conformation in which the activation loop is buried in
the pseudoactive site, with the unresolved portion of the
activation loop (residues 358–366) modelled using RosettaRemo-
del. The buried conformation can be characterized by hydrogen
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bonds between the C284 peptide backbone and the activation
loop Q355 carboxamide (Fig. 4c, g, left). While this interaction
remains stable in dephosphorylated MLKL, it is unstable in the
pT356/pS357 MLKL simulations, as indicated by the high root
mean square fluctuations of the activation loop residues in the
phosphorylated form in comparison to the dephosphorylated
form (Fig. 4f). Furthermore, analysis of simulation snapshots
depicts the phosphorylated activation loop moving out of the
pseudoactive site to an extended conformation in which the
Q355–C284 interaction is broken (Fig. 4g). These data suggest
that the addition of phosphate groups destabilizes the buried

activation loop conformation and support the concept that,
among some MLKL orthologues, activation loop phosphorylation
may induce increased mobility to promote RIPK3 dissociation
following its phosphorylation of MLKL. Further exploration of
this idea in other orthologues, such as human MLKL, using
molecular dynamics simulations is difficult with currently
available structures, because the activation loop residues subject
to phosphorylation are unresolved. Despite the experimental
challenges, it remains of immense interest whether
phosphorylation-induced activation loop mobility is a generalized
feature of MLKL activation by RIPK3.
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Discussion
Pseudokinases, and pseudoenzymes more generally, commonly
serve functions as regulators of their catalytically active enzyme
partners30–32,42. Cognate pseudoenzymes are thought to have
arisen from gene duplications of active enzymes, where the
duplicate is relieved of selective pressures to enable evolution of
new, non-catalytic functions, often within the same pathway43. It
is typical of pseudokinases, like the TYK2 JH2 domain, KSR2,
STRADα and HER3/ERBB3 to bind and regulate the activities of
their cognate active kinases: the TYK2 JH1 domain, MEK1, LKB1
and EGFR, respectively44–47. However, the case of MLKL and its
active partner kinase, RIPK3, is unusual among known pseu-
doenzyme:enzyme pairs. Rather than the pseudokinase MLKL
regulating the activity of RIPK3, it is RIPK3 that controls MLKL
activation via engagement and phosphorylation of the MLKL
pseudokinase domain18,19,26,27,34. MLKL is also an unusual
pseudokinase owing to its rapid evolution48,49. Sequence diver-
gence among orthologues is thought to have arisen from selective
pressures, such as those applied by pathogens to evade necrop-
totic death as a host defense measure1,4,5,50,51. Here, we have
provided a dramatic illustration of how the pairwise interaction
between MLKL’s pseudokinase domain and the RIPK3 protein
kinase domain has co-evolved between species. We examined the
capacity of human and mouse RIPK3 to activate human, mouse,
rat, horse, pig, frog, tuatara, chicken and stickleback MLKL
orthologues, and the underlying structural basis for the observed
selectivity. Until now, the molecular basis for selectivity among
different species was poorly understood, with few determinants of
species specificity deduced. In previous studies, human MLKL
was unable to reconstitute necroptotic signaling in Mlkl−/−

mouse cells36, but this could be overcome by swapping the
pseudokinase domain of human MLKL for the mouse counter-
part33. Within RIPK3, the αG helix in the C-lobe, which includes
the phosphorylated mouse T231/S232 and human S227 residues,
is known to be crucial for recognition of their cognate MLKL
orthologues5,37. However, with only the mouse RIPK3 kinase
domain structure reported to date40, interpretation of the selec-
tivity of RIPK3 for different MLKL orthologues remains chal-
lenging considering similar extents of sequence diversity among
orthologues as observed for MLKL (Table 2).

Our data revealed a remarkable interspecies divergence of
RIPK3:MLKL cognate pairs, such that the mouse and human
RIPK3 substrate range for activation of MLKL orthologues is
highly restricted. Our data indicate that mouse, horse and, to a
lesser extent, pig MLKL could be activated by mouse RIPK3,
while only human and pig MLKL could be activated by human

RIPK3. Activity in both cell lines was unique to pig MLKL, which
showed a strong preference for human RIPK3 activation. While
our capacity to interpret the selectivity of human RIPK3 for
human and pig MLKL is limited by the unavailability of the
human RIPK3 kinase domain and pig MLKL structures, we could
rationalize the selectivity of mouse RIPK3 for mouse and horse
MLKL, in preference to rat MLKL, based on their structures. It
remains to be addressed whether the pig MLKL β3-αC loop
adopts a helical structure like that observed in our horse MLKL
pseudokinase domain structure. The two MLKL orthologues
share similar sequences within this loop—S233QARS in horse,
S237QASD in pig—raising the prospect that both might form
helices. It is notable that this helix is very dynamic in horse MLKL
molecular dynamics simulations. Consequently, establishing the
presence of a comparable helix in the pig MLKL, and whether it
might contribute to interaction with human RIPK3 in U937 cells,
awaits an experimental structure. Collectively, our mutational
data support three crucial interfaces between the MLKL pseu-
dokinase domain and the RIPK3 kinase domain that mediate a
face-to-face interaction: one each between the N-lobes, the C-
lobes, and the activation loops. In the MLKL pseudokinase
domain C-lobe, we identified a highly conserved Phe/Tyr residue
in the αEF-αF loop, based on the projection of F373 of mouse
MLKL into a pocket in the C-lobe of mouse RIPK3 kinase
domain within the complex structure. Previously, we observed the
human MLKL F386 and poxviral MLKL F202 counterparts of
mouse MLKL F373 were crucial to human RIPK3 interaction5.
Here, we observed that F373 of mouse MLKL and Y385 of horse
MLKL were similarly crucial to mouse RIPK3 engagement. Our
findings support a conserved role for this αEF-αF loop aromatic
residue in RIPK3 interaction, and thus do not suggest a function
for this residue in dictating the species specificity of RIPK3:MLKL
interactions. This aromatic residue is widely conserved among
MLKL orthologues, including chicken and tuatara, but present as
Asn in most birds, frogs, lizards and fishes. Similar modes of
engagement have been described between other pseudokinase:
kinase cognate pairs (reviewed in ref. 52), consistent with the
notion that pseudokinase C-lobe projection into cognate kinase
domain C-lobe cavities have convergently evolved as common
interaction and regulatory determinants.

While it is clear that the MLKL pseudokinase domain αEF-αF
loop aromatic residue is an anchor for RIPK3 recognition, its
widespread conservation indicates that selectivity for RIPK3
engagement must be at least partially dictated by other sites
within MLKL. Previous mutational analyses of mouse MLKL
implicated the αC helix residue, S228, as a contributor to RIPK3

Fig. 4 Horse MLKL activation loop phosphorylation induces conformational flexibility. a The activity of phosphomimetic mutations, S345D in rat MLKL,
or T356E-S357E in horse MLKL, or alanine substitution (T356A-S357A) in horse MLKL, was tested in MLKL−/− U937 and/or Mlkl−/− MDF cells upon
doxycycline induction of expression, in the presence (TNF, Smac mimetic, IDN-6556; TSI) and absence (untreated; UT) of necroptotic stimuli. These data
are plotted alongside wild-type controls from Fig. 1. b, c The activation loop of the horse MLKL pseudokinase domain is buried in the pseudoactive site in a
position occupied by ATP in conventional protein kinases, such as ERK (PDB 4GT3) (d). e Wild-type horse MLKL or alanine substitution mutants of
activation loop and adjacent pseudoactive site residues were stably introduced intoMlkl−/− MDF cells and the capacity to kill cells in the presence (TSI) or
absence (UT) of necroptotic stimuli in the presence (induced) or absence (uninduced) of doxycycline-induced exogene expression quantified by PI uptake
using flow cytometry. Data in a and e are shown as mean ± SEM of ≥3 independent experiments for each of two biological replicate MDF lines (n= 6 for all
in a, n= 7 for T208A and Q355A-T208A, n= 8 for Y282A and Q355A) or one U937 line (n= 3). * represents statistical significance of p < 0.05 using a
paired, two-tailed t-test: a wild-type horse MLKL p= 0.0017, rat MLKL S345D in MDFs UT uninduced vs UT induced p= 0.0089, rat MLKL S345D in
MDFs TSI uninduced vs TSI induced p= 0.0035, rat MLKL S345D in U937s UT uninduced vs UT induced p= 0.0108 and rat MLKL S345D in U937s TSI
uninduced vs TSI induced p= 0.00114. For e T208A p= 0.0013, Q355A p= 0.0099 and Q355A-T208A p= 0.0056. f A comparison of molecular
dynamics simulations on horse MLKL reveals increased activation loop flexibility in the phosphorylated MLKL model. The x-axis shows residue numbers
and the y-axis shows root mean square fluctuation (RMSF) across the simulation. The phosphorylated residues, pT356 and pS357, are shown in red. g A
series of snapshots of phosphorylated horse MLKL show the phosphorylated activation loop moving out of the pseudoactive site. Zoomed insets show
hydrogen bonds at various stages of the transition.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16823-3

8 NATURE COMMUNICATIONS |         (2020) 11:3060 | https://doi.org/10.1038/s41467-020-16823-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


regulation27. Here, we identified the counterpart in horse MLKL,
S233, as an important residue for mouse RIPK3 recognition. This
residue is spatially conserved in horse MLKL owing to the
occurrence of a short helix in the β3-αC loop that is not observed
in other MLKL pseudokinase domain structures. Such structural
conservation is absent from the rat MLKL pseudokinase domain
structure, which likely accounts for its inability to substitute for
mouse MLKL in the mouse necroptosis pathway despite ~88%
sequence identity between rat and mouse MLKL pseudokinase
domains. We also identified horse MLKL R242 as a potential
determinant of mouse RIPK3 binding. This residue occupies a
similar position to the mouse MLKL residue, F234, which was
previously proposed to participate in the mouse RIPK3 binding
interface by inspection of the complex structure40. Unexpectedly,
however, Ala substitution of horse MLKL R242 led to its auto-
activation, where expression alone induced cell death in the
absence of a necroptotic stimulus. There are several possible
explanations for the constitutive cell death induced by R242A
horse MLKL. One possibility is that the R242A mutation enables
constitutive activation via mouse RIPK3-mediated phosphoryla-
tion of horse MLKL, although currently this is not possible to test
experimentally owing to the unavailability of suitable antibodies
for phospho-horse MLKL. Another possibility is that the R242A
substitution prompts a conformational change in the horse
MLKL pseudokinase domain that unleashes the MLKL’s killer
4HB domain, or facilitates exposure of MLKL to necroptosis co-
effectors53–55, to enable cell death to ensue. In contrast to mouse
MLKL, where mutations in the “pseudoactive” site can trigger
constitutive cell death, the horse MLKL pseudokinase domain
adopts a conventional active-like kinase domain fold similar to
human MLKL. Consequently, we expect horse MLKL to behave
similarly to human MLKL, where pseudoactive site mutations
compromise, rather than promote, killing activity. Collectively,
these data implicate the position of the αC helix and adjacent
structural elements in the MLKL pseudokinase domain as
important factors in dictating the propensity for RIPK3
interaction.

The third site we have implicated in RIPK3 interaction is the
activation loop of the MLKL pseudokinase domain. Our data
indicate that the activation loop can serve two clear, but not
mutually exclusive, functions in regulating MLKL killing activity.
On the one hand, introduction of acidic residues to mimic RIPK3
phosphorylation within the activation loop of the MLKL pseu-
dokinase domain triggered stimulus-independent activation of
mouse MLKL18,26,27,53. Similar substitutions abrogated killing by
human MLKL even in the presence of necroptotic stimuli34. This
suggests a second function of activation loop phosphorylation: to
serve as a cue for disengagement from necrosomal RIPK3. In
keeping with the latter idea, viral MLKL proteins inhibit cellular
RIPK3 via a constitutive association, which cannot be relieved by
RIPK3 phosphorylation owing to their contracted activation
loops lacking appropriate RIPK3 substrate residues5. Here, we
mutated sites in the activation loops of horse and rat MLKL
orthologous to the RIPK3 substrates in human and mouse MLKL,
respectively. Introduction of the S345D mutation into rat MLKL
modestly triggered its killing function in both mouse and human
MLKL-deficient cells, suggesting that rat MLKL activation follows
principles similar to mouse MLKL activation. Whether S345D rat
MLKL would induce more profound death in rat cells, owing to a
reliance on endogenous species-specific co-effectors, remains of
outstanding interest. Curiously, mutation of the horse activation
loop did not promote constitutive killing, and abrogated its
capacity to reconstitute necroptotic signaling in Mlkl−/− mouse
cells, indicating activation loop phosphorylation serves a function
similar to that attributed to human MLKL. Consistent with this
notion, molecular dynamics analyses suggest destabilization of

the buried activation loop conformation following phosphoryla-
tion could perturb interaction with RIPK3 and may promote
MLKL dissociation from the necrosome.

Therefore, while MLKL’s pseudokinase domain structure,
mode of RIPK3 interaction, the function of MLKL activation loop
phosphorylation and the stoichiometries of MLKL assemblies33,34

are heterogeneous between species, there are unifying principles
underlying MLKL activation. Principally, RIPK3-mediated
phosphorylation of the MLKL pseudokinase domain activation
loop, the assembly into higher-order species, and the transloca-
tion of MLKL oligomers to the plasma membrane, are hallmarks
of necroptosis. Our data support the idea that the MLKL pseu-
dokinase domain can act variously as an integrator of phos-
phorylation events, interconvert as a molecular switch, and
mediate protein–protein interactions, albeit with differences evi-
dent in the underlying mechanisms between species. We antici-
pate that future studies will reveal more examples of
pseudoenzymes that display functional heterogeneity between
orthologues to allow them to fulfil signal transduction require-
ments via variant mechanisms, as we have observed for MLKL.

Methods
Genes, antibodies and reagents. DNA sequences were synthesized to encode
MLKL from the following species: horse (accession XP_005608486; Bioneer, South
Korea), rat (accession XP_003753159; ATUM, CA), pig (accession XP_003481839;
ATUM, CA), chicken (accession XP_015134716; Bioneer, South Korea), tuatara56

(Ensembl accession ENSSPUT00000023207.1; Bioneer, South Korea), stickleback
(Ensembl accession ENSGACT00000011307.1; GeneArt, Germany), frog (acces-
sion XP_002931711; Bioneer, South Korea), in addition to previously described
human and mouse MLKL genes (DNA2.0, CA)18,34. All sequences are available
upon request. DNA sequences were introduced into the doxycycline-inducible,
puromycin-selectable vector, pF TRE3G PGK puro18,25,36. Pig, stickleback, frog,
tuatara, human and mouse MLKL genes were cloned into a derivative vector
containing an in-frame C-terminal FLAG tag. Mutations were introduced into the
wild-type templates using oligonucleotide-directed overlap PCR. All insert
sequences were verified by Sanger sequencing (Micromon DNA Sequencing
Facility, VIC, Australia).

Primary antibodies used in this study were rat anti-MLKL (clone 3H1,
produced in-house;18 1:1000 dilution; available as MABC604; EMD Millipore,
Billerica, MA, USA) for all MLKL blots except for pig MLKL, which was detected
with rat anti-MLKL clone 5C4 (produced in-house, 1:25 dilution of unpurified
hybridoma supernatant); mouse anti-Actin (A-1987; Sigma-Aldrich, St Louis, MO,
USA; 1:3000); rabbit anti-GAPDH (cat#2118; Cell Signaling Technology, Danvers,
MA; 1:3000); and rat anti-FLAG (clone 9H1, produced in-house; 1:1000).
Secondary goat anti-mouse (cat#1010-05), goat anti-rabbit (cat#4030-05) and goat
anti-rat Ig-HRP conjugates (cat#3010-05) were supplied by Southern Biotech and
used at 1:5000 dilution. Recombinant hTNF-Fc, produced in-house, and the Smac
mimetic, Compound A, were used as reported earlier57,58. The pan-caspase
inhibitor, IDN-6556/emricasan, was provided by Tetralogic Pharmaceuticals.

Protein expression and purification. Horse (residues 188–475) and rat (residues
179–464) MLKL pseudokinase domains were cloned into pFastBac Htb and
expressed in Sf21 insect cells using the Bac-to-Bac (ThermoFisher) system, using
procedures established for other MLKL pseudokinase domain orthologues18,29,39.
Briefly, expressed proteins were purified by Ni-NTA chromatography (Roche) and
the His6 tag cleaved by TEV protease treatment to leave a GAMGS overhang.
Following dialysis and further Ni-chromatography, the proteins were eluted from
Superdex-200 gel filtration chromatography in 0.2 M NaCl, 20 mM HEPES pH 7.5,
5% glycerol and concentrated by centrifugal ultrafiltration to 5 mg/mL.

Protein crystallization and structure determination. Rat and horse MLKL
pseudokinase domain were subjected to sparse matrix screening in sitting drops
containing 150 nL protein and 150 nL of reservoir solution at 20 °C (C3 Facility;
CSIRO, Parkville, VIC). Rat MLKL was crystallized in 20 mM MnCl2, 25% v/v
PEG400, 0.1 M sodium MES pH 6.5 and crystals flash frozen in liquid N2 using
PEG400 in the mother liquor as the cryoprotectant. Horse MLKL was crystallized
in 2 M ammonium sulfate, 0.1 M sodium HEPES pH 7.5 and crystals flash frozen
following transfer to 2 M sodium malonate pH 7. Diffraction data were collection
at the MX2 beamline of the Australian Synchrotron using an Eiger detector, at
100 K, with a wavelength of 0.9537 Å. Data reduction, integration and scaling was
performed using XDS59. The human MLKL pseudokinase domain coordinates
(PDB 4MWI39) were used as the search model in Phaser-MR60 in Phenix61 for
both structures. Refinement was carried out in Phenix.refine iteratively with model
building in Coot62. The final model Ramachandran statistics were 96.6% favoured,
3.4% allowed and 0% outliers for the rat MLKL pseudokinase structure, and 96.2%
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favoured, 3.8% allowed and 0% outliers for the horse MLKL pseudokinase struc-
ture. Final statistics for refined structures are presented in Supplementary Table 1.

Cell line generation and expression constructs. pF TRE3G puro pgk vectors
encoding MLKL variants were co-transfected into HEK293T cells with pVSVg and
pCMV δR8.2 helper plasmids to generate lentiviral particles18,25. These lentiviruses
were used to introduce doxycycline-inducible MLKL constructs into biologically
independent MDF lines derived from three Mlkl−/− mice and immortalized using
SV40 large T antigen18,25. MDF cells were cultured in DMEM (Life Technologies)
supplemented with 10% (v/v) foetal calf serum (FCS), penicillin (100 U/mL),
streptomycin (100 μg/mL) and, during and after selection for vector integration,
puromycin (5 μg/mL). MLKL−/− U937 cells34 were cultured in human tonicity
RPMI medium (prepared in-house) supplemented with 8–10% v/v FCS and pur-
omycin (5 μg/mL) for lines stably transduced with MLKL expression constructs.
Protein expression was validated by western blot using established methods5,18,34.

Cell death assays. Cell death assays were performed using established
methods18,25,34. Briefly, MDFs were seeded at 5 × 104 cells/well into 24-well plates,
and allowed to adhere overnight. Cells were treated with 10 ng/mL doxycycline,
and after 3 h either left untreated, or treated with TNF (100 ng/mL), Smac mimetic
(Compound A; 500 nM) and IDN-6556 (5 μM) (TSI) or Q-VD-OPh (10 μM)
(TSQ). After 24 h, cells were harvested and treated with propidium iodide (PI;
100 ng/mL), and PI-positive cells counted by BD FACSCalibur flow cytometry.
U937 cells were assayed equivalently, but for the addition of doxycycline
(10 ng/mL) immediately after plating.

Molecular dynamics simulations. The solved crystal structure of horse MLKL was
used as the starting conformation for molecular dynamics simulations. Disordered
residues in the activation loop (358–366) were modelled using RosettaRemodel63.
Post-translational modifications were introduced using PyTMs64. Unbiased all-
atom molecular dynamics simulations were performed using GROMACS 2016.4
(ref. 65). Structures were parameterized using the CHARMM36 (ref. 66) force field
and solvated with the TIP3P water model. Random solvents molecules were
replaced with sodium or chloride ions to neutralize the charge of the system. The
system was contained in a dodecahedron at least 1 nm larger than the protein from
all sides with periodic boundary conditions. Long-range interactions were calcu-
lated with particle mesh Ewald. Neighbour lists were maintained using the Verlet
cutoff scheme67. The system underwent steepest descent minimization until the
maximum force was <100 kJ/mol. Canonical ensemble68 was used to heat the
system from 0 to 310 K in 100 ps. Isothermal–isobaric ensemble69 (1 bar, 310 K)
was applied for 100 ps. Positional restraints were applied during equilibration.
Production runs used 2 fs time steps. Phosphorylated and dephosphorylated MLKL
were simulated for 2882 and 1739 ns, respectively.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Atomic coordinates for the rat and horse MLKL pseudokinase domains have been
deposited in the Protein Data Bank with the accession numbers PDB 6VBZ and PDB
6VC0, respectively. Other data are available from the corresponding authors upon
request. The data underlying Fig. 1, Fig. 3d and e, Fig. 4a and e and Supplementary Fig. 3
are provided as a Source Data file. Source data are provided with this paper.
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