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Continuum modelling of granular flow has been
plagued with the issue of ill-posed dynamic equations
for a long time. Equations for incompressible, two-
dimensional flow based on the Coulomb friction
law are ill-posed regardless of the deformation,
whereas the rate-dependent μ(I)-rheology is ill-posed
when the non-dimensional inertial number I is too
high or too low. Here, incorporating ideas from
critical-state soil mechanics, we derive conditions for
well-posedness of partial differential equations that
combine compressibility with I-dependent rheology.
When the I-dependence comes from a specific
friction coefficient μ(I), our results show that, with
compressibility, the equations are well-posed for all
deformation rates provided that μ(I) satisfies certain
minimal, physically natural, inequalities.

1. Introduction
Much effort has been devoted to formulating constitutive
laws for continuum models of granular materials [1–5].
However, the lack of acceptable dynamic theories, i.e.
well-posed equations in the sense of Joseph & Saut [6],
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for granular flow has severely hampered progress in modelling many geophysical and industrial
problems. In the simplest class of models, flow is described by partial differential equations
(PDEs) for the density, the velocity vector and the stress tensor; conceptually, such models are
hardly more complicated than the Navier–Stokes equations. The equations represent conservation
laws for mass and momentum coupled to constitutive equations to close the system. However,
despite the appeal of their simplicity, they have been plagued with ill-posedness, i.e. small
perturbations grow at an unbounded rate in the limit that their wavelength tends to zero [6]. Such
behaviour is clearly unphysical. However, the immediate practical implication of ill-posedness is
that numerical computations either blow-up, even at finite resolution, or do not converge to a
well-defined solution as the grid is refined, i.e. the numerical results are grid dependent [7–10].

The first model of this type [2,11,12] specifies constitutive laws that represent a tensorial
generalization of the work of de Coulomb [13] on earthwork fortifications. In the language of
plasticity theory, it is a rate-independent, rigid/perfectly plastic model with a yield condition
based on friction between the grains. However, it was shown to be ill-posed in all two-
dimensional contexts and all realistic three-dimensional contexts [2]. Critical-state soil mechanics
(CSSM) [1] is a sophisticated elaboration of Coulomb behaviour that allows for compressibility.
It also suffers from ill-posedness, depending on the degree of consolidation. This ill-posedness
is much less severe than for a Coulomb material [3,12], but is still physically unsatisfactory
and introduces potential issues for the numerical simulation of transient granular flows.
More recently, the μ(I)-rheology [4,5,14] introduces a modest amount of rate dependence into
(incompressible) Coulomb behaviour through the non-dimensional inertial number, which is
proportional to the shear rate and inversely proportional to the square root of the pressure.
As shown in Barker et al. [9], this theory leads to well-posed (two dimensional) equations in a
significant region of state space, but it is ill-posed at both low and high inertial numbers.

This paper presents an analysis of constitutive equations that extend the incompressible μ(I)-
rheology of Jop et al. [5] to compressible deformations, through combination with CSSM. The
main result is that, in two dimensions, compressible I-dependent equations can be made well-
posed for all densities, for all stress states and for all deformation rates. In other words, to obtain
well-posedness, Coulomb behaviour is modified by including only two natural, fairly small,
perturbations of the theory, namely compressibility and rate dependence. Following this very
general treatment, which has implications for many existing formulations [15–17], we elucidate
our findings with an illustrative model that includes physically motivated features and reduces to
the μ(I)-rheology in the incompressible limit. This has the advantage that it retains the conceptual
simplicity of the original theory. Although we consider only two-dimensional flow, it should be
noted that in numerous cases it has been found that flow in two dimensions is more prone to
ill-posedness than in three [2,3,18]. Thus, we anticipate that the corresponding three-dimensional
equations including these effects will also be well-posed.

Currently, a wide range of new constitutive laws for granular materials are being developed
including the μ(I)-rheology [4,5], elasto-plastic formulations [19,20], non-local rheologies [21–24],
kinetic theory [25], as well as Cosserat [26], micro-structural [27] and hypoplastic theories [28].
Enormous progress has been made over the past decade and there is the realistic and exciting
prospect that practical granular flows, which span the solid-like, liquid-like and gaseous regimes,
may shortly be described by continuum models. In this paper, we seek to understand one of the
conceptually simplest formulations that leads to well-posed equations.

In §2, we introduce the equations to be studied and formulate our well-posedness result for
them. This theorem is proved in §§3 and 4. In §5, we solve the new equations for steady, uniform
chute flow. In two appendices, we summarize key ideas from CSSM and survey topics regarding
ill-posed partial differential equations.

2. Governing equations
Dense granular flow is described by the solids volume fraction φ, the velocity vector u and
the stress tensor σ . In two dimensions, this constitutes six scalar unknowns that are spatially
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and temporally dependent. These are governed by conservation laws plus constitutive relations.
Conservation of mass gives the scalar equation

(∂t + uj∂j)φ + φ div u = 0, (2.1)

and conservation of momentum gives the vector equation

ρ∗φ(∂t + uj∂j)ui = ∂jσij + ρ∗φgi, (2.2)

where ρ∗ is the constant intrinsic grain density and g is the acceleration due to gravity. Closure of
these equations is achieved through three constitutive relations.

(a) The Coulomb constitutive model
For a Coulomb material, which is assumed to be incompressible, the first constitutive relation
states that φ is a constant. This then reduces (2.1) to the

Flow rule: div u = 0. (2.3)

For the next constitutive relation, the stress tensor

σij = −pδij + τij (2.4)

is decomposed into a pressure term (where p = −σii/2) plus a trace-free tensor τ called the
deviatoric stress. The second relation is then the

Yield condition: ‖τ‖ =μp, (2.5)

where μ is a constant and for any tensor T the norm is defined by

‖T‖ =
√

TijTij

2
. (2.6)

This yield condition expresses the idea that a granular material cannot deform unless the
shear stress is sufficient to overcome friction.1 The third constitutive relation requires that the
eigenvectors of the deviatoric stress tensor and the deviatoric strain-rate tensor2

Dij = 1
2 (∂jui + ∂iuj) − 1

2 (div u)δij (2.7)

are aligned (see figure 1 for motivation), which may be written

Alignment:
Dij

‖D‖ = τij

‖τ‖ . (2.8)

In words, the above equation may be interpreted as asserting that in the space of trace-free
symmetric 2 × 2 matrices, which is two-dimensional, D and τ are parallel. Thus, this matrix equation
entails only one scalar relation. For reference below we record that

D = 1
2

[
∂1u1 − ∂2u2 ∂1u2 + ∂2u1
∂1u2 + ∂2u1 ∂2u2 − ∂1u1

]
. (2.9)

1Thus, (2.5) contains the implicit assumption that material is actually deforming. Otherwise, (2.5) must be replaced by
inequality, ‖τ‖ ≤μp, and the governing equations are underdetermined unless further relations, such as those of elasticity,
are included.
2Note that, for incompressible flow, the full strain-rate tensor (∂jui + ∂iuj)/2 and the deviatoric strain-rate tensor are equal as
the second term on the right in (2.7) vanishes.
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Figure 1. (a) Illustrative stress eigenvectors; along the major axis the stress eigenvalue is −(p + ‖τ‖), with the minus
sign indicating compression. (b) A possible material deformation that is consistent with the stress field in (a). (Online version
in colour.)

It is customary [2,5] to process these equations by expressing the deviatoric stress τ in terms
of p and the strain rate as follows:

τij = ‖τ‖ τij

‖τ‖ =μp
Dij

‖D‖ , (2.10)

where we have invoked (2.5) and (2.8). We may substitute (2.10) into (2.2) to obtain

ρ∗φ(∂t + uj∂j)ui = ∂j

[
μp
‖D‖Dij

]
− ∂ip + ρ∗φgi (2.11)

and the resulting equation, together with (2.3), gives three equations for pressure p and velocity u.
In form, at least, these equations resemble the incompressible Navier–Stokes equation. However,
in two dimensions (as considered here) they are always ill-posed [2].

(b) Incompressibleμ(I)-rheology
Work described by the Groupement De Recherche Milieux Divisés [4] has significantly improved
the Coulomb model by including some rate dependence (in the sense of plasticity [29]) in the
yield condition while making no changes in the incompressible flow rule (2.3) and the alignment
condition (2.8). Specifically, a wide range of experiments are captured by replacing the constant μ
in (2.5) by an increasing function μ(I) of the inertial number,

I = 2d‖D‖√
p/ρ∗

, (2.12)

where d is the particle diameter. The expression

μ(I) =μ1 + μ2 − μ1

I0/I + 1
, (2.13)

where μ1, μ2 and I0 are constants with μ2 >μ1, is a frequently used form [30]. Below we shall
assume that

μ′(I)> 0 and μ′′(I)< 0. (2.14)

The modified yield condition changes (2.11) to read

ρ∗φ(∂t + uj∂j)ui = ∂j

[
μ(I)p
‖D‖ Dij

]
− ∂ip + ρ∗φgi. (2.15)
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Table 1. Table of criteria for linear well-posedness.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

model Coulomb incomp.μ(I) CSSM CIDR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

conditions always ill-posed (2.16) always ill-posed (2.19), (2.20)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The effect of this seemingly small perturbation is profound. Unlike for Coulomb material,
equations (2.15) and (2.3) are linearly well-posed for I, μ satisfying

4ν2 − 4ν + μ2
(

1 − ν

2

)2 ≤ 0, where ν = I
μ

dμ
dI

. (2.16)

For the specific μ(I)-curve (2.13) this inequality covers a significant range of inertial numbers,
specifically when the deformation rate is neither too small nor too large relative to the pressure.
Outside of this range, the maximal-order linear stability analysis and numerical simulations show
that perturbations grow exponentially with growth rates tending to infinity as their wavelength
is reduced [9]. This behaviour is the hallmark of ill-posedness and leads to unphysical numerical
solutions that strongly depend on the grid resolution used.

(c) Compressibility and I-dependent rheology
We refer to CSSM (see appendix A) for guidance in introducing compressibility into the rheology.
Thus, we make no change in the alignment condition (2.8); we assume φ-dependence in the yield
condition,

‖τ‖ = Y(p,φ, I), (2.17)

and we allow for volumetric changes by introducing a new function f (p,φ, I) and modifying the
flow rule to

div u = 2f (p,φ, I)‖D‖. (2.18)

To get well-posed equations, our analysis (see §3) shows that the yield condition and the flow-rule
functions must be related by the equation3

∂Y
∂p

− I
2p
∂Y
∂I

= f + I
∂f
∂I

(2.19)

and satisfy the inequalities

∂IY> 0 (2.20a)

and

∂pf − I
2p
∂If < 0. (2.20b)

We may now state our main result, the well-posedness theorem for the system (2.1), (2.2), (2.8),
(2.17), (2.18), which we call the CIDR equations. (Mnemonic: compressible I-dependent rheology.)

Theorem 2.1. Under hypotheses (2.19) and (2.20), the CIDR system is linearly well-posed.

The term linearly well-posed is defined in appendix B, and the result is proved in §§3 and 4.
Table 1 contains a comparison between the conditions for linear well-posedness for the different
constitutive models that have been discussed here.

Remark 2.2. The I-dependence in these equations need not relate to a friction coefficient μ(I).
In §2e, we connect the equations to μ(I)-rheology.

3If Y and f are independent of I, then (2.19) leads to the CSSM flow rule (A 2) derived from normality.
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(d) Derivation of evolution equations
To place the equations in a larger continuum-mechanics context, we show that the CIDR equations
of motion can be rewritten as a system of three evolution equations for the velocity u and the
solids fraction φ. In form, these equations are analogous to the Navier–Stokes equations for a
viscous, compressible fluid. We make no use of this form of the equations in our proof of well-
posedness.

We want to eliminate stresses from the equations of motion. To this end, we propose to solve
for the mean stress p using the flow rule (2.18), which we rewrite as

f (p,φ, I) = div u
2‖D‖ . (2.21)

Note that f (p,φ, I) depends on p both directly in its first argument and indirectly through
I = 2d‖D‖/√p/ρ∗ in its third argument. However,

∂

∂p

[
f

(
p,φ,

2d‖D‖√
p/ρ∗

)]
= ∂pf − I

2p
∂If , (2.22)

which by assumption (2.20b) is non-zero. Thus, we may apply the implicit function theorem to
(2.21) to solve p = P(∇u,φ).4 Given this, we may define

T(∇u,φ) = Y(P(∇u,φ),φ, I(∇u,φ)), where I(∇u,φ) = 2d‖D‖√
P(∇u,φ)/ρ∗

and substitute into conservation of momentum to obtain an equation

ρ∗φ(∂t + uj∂j)ui = ∂j

[
T(∇u,φ)

‖D‖ Dij

]
− ∂i[P(∇u,φ)] + ρ∗φgi. (2.23)

This equation, along with (2.1), gives a system of three evolution equations for the velocity u
and the solids fraction φ. It is possible that previous formulations of compressible μ(I) equations
[15–17] may be seen as CIDR equations with specific constitutive laws specified. In this paper,
we choose to elucidate the well-posedness result with more generic choices of f and Y in order to
remain impartial.

(e) Connection toμ(I)-rheology
Without making any attempt to be general, we illustrate one example of how μ(I)-rheology may
be included in constitutive relations of the form (2.17), (2.18). Motivated by equation (A 3) in
appendix A, we make the ansatz

Y(p,φ, I) = α(I)p − p2

C(φ)
(2.24a)

and

f (p,φ, I) = β(I) − 2p
C(φ)

. (2.24b)

In these equations, it is worth emphasizing that p,φ, I are treated as independent variables, not
to be confused with the dependence of I on p in the previous subsection. The function C(φ) is
an increasing function of φ. As φ varies (with I fixed) the yield loci ‖τ‖ = Y(p,φ, I) derived from
(2.24a) form a nested family of convex curves in stress space (figure 2b). Observe from (2.18) that

4Note that P in fact depends only on div u, ‖D‖ and φ.
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Figure 2. (a) An example curve for the function C(φ) with a minimum solids volume fractionφmin and a vertical asymptote at
φmax. (b) Nested yield surfaces of the form (2.24) for a fixed value of Iwith differing solids volume fractions. (The solid blue line,
the dashed arrows and the labels A and B refer to a discussion of CSSM in appendix A.)

deformation without volumetric strain is possible if f (p,φ, I) = 0; i.e. for (2.24b), if p/C(φ) = β(I)/2.
Substituting this formula into (2.17) and using (2.24a), we derive

‖τ‖ =
[
α(I) − β(I)

2

]
p,

for such isochoric deformation to be possible. Thus, to recover the yield condition ‖τ‖ =μ(I)p of
the μ(I)-rheology, let us require that

α(I) − β(I)
2

=μ(I). (2.25)

Lemma 2.3. Equations (2.19) and (2.25) imply that

α(I) = 4
5
μ(I) + 12

25
I−2/5

∫ I

0
J−3/5μ(J) dJ (2.26)

and

β(I) = −2
5
μ(I) + 24

25
I−2/5

∫ I

0
J−3/5μ(J) dJ. (2.27)

Proof. Substituting the relations (2.24) into (2.19), and using (2.25) to eliminate β, we derive the
linear ordinary differential equation for α = α(I) :

5
2 Iα′(I) + α(I) = 2μ(I) + 2Iμ′(I). (2.28)

Solving this linear equation for α(I), with an integrating factor, we obtain

I2/5α(I) = 4
5

∫ I

0
J−3/5μ(J) dJ + 4

5

∫ I

0
J2/5μ′(J) dJ,

from which the formula (2.26) follows after integrating the second integral by parts. Finally,
substituting this formula for α(I) into (2.25), we obtain the formula (2.27) for β(I). �

Lemma 2.4. The yield condition and flow-rule function (2.24a,b) that follow from (2.26), (2.27) verify
hypotheses (2.19) and (2.20), provided μ(I) satisfies (2.14).

Proof. Of course (2.19) is satisfied because this equation was imposed in deriving (2.26), (2.27).
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Differentiating (2.24b), we see that ∂pf (p,φ, I) = −2/C(φ)< 0. To calculate ∂If (p,φ, I), we first

reparametrize the integral in (2.27) to obtain β(I) = − 2
5μ(I) + 24

25
∫1

0 s−3/5μ(sI) ds. Then

∂If (p,φ, I) = β ′(I) = −2
5
μ′(I) + 24

25

∫ 1

0
s2/5μ′(sI) ds.

By (2.14), μ′′(I)< 0, so μ′(sI)>μ′(I) for 0< s< 1. Thus,

β ′(I)>μ′(I)

{
−2

5
+ 24

25

∫ 1

0
s2/5 ds

}
=μ′(I)

{
24
35

− 2
5

}
> 0,

the last inequality using (2.14). Consequently,

∂pf (p,φ, I) − I
2p
∂If (p,φ, I)< 0, (2.29)

proving inequality (2.20b).
For inequality (2.20a), we reparametrize the integral (2.26) and differentiate to obtain

∂IY(p,φ, I) = α′(I)p = p

(
4
5
μ′(I) + 12

25

∫ 1

0
s2/5μ′(sI) ds

)
> 0,

as desired. �

(f) The incompressible limit
Based on an analogy with CSSM, let us suppose that C(φ) is a sensitive function of φ, say of the
form

C(φ) = ρ�gd
b

Č
(

φ − φmin

φmax − φmin

)
, (2.30)

where g is the constant of gravitational acceleration, b is a non-dimensional parameter and the
factor ρ�gd gives C the dimensions of pressure. The non-dimensional function Č has an argument
that is dependent on the minimum solids fraction φmin for sustained stress transmission between
grains (random loose packing5) and φmax, which is the maximum packing fraction that can be
attained. Typically, �φ = φmax − φmin is small. For definiteness we may take

Č(y) = y
1 − y

, (2.31)

as in figure 2. Note that C(φ) diverges as φ→ φmax; thus, (2.30) requires that φ is confined to a
narrow range,

φmin ≤ φ < φmax. (2.32)

In physical terms, the maximum solids fraction φmax represents the jamming threshold. We call
the limit �φ→ 0 incompressible because, as may be seen from (2.32), the density of the material
becomes essentially constant.

Lemma 2.5. As �φ→ 0, the CIDR equations reduce to the equations of incompressible μ(I)-rheology,
(2.3), (2.15).

Proof. We process the CIDR equations, which have the six unknowns φ, ui and σij, as follows.
First, we reduce to five unknowns—φ, ui, p and τ = ‖τ‖—by recalling the definition (2.4) and the

5Note that we are assuming isotropy, which may be a questionable assumption at such low densities.
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alignment condition (2.8) to write

σij = −pδij + τ
Dij

‖D‖ .

Next we use the yield condition to eliminate φ, reducing this number to four. Specifically,
substituting (2.24a) into (2.17), we write the yield condition

τ = α(I)p − p2

C(φ)
. (2.33)

Solving (2.33) for φ we obtain

φ =Φ(∇u, p, τ ) = C−1

(
p2

α(I)p − τ

)
, (2.34)

where the dependence on ∇u comes from the fact that I = 2d‖D‖/√p/ρ∗. Substitution of this
formula into the conservation laws (2.1), (2.2) yields the equations

(∂t + uj∂j)Φ(∇u, p, τ ) +Φ(∇u, p, τ ) div u = 0 (2.35a)

and

ρ∗Φ(∇u, p, τ )(∂t + uj∂j)ui = ∂j

[
τ

‖D‖Dij

]
− ∂ip + ρ∗Φgi. (2.35b)

Finally, we show that the flow rule (2.18) may be rewritten

div u = 4
[
τ

p
− μ(I)

]
‖D‖. (2.36)

To see this, we combine (2.24b) with (2.25) to conclude

f (p,φ, I) = β(I) − 2p
C(φ)

= 2[α(I) − μ(I)] − 2p
C(φ)

and then substitute the relation α(I) = τ/p + p/C(φ) derived by manipulating (2.33). Thus, the
system (2.35), (2.36) governs the evolution of the four unknowns ui, p and τ .

Now we claim that if C(φ) has the form (2.30), then (2.35), (2.36) is a singular perturbation of
(2.3), (2.15). It follows from (2.30) that (2.34) has the expansion

φ = φ0 +�φΦ̌(∇u, p, τ ), where Φ̌(∇u, p, τ ) = Č−1

(
bp2

ρ∗gd[α(I)p − τ ]

)
. (2.37)

Substituting (2.37) into the continuity equation (2.35a), we find

�φ(∂t + uj∂j)Φ̌(∇u, p, τ ) + [φ0 +�φΦ̌(∇u, p, τ )] div u = 0.

If �φ = 0, then this equation reduces to div u = 0, although this is of course a highly singular
limit. Thus, if �φ = 0, the left-hand side of (2.36) vanishes, so this equation simplifies to the yield
condition τ =μ(I)p, and substitution into (2.35b) yields (2.15). This proves the lemma. �

3. Proofs, part I: linearization

(a) An alternative formulation of the alignment condition
It is convenient to study the linearized equations with a reformulated alignment condition that
describes stress in terms of eigenvectors of, rather than entries of, the stress tensor. Since τ defined
by (2.4) has trace zero, it has eigenvalues6 ±‖τ‖. Taking ψ as the angle that the eigenvector with

6Hence σ has eigenvalues −p ± ‖τ‖. Note that −p − ‖τ‖ is the major stress eigenvalue—although this eigenvalue is the
smaller algebraically, it is the larger in absolute value.
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eigenvalue −‖τ‖ makes with the x1-axis gives

τ = −‖τ‖
[

cos 2ψ sin 2ψ
sin 2ψ − cos 2ψ

]
, (3.1)

which may be verified by checking that (cosψ , sinψ) is an eigenvector of this matrix with
eigenvalue −‖τ‖. Thus, the stress tensor σij is completely specified by the three scalars p, ‖τ‖
and ψ .

Focusing on the first rows of the strain-rate tensor (2.9) and of (3.1), we extract from the matrix
equation (2.8) the vector equation

(∂1u1 − ∂2u2, ∂1u2 + ∂2u1) = k(cos 2ψ , sin 2ψ), (3.2)

where k = −2‖D‖< 0. Since D and τ lie in the two-dimensional space of trace-free, symmetric
matrices, (3.2) is equivalent to (2.8). It follows from (3.2) that

Alt. alignment: (∂1u2 + ∂2u1) cos 2ψ − (∂1u1 − ∂2u2) sin 2ψ = 0. (3.3)

In point of fact, this equation is slightly weaker than the alignment condition since (3.3) is
consistent with the possibility that k> 0 in (3.2); to rule out the latter possibility we impose the
supplemental inequality7 that

(∂1u1 − ∂2u2) cos 2ψ ≤ 0. (3.4)

(b) The calculation
Substitution of the stress tensor (3.1) into the momentum balance equations (2.2) allows for the
full set of equations to be written as

ρ∗φ(∂t + u1∂1 + u2∂2)u1 + ∂1[p + τ cos(2ψ)] + ∂2[τ sin(2ψ)] = ρ∗φg1, (3.5a)

ρ∗φ(∂t + u1∂1 + u2∂2)u2 + ∂1[τ sin(2ψ)] + ∂2[p − τ cos(2ψ)] = ρ∗φg2, (3.5b)

(∂t + u1∂1 + u2∂2)φ + φ(∂1u1 + ∂2u2) = 0, (3.5c)

∂1u1 + ∂2u2 = 2f‖D‖ (3.5d)

and (∂2u1 + ∂1u2) cos(2ψ) + (∂2u2 − ∂1u1) sin(2ψ) = 0. (3.5e)

This system has five scalar unknowns, U = (u1, u2,φ, p,ψ). In (3.5a), (3.5b), τ is a mnemonically
suggestive abbreviation for the yield function Y(p,φ, I) in (2.17), and in (3.5d), a repetition of (2.18),
the function f depends on arguments (p,φ, I) that are not written explicitly.

As in appendix B, to linearize the equations we substitute a perturbation of a base solution
U(0)(x, t), say

U = U(0) + Û, (3.6)

into the equations, retain only terms that are linear in the perturbation Û and freeze the
coefficients at an arbitrary point (x∗, t∗). It is convenient to temporarily drop most terms not of
maximal order and estimate their effect in a calculation at the end of the argument. For example,
this construction applied to (3.5c) yields the constant-coefficient, linear equation

(∂t + u∗
1∂1 + u∗

2∂2)φ̂ + φ∗(∂1û1 + ∂2û2) = 0, (3.7)

where u∗
j = u(0)

j (x∗, t∗) and φ∗ = φ(0)(x∗, t∗). Lower-order terms ∂jφ
∗ ûj and ∂ju∗

j φ̂ in the full
linearization of (3.5c) have been dropped in (3.7).

In expanding the fully nonlinear factor ‖D‖ in (3.5d), we may take advantage of the rotational
invariance of the equations to arrange that ψ∗ = 0; i.e. we may calculate in a rotated coordinate

7It is also true that (∂1u2 + ∂2u1) sin 2ψ ≤ 0, and if cos 2ψ were to vanish, we would need to use this inequality to guarantee
that k< 0. However, this issue will not arise in the analysis below.
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x1

x2

–1.0 –0.5 0 0.5 1.0
–1.0

–0.5

0

0.5

1.0

Figure 3. An example of a base-state velocity field for the strain-rate tensor (3.8) with ∂1u
(0)
1 ≡ −1 and ∂2u

(0)
2 ≡ 1/2. (Online

version in colour.)

system for which, at (x∗, t∗), the x1-axis is the maximal stress axis. Then by the alignment condition
(3.3), the base-state deviatoric strain-rate tensor is diagonal at (x∗, t∗)

D∗ =

⎡
⎢⎢⎣

(∂1u∗
1 − ∂2u∗

2)
2

0

0
(∂2u∗

2 − ∂1u∗
1)

2

⎤
⎥⎥⎦, (3.8)

and by (3.4), in the 1,1-position of this matrix, ∂1u∗
1 − ∂2u∗

2 < 0. This corresponds to non-zero
compression along the major stress axis, as illustrated in figure 3. Now

‖(D∗ + D̂)‖ = 1
2 [(∂1u∗

1 − ∂2u∗
2 + ∂1û1 − ∂2û2)2 + (∂2û1 + ∂1û2)2]1/2 (3.9a)

and

≈ ‖D∗‖ − (∂1û1 − ∂2û2)
2

, (3.9b)

where the approximation follows from the expansion

√
(−A + X)2 + Y2 = A − X + O(X2 + Y2),

if A> 0 and |X|, |Y| 
 A. Thus, as given in table 2, the (local) linearization of ‖D‖ equals −(∂1û1 −
∂2û2)/2.

In (3.5d), the function f contains p, φ and I as implicit arguments. As reflected in the table, the
dependence on p and φ contributes zeroth-order terms in these variables to the linearization.

In (3.5a), (3.5b), τ also depends on p, φ and I, and the terms involving τ are differentiated; hence
new issues arise in linearizing them. For example, by the chain rule,

∂j[τ cos(2ψ)] = cos(2ψ)

⎧⎨
⎩∂pτ∂jp + ∂φτ∂jφ + ∂Iτ

⎡
⎣ 2d√

p/ρ∗
∂j‖D‖ − d‖D‖√

p3/ρ∗
∂jp

⎤
⎦
⎫⎬
⎭

− 2τ sin(2ψ)∂jψ .
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Table 2. List of maximal-order linearizations of terms in (3.5a)–(3.5e), to assist in deriving (3.10a)–(3.10e). D̂11 = (∂1û1 −
∂2û2)/2 (only in this table).

term in (3.5a)–(3.5e) contribution to (3.10a)–(3.10e)

‖D‖ −D̂11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I − I∗

‖D∗‖ D̂11 −
I∗

2p∗
p̂

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂j[τ cos(2ψ )] (∂pτ )∗∂j p̂ + (∂φτ )∗∂jφ̂

+ (∂Iτ )∗
{
− I∗

‖D∗‖∂j D̂11 −
I∗

2p∗
∂j p̂
}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂j[τ sin(2ψ )] 2τ ∗∂jψ̂
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f‖D‖ −f ∗D̂11 + ‖D∗‖(∂pf )∗p̂ + ‖D∗‖(∂φ f )∗φ̂

+‖D∗‖(∂I f )∗
{
− I∗

‖D∗‖ D̂11 −
I∗

2p∗
p̂
}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since ψ∗ = 0, the full linearization of, say, the first term here equals (∂pτ )∗∂jp̂, a term given in the
table, plus lower-order terms

(∂jp)∗
{

(∂ppτ )∗p̂ + (∂φpτ )∗φ̂ + (∂Ipτ )∗
[
− I∗

‖D∗‖ D̂11 − I∗

2p∗ p̂
]}

.

All of these terms, as well as numerous other analogous terms in the full linearization of (3.5a)
that are not of maximal order, have been dropped in (3.10a)–(3.10e).

Putting all the pieces together, we obtain the linearization8 of the system (3.5a)–(3.5e)

ρ∗φ∗d∗
t û1 + A(−∂11û1 + ∂12û2) + (∂φτ )∗∂1φ̂ + (1 + B)∂1p̂ + 2τ∗∂2ψ̂ = 0, (3.10a)

ρ∗φ∗d∗
t û2 + A(∂12û1 − ∂22û2) − (∂φτ )∗∂2φ̂ + (1 − B)∂2p̂ + 2τ∗∂1ψ̂ = 0, (3.10b)

d∗
t φ̂ + φ∗(∂1û1 + ∂2û2) = 0, (3.10c)

(1 + C)∂1û1 + (1 − C)∂2û2 − 2‖D∗‖(∂φ f )∗φ̂ + Γ p̂ = 0 (3.10d)

and ∂2û1 + ∂1û2 + 4‖D∗‖ψ̂ = 0, (3.10e)

where

d∗
t = ∂t + u∗

1∂1 + u∗
2∂2, A = I∗

2‖D∗‖ (∂Iτ )∗, B = (∂pτ )∗ − I∗

2p∗ (∂Iτ )∗ (3.11)

and

C = f ∗ + I∗(∂If )∗ and Γ = −2‖D∗‖
(

(∂pf )∗ − I∗

2p∗ (∂If )∗
)

. (3.12)

Observe that, by hypothesis (2.19), B = C, a fact that we use in (4.3) and below.

8These equations are maximal order except that in (3.10a) and (3.10b) the term d∗
t ûj retains first-order spatial derivatives even

though these equations also contain second-order derivatives of ûj.
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4. Proofs, part II: calculation of growth rates

(a) The eigenvalue problem
We now look for exponential solutions of (3.10a)–(3.10e),

Û(x, t) = ei〈ξ ,x〉+λtŨ, (4.1)

where Ũ = (ũ1, ũ2, φ̃, p̃, ψ̃) is a 5-vector of scalars, ξ = (ξ1, ξ2) is a vector wavenumber, 〈, 〉 indicates
the inner product and λ is the growth rate. The function (4.1) is a solution of (3.10a)–(3.10e) iff λ, Ũ
satisfies the generalized eigenvalue problem

SŨ = −(λ+ i〈u∗, ξ〉)EŨ, (4.2)

where u∗ = (u∗
1, u∗

2),

S =

⎡
⎢⎢⎢⎢⎢⎣

Aξ2
1 −Aξ1ξ2 i(∂φτ )∗ξ1 (1 + B)iξ1 2iτ∗ξ2

−Aξ1ξ2 Aξ2
2 −i(∂φτ )∗ξ2 (1 − B)iξ2 2iτ∗ξ1

iφ∗ξ1 iφ∗ξ2 0 0 0
(1 + B)iξ1 (1 − B)iξ2 −2‖D∗‖(∂φ f )∗ Γ 0

iξ2 iξ1 0 0 4‖D∗‖

⎤
⎥⎥⎥⎥⎥⎦ (4.3)

and

E =

⎡
⎢⎢⎢⎢⎢⎣

ρ∗φ∗
ρ∗φ∗

1
0

0

⎤
⎥⎥⎥⎥⎥⎦ . (4.4)

On the right side of (4.2), the modified eigenvalue parameter is λ+ i〈u∗, ξ〉 because

d∗
t ei〈ξ ,x〉+λt = (λ+ i〈u∗, ξ〉) ei〈ξ ,x〉+λt.

Equation (4.2) is a generalized eigenvalue problem because E, the matrix of coefficients of time-
derivative terms, is not invertible. To extract an ordinary eigenvalue problem, we decompose S
into blocks

S =
[

S11 S12
S21 S22

]
, (4.5)

where

S11 =

⎡
⎢⎣ Aξ2

1 −Aξ1ξ2 i(∂φτ )∗ξ1
−Aξ1ξ2 Aξ2

2 −i(∂φτ )∗ξ2
iφ∗ξ1 iφ∗ξ2 0

⎤
⎥⎦ (4.6)

and S12, S21 and S22 fill out the rest of the matrix. Defining Ũ1 = (ũ1, ũ2, φ̃) and Ũ2 = (p̃, ψ̃), we
rewrite (4.2) as [

S11 S12
S21 S22

][
Ũ1
Ũ2

]
= −(λ+ i〈u∗, ξ〉)E

[
Ũ1
Ũ2

]
. (4.7)

The zero entries in the last two rows of E mean that S21Ũ1 + S22Ũ2 = 0 so we can solve for

Ũ2 = −S−1
22 S21Ũ1. (4.8)

Substitution of Ũ2 into (4.7) then reduces this problem9 to the ordinary 3 × 3 eigenvalue problem,

E−1
11 [S11 − S12S−1

22 S21]Ũ1 = −(λ+ i〈u∗, ξ〉)Ũ1, (4.9)

where E11 is the 3 × 3 block in the upper left of E.

9In other words, we are performing on the symbol level the reduction that we performed on the operator level in §2d.
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We decompose the 3 × 3 matrix in (4.9) into smaller blocks,⎡
⎣ (M + N)

ρ∗φ∗
iV
ρ∗φ∗

iφ∗ξT 0

⎤
⎦ Ũ1 = −(λ+ i〈u∗, ξ〉)Ũ1, (4.10)

where we calculate

M = A

[
ξ2

1 −ξ1ξ2
−ξ1ξ2 ξ2

2

]
(4.11)

as the contribution of S11,

N =

⎡
⎢⎢⎢⎣

(1 + B)2

Γ
ξ2

1 + τ∗

2‖D∗‖ ξ
2
2

(1 − B2)
Γ

ξ1ξ2 + τ∗

2‖D∗‖ ξ1ξ2

(1 − B2)
Γ

ξ1ξ2 + τ∗

2‖D∗‖ ξ1ξ2
(1 − B)2

Γ
ξ2

2 + τ∗

2‖D∗‖ ξ
2
1

⎤
⎥⎥⎥⎦ (4.12)

as the contribution of −S12S−1
22 S21, which is symmetric, and

V =

⎡
⎢⎢⎢⎣
(

(∂φτ )∗ + 2(1 + B)‖D∗‖(∂φ f )∗

Γ

)
ξ1(

−(∂φτ )∗ + 2(1 − B)‖D∗‖(∂φ f )∗

Γ

)
ξ2

⎤
⎥⎥⎥⎦ . (4.13)

(b) Estimation of the eigenvalues
We claim that the growth-rate eigenvalues (4.10) satisfy

max
j=1,2,3

sup
ξ∈R2

�λj(ξ )<∞.

By compactness, it suffices to prove that

max
j=1,2,3

lim sup
|ξ |→∞

�λj(ξ )<∞. (4.14)

Since only the real parts of eigenvalues matter, we may drop the term i〈u∗, ξ〉 in (4.10) and verify
(4.14) for the eigenvalue problem10

PŨ = −λŨ, (4.15)

where we write

P =
⎡
⎣ (M + N)

ρ∗φ∗
iV
ρ∗φ∗

iφ∗ξT 0

⎤
⎦ (4.16)

for the matrix in (4.10) and we shorten the notation by dropping the subscript 1 on Ũ. For large ξ ,
it is instructive to use perturbation theory to compare the eigenvalues (4.15) with the eigenvalues
P0Ũ = −ΛŨ, where

P0 = (ρ∗φ∗)−1

[
M + N 0

0 0

]
. (4.17)

Lemma 4.1. Provided ξ �= 0, the 2 × 2 matrix M + N is positive definite.

Proof. Since M and N are symmetric, it suffices to show that the trace and determinant of M + N
are positive. According to (2.20), A> 0 and Γ > 0, from which it follows immediately that tr(M +
N)> 0.

10Do not forget the minus sign in this equation—the growth rates are negative eigenvalues of P.
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Regarding the determinant, for any 2 × 2 matrices

det(M + N) = det M + det N + χ (M, N), (4.18)

where

χ (M, N) = M22N11 + M11N22 − M12N21 − M21N12 (4.19)

accounts for the cross terms. For the specific matrices (4.11) and (4.12), det M = 0,

det N = 2τ∗

4Γ ‖D∗‖ [(1 + B)2ξ4
1 − 2(1 − B2)ξ2

1 ξ
2
2 + (1 − B)2ξ4

2 ] (4.20a)

= 2τ∗

4Γ ‖D∗‖ [(1 + B)ξ2
1 − (1 − B)ξ2

2 ]2 ≥ 0 (4.20b)

and

χ (M, N) = τ∗

2‖D∗‖ ξ
4
1 +
(

4
Γ

+ τ∗

‖D∗‖
)
ξ2

1 ξ
2
2 + τ∗

2‖D∗‖ ξ
4
2 > 0. (4.21)

This proves the lemma. �

Remark 4.2. It is noteworthy that det N > 0 except for the two directions

ξ1

ξ2
= ±
√

1 − B
1 + B

. (4.22)

Effectively, this calculation rederives the result of Pitman & Schaeffer [12] that the equations of
CSSM, even without I-dependence, are well-posed for all directions except possibly those defined
by (4.22).

It follows from lemma 4.1 that P0Ũ = −ΛŨ has two eigenvalues, sayΛ1,Λ2, whereΛ1,Λ2 < 0
and is homogeneous of degree 2 in ξ . Since P is an O(|ξ |)-perturbation of P0, two of the growth-
rate eigenvalues of (4.15) satisfy

λj =Λj + O(|ξ |), j = 1, 2,

both of which are negative in the limit |ξ | → ∞; i.e. they are bounded above by zero in this limit.
The third growth rate is given by

λ3 = −det P
λ1λ2

= − det P
Λ1Λ2

+ O(|ξ |−1).

The first term on the extreme right is the ratio of two quartics, the denominator being non-zero, so
it is bounded, and the perturbation decays at infinity. This verifies (4.14) for all three eigenvalues
derived from (3.10a) to (3.10e).

It remains to consider the effect of the lower-order terms that were neglected in (3.10a)–(3.10e).
Inclusion of these terms would lead, after a calculation as above, to an eigenvalue problem (4.15)
for a perturbed matrix ⎡

⎣M + N
ρ∗φ∗ + O(ξ )

iV
ρ∗φ∗ + O(1)

iφ∗ξT + O(1) O(1)

⎤
⎦ .

As above, two of the eigenvalues of this matrix are negative and O(|ξ |2), and invoking the
determinant shows that the third is bounded. This verifies (4.14) for eigenvalues of the full
linearization of (3.5a)–(3.5e) and hence shows that the system is linearly well-posed. It is, therefore,
expected that numerical solutions of the full two-dimensional nonlinear transient equations will
not exhibit the exponential blow-up of perturbations or the dependence on grid resolution seen
in the incompressible μ(I) equations [9].
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5. Chute flow in compressible I-dependent rheology
Let us recall the steady-uniform ‘Bagnold’ solution [4,31] to the (incompressible) μ(I)-rheology
[4,5] for chute flow. Assuming that μ(I) is given by (2.13), these solutions exist for inclination
angles ζ between the maximum and minimum angles ζ2 = tan−1(μ2) and ζ1 = tan−1(μ1),
respectively. Letting Oxz be a Cartesian coordinate system, with the x-axis pointing downslope
and the z-axis being the upward pointing normal, the Bagnold solution is

pbag = ρ�φ�g(h − z) cos ζ , φbag = φ� and ubag = 2Iζ
3d

√
φ�g cos ζ (h3/2 − (h − z)3/2), (5.1)

where h is the flow depth, φ� is a constant solids volume fraction and u is the downslope velocity.
At a fixed inclination, the inertial number is equal to the positive constant

Iζ = I0

(
tan ζ − μ1

μ2 − tan ζ

)
. (5.2)

There is strong experimental and discrete element method (DEM) evidence [4,5,31,32] for both
the lithostatic pressure distribution and the three-halves power in the dependence of the velocity
on the thickness in (5.1). Fortunately, the CIDR solution is close to this, as we now show.

Assume that all variables depend only on z and only the x-component of the velocity is non-
zero, say u = u(z). Motivated by Bagnold flow, the scalings

p = (ρ�gh cos ζ )p̌, z = hž and u =
(

Iζ
d

√
g cos ζh3/2

)
ǔ (5.3)

are used to non-dimensionalize the variables and the following ordinary differential equations
(ODEs) are derived for p̌ and ǔ below.

Lemma 5.1. Under the above assumptions, the non-dimensional pressure p̌(z) and the non-dimensional
downslope velocity ǔ(z) predicted by the CIDR rheology satisfy

dp̌
dž

= −φ (5.4)

and
dǔ
dž

=
√

p̌, (5.5)

where the pressure is zero at the free surface p̌(1) = 0, the velocity is zero at the base ǔ(0) = 0 and for the
function C(φ) proposed in (2.30) and (2.31) the solids fraction φ = φ(p̌) is

φ = φmin +�φ
2χ p̌

1 + 2χ p̌
, with χ = bh

β(Iζ )d
. (5.6)

Steady uniform solutions to the CIDR model are shown in figure 4 for χ = 0.5, 2, 5, 20, 100 and
with φmax = 0.6 and φmin = 0.5. The nature of the solution is controlled by the non-dimensional
parameter χ , which is larger for thicker flows. This parameter is also inversely proportional to
β(Iζ ), which by (5.2) and (2.27) is a weakly increasing function of the inclination angle as shown
in figure 5. For large χ , the concentration graphed in figure 4a is close to φmax over a significant
proportion of the flow depth, with a narrow boundary layer near the free surface, where the
concentration decreases to φmin. In the limit as χ → ∞, the solution tends to the red line in
figure 4a, which corresponds to Bagnold flow with φ� = φmax. As χ is decreased, the surface
boundary layer becomes thicker and the flow becomes progressively more dilute, tending to the
blue line in figure 4a as χ → 0, which corresponds to Bagnold flow with φ� = φmin. In figure 4b,c,
the non-dimensional pressure and the velocity are shown, which are also bounded between the
red and blue lines corresponding to Bagnold flow with φ� equal to φmax and φmin, respectively.
As well as the profiles being bounded by two non-dimensional Bagnold solutions, the steady-
uniform CIDR solutions also have exactly the same scaling properties (5.3), on the flow density
ρ�, gravity g, the flow depth h, the chute inclination ζ , the particle diameter d and the inertial
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Figure 4. Solutions for (a) the solids volume fraction φ, (b) the non-dimensional pressure p̌ and (c) the non-dimensional
velocity ǔ as a function of the non-dimensional thickness ž for five different values of the non-dimensional parameterχ = 0.5,
2, 5, 20, 100 (black lines). The red line corresponds to χ → ∞ and Bagnold flow with φ� = φmax, while the blue line
corresponds toχ → 0 and Bagnold flow withφ� = φmin. In all cases,φmin = 0.5 andφmax = 0.6.

number Iζ , as the Bagnold solution (5.1). The steady-uniform CIDR solutions are, therefore, very
closely related to the classical Bagnold solution and are almost indistinguishable for large χ .

Proof of the lemma. The form of the assumed solution implies that Dxx = Dzz = 0 and Dxz =
(1/2) du/dz> 0; in particular, div u = 0. It follows from the alignment condition (2.8) that σxx =
σzz = −p and σxz = τ , where τ = ||τ ||. Thus, the downslope and normal momentum balances (2.2)
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Figure 5. The functionβ(Iζ ) as a function of the inclination angle ζ for the case ζ1 = 28◦, ζ2 = 36◦ and I0 = 0.279. (Online
version in colour.)

reduce to
dτ
dz

+ ρ∗φg sin ζ = 0 (5.7)

and
dp
dz

+ ρ∗φg cos ζ = 0. (5.8)

We may apply the chain rule to (5.7) and (5.8) to derive dτ/dp = tan ζ , and, since tractions at the
surface vanish,

τ = p tan ζ . (5.9)

On the other hand, since div u = 0, the flow rule (2.18) implies f (p,φ, I) = 0, and, given the ansatz
(2.24b), we conclude that

p = 1
2β(I)C(φ). (5.10)

From (5.10), we have p/C(φ) = β(I)/2, so by (2.24b) and (2.25)

τ =
[
α(I) − β(I)

2

]
p =μ(I)p. (5.11)

Comparing (5.9) with (5.11), it follows that μ(I) = tan ζ , and hence the inertial number I is
equal to the constant Iζ everywhere. The value of Iζ is given by the formula (5.2), which
is derived by inverting (2.13) with μ(Iζ ) = tan ζ . Since the inertial number is constant and
C(φ) satisfies (2.30), equation (5.10) can be inverted and then non-dimensionalized, using the
scalings (5.3), to give the solids volume fraction φ = φ(p̌) in (5.6). Using the same scalings (5.3),
the normal momentum component (5.8) yields the ODE (5.4), which can be solved for the
pressure p̌ by integrating down from the free surface using (5.6). The concentration φ(p̌) then
follows from (5.6). From the definition of the inertial number (2.12) and that 2‖D‖ = |du/dz|,
the downslope velocity satisfies the ODE

du
dz

= Iζ
d

√
p
ρ∗

(5.12)

and the scalings (5.3) then give the ODE (5.5), which, since p̌ is known, can be integrated upwards
from the no-slip condition ǔ(0) = 0 at the base. �

6. Conclusion and discussion
In this paper, we have analysed a generalization of the μ(I)-rheology that allows for changes in
the granular solids volume fraction. The equations of motion, the CIDR model, are found to be
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linearly well-posed when the constitutive laws satisfy certain criteria. We indicate (in §2e) how
the specific I-dependence of the μ(I)-rheology can be fitted into the theory, and we have shown
that the inclusion of compressibility removes the ill-posedness of the incompressible rheology [9].

CIDR equations for steady, uniform flow down an inclined chute are solved in §5, where we
observe that the solution is comparable to the classical Bagnold solution under conditions similar
to the many experimental and DEM results [4,5,31,32] for the velocity profile in steady chute
flows. Crucially, the equations are well-posed at all inertial numbers, which corresponds to the full
range of inclination angles for steady chute flow, in contrast with the limited range of angles in
which the incompressible theory is well-posed [9]. At the same time, the new theory captures
the dilatant behaviour of over-consolidated granular material as the structure of the equations is
motivated by CSSM.

Incidentally, the chute flow calculation relates to Forterre & Pouliquen [33], who modify
incompressibleμ(I)-rheology by postulating a constitutive law in which φ is explicitly specified as
a function of the inertial number, sayΦ(I). In the CIDR model, there is no constitutive law relating
these two variables; nevertheless, dependence of φ on I is implicit in the solution. It is also quite
possible that a more subtle dependence of volume fraction on inertial number will be needed to
reproduce some phenomena reported recently in experiments and numerical simulations, while
retaining the property of well-posedness.

Our primary viewpoint in this paper has been to regard the CIDR model as modifying μ(I)-
rheology with compressibility. However, it is equally valid to regard CIDR as modifying CSSM
with rate dependence. To recapitulate, our result shows well-posed equations result from such
modification provided that the yield locus and flow rule satisfy (2.19) and (2.20). Unlike in the
incompressible μ(I)-rheology and the rate-independent CSSM equations, the CIDR equations are
linearly well-posed for all deformations and for perturbations in all directions in Fourier space.

An important next step will be to specify constitutive laws, satisfying the general conditions
for linear well-posedness of this paper, and formulated to accurately match the available
experimental results and discrete numerical simulations for granular flows such as two-
dimensional steady flow in a Couette geometry and time-dependent chute flow. Then the CIDR
model and well-posedness result can be tested with fully two-dimensional nonlinear transient
numerical computations of these flows.
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Appendix A. Ideas from critical-state soil mechanics

(a) Constitutive equations
CSSM is an ingeniously constructed version of plasticity that includes compressibility but reduces
to a singular perturbation of Coulomb material, which is incompressible, in an appropriate limit.
In two-dimensional CSSM, flow is described by the usual six variables, φ, u and σ . Since flow is
compressible, the solids fraction φ remains as a genuine variable. The governing equations consist
of the conservation laws (2.1), (2.2) plus three constitutive laws. One of the constitutive equations
is the alignment condition (2.8), with no changes required. The second constitutive equation, like
(2.5), specifies the norm of the deviatoric stress,

Yield condition: ‖τ‖ = Y(p,φ), (A 1)
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but as indicated the function Y depends on the solids fraction φ as well as on the mean stress p.
The final constitutive relation, the flow rule, relates expansion and contraction of material to the
slope of the yield surface,

Flow rule: div u = 2
∂Y
∂p

(p,φ) ‖D‖. (A 2)

We refer to Jackson [1] for a derivation of (A 2) from the normality condition of plasticity.
By way of example, a simple, physically acceptable, yield locus is given by

Y(p,φ) = 2μp − p2

C(φ)
, (A 3)

where μ is a coefficient of friction, as in (2.5), and C(φ) is an increasing function of the solids
fraction of the form (2.30). For such a yield condition, it follows from the proof of lemma 2.5,
restricted to the case where μ(I) is independent of I, that equations (2.1), (2.2), (A 1), (A 2), (2.8)
reduce to the Coulomb model in the limit �φ→ 0.

(b) Consequences of the flow rule
The behaviour discussed in this subsection occurs under fairly general hypotheses—see
Jackson [1]. However, to explain the theory with a minimum of technicalities, we confine the
discussion to the specific yield condition (A 3).

The phrase critical state, from which CSSM derives its name, refers to a state p,φ such that

∂Y
∂p

(p,φ) = 0. (A 4)

For the example yield condition (A 3), condition (A 4) means that

2
(
μ− p

C(φ)

)
= 0. (A 5)

Rewriting the yield condition as Y(p, τ ) = [2μ− p/C(φ)]p and invoking (A 5), we deduce that at
a critical state

‖τ‖ =μp. (A 6)

The set where (A 6) is satisfied is called the critical state line. Thus, along the critical state line, the
stress satisfies the Coulomb yield condition.

According to the flow rule (A 2), at a critical state, deformation is not accompanied by any
change in φ. Let us examine behaviour away from the critical state line. Suppose that, for example,
initially the (uniform) state of material is at yield at point A in figure 2b. At this point, ∂Y/∂p<
0, so according to the flow rule div u< 0; i.e. material compactifies and becomes stronger, so τ
must increase for deformation to continue. Indeed, the stress will continue to increase until a
critical state on a larger yield surface is reached, as suggested in figure 2b by the φ3-yield surface.
Moreover, if �φ in (2.30) is small, a very slight increase in φ is sufficient to accommodate this
evolution. That is, we expect stress to be quickly driven from point A to a critical state on a larger
yield surface where the Coulomb yield condition (A 6) is satisfied.

Conversely, at point B in figure 2b, ∂Y/∂p> 0, so under deformation div u> 0; i.e. material
expands and becomes weaker. It is natural to imagine that the stress is driven to a critical state
on a smaller yield surface, as suggested by the arrow in the figure. This would indeed be the
case if material deformed uniformly, but this assumption is unrealistic for stresses above the critical
state line, τ > μp. For such stresses, because material expands under deformation and therefore
weakens, instability often causes localized deformation—if deformation near one point happens
to be slightly larger than elsewhere, the associated expansion lowers the yield condition more
near this point, and subsequent deformation tends to concentrate near this point.
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Appendix B. A primer on ill-posed partial differential equations
The following appendix gives a self-contained, elementary summary of key issues regarding
ill-posed PDEs. A much more detailed treatment can be found in [6].

(a) Testing for ill-posedness
The initial value problem for a PDE is called well-posed in the sense of Hadamard if for general
initial data a solution (1) exists, (2) is unique and (3) varies continuously under perturbations of
the initial conditions11 (see also Pinchover & Rubinstein [34]). If one or more of these criteria is
not satisfied then the problem is called ill-posed. A classic example of an ill-posed problem is the
backward heat equation

∂tu = −∂xxu. (B 1)

In appendix Bb, we show that condition (1) fails; here we show that condition (3) also fails. Taking
the Fourier transform reveals that the equation admits solutions

uξ (x, t) = sin(ξx) eξ
2t, (B 2)

for any ξ ∈ R. Consider the scaled solutions |ξ |−puξ (x, t), where p> 0, as perturbations of the
trivial solution u(x, t) ≡ 0. The initial conditions of the scaled solution—i.e. |ξ |−p sin(ξx)—tend
to zero in the sup norm as ξ → ∞; indeed, if p> k these initial conditions tend to zero in the Ck

norm. On the other hand, for any t> 0, the norm

sup
x∈R

|ξ |−puξ (x, t) (B 3)

tends to infinity in this limit. Thus, an arbitrarily small perturbation of initial conditions for (B 1)
can lead to an arbitrarily large solution in an arbitrarily short time.

For more general PDEs, there is a test for ill-posedness based on Fourier analysis of the
linearization of the equations. The process is summarized as:

(i) linearize the equations about a base-state solution;
(ii) freeze the coefficients at some point (x∗, t∗);

(iii) look for solutions with exponential dependence ei〈ξ ,x〉+λ(ξ )t.

We shall say the original PDE is linearly ill-posed (with respect to the base-state solution at the
given point) if

lim sup
|ξ |→∞

λ(ξ ) = +∞.

For most examples, if a PDE is linearly ill-posed, it is ill-posed in the sense of Hadamard. (But see
Kreiss [35] for exceptional examples.)

An equation is called linearly well-posed with respect to a given base solution if the growth
rate is bounded from above for all points (x∗, t∗). Linear well-posedness does not imply well-
posedness in the sense of Hadamard. For example, it is trivially verified that the Navier–Stokes
equations are linearly well-posed, but a major effort is required to show that, even just for a
finite time, they are well-posed in the sense of Hadamard, and it is not known whether they are
well-posed for all time.

11More precisely regarding condition (1): we choose a positive integer k and require that the initial value problem has a

solution for any initial conditions in BCk(Rn), i.e. for k-times continuously differentiable functions such that all derivatives of
order k or less are bounded. Likewise regarding condition (3), we require that, for the same integer k and for any positive time
T, the solution operator is continuous as a map from BCk(Rn) into continuous functions on [0, T] × R

n. We refer to Joseph &
Saut [6] for elaboration of these issues.
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We illustrate the above test on the following made-up nonlinear system that has some
similarity to the PDEs analysed in this paper:

∂tu = ∂xv

and ∂tv = εu∂xxv + ∂xu − v − sin(x).

}
(B 4)

The linearized equations with frozen coefficients are

∂tû = ∂xv̂

and ∂tv̂= ε[u∗∂xxv̂ + (∂xxv)∗û] + ∂xû − v̂,

}
(B 5)

where u∗, v∗ is the base-state solution evaluated at the point (x∗, t∗) and û, v̂ are the perturbations
solutions

Û =
[

û
v̂

]
= eiξx+λtŨ, (B 6)

where Ũ ∈ R
2 satisfies the eigenvalue problem

[
0 iξ

iξ + ε∂xxv
∗ −εu∗ξ2 − 1

]
Ũ = λŨ. (B 7)

The eigenvalues of (B 7) could be easily calculated exactly but, provided that u∗ �= 0, they can be
estimated more easily from their asymptotic behaviour as |ξ | → ∞,

λ1 = −εu∗ξ2 + O(ξ ) and λ2 = det S(ξ )
λ1

= − 1
εu∗ + O(ξ−1), (B 8)

where S(ξ ) is the 2 × 2 matrix in (B 7). If u∗ > 0, then the eigenvalues satisfy

max
j=1,2

lim sup
|ξ |→∞

�λj(ξ )<∞, (B 9)

so (B 4) is linearly well-posed. On the other hand, if u∗ < 0, then λ1 is unbounded, so (B 4) is
ill-posed.

Note that, in analysing linear ill-posedness of (B 4), we consider the full linearization of the
equations, i.e. (B 5). One might be tempted to discard terms with lower-order derivatives in
the expectation that the growth of exponential solutions as |ξ | → ∞ ought to be dominated by
the highest-order derivatives in the equation. However, the counter-example

∂tu = ∂xxxu − ∂xxu

shows that this expectation is not valid, in general.
Nevertheless, for this example we may in fact analyse exponential solutions of (B 5) by first

considering the maximal-order linearized equations

∂tû = ∂xv̂

and ∂tv̂ = εu∗∂xxv̂ + ∂xû.

}
(B 10)

In each of the above equations, only terms of maximal order are retained, i.e. the terms (∂xxv)∗û
and v̂ have been dropped from the second equation because it contains the higher-order terms
∂xû and u∗∂xxv̂, respectively. The growth rate of exponential solutions of (B 10) satisfy the
same estimates (B 8), and the neglected lower-order terms do not change the leading-order
behaviour. Often calculations may be simplified by studying the maximal-order linearization as
an intermediate step.
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(b) Consequences of ill-posedness
(i) Restrictions on the existence of solutions

In order for an ill-posed initial value problem to have a solution, usually the initial conditions
must satisfy an extreme smoothness requirement, stronger than is physically acceptable in most
applications. It may be difficult to demonstrate this behaviour, in general, but, for the backwards
heat equation, we illustrate the behaviour with the following.

Proposition B.1. If ε �= 0, the initial value problem for (B1) with initial data u(x, 0) = ε| sin x|p has no
solution for any positive time interval unless the power p is an even non-negative integer.12

Proof. Suppose the 2π -periodic function f (x) has Fourier series f (x) ∼∑ cn einx. If equation (B 1)
with initial condition u(x, 0) = f (x) has a continuous solution for 0 ≤ t<η, it has the Fourier series
representation

u(x, t) =
∞∑

n=−∞
cn einx+n2t.

Moreover, for 0 ≤ t<η
∞∑

n=−∞
e2n2t|cn|2 = 1

2π

∫π
−π

|u(x, t)|2 dx<∞. (B 11)

Now if the Fourier coefficients of a function f (x) satisfy
∑

n2k|cn|2 <∞, then the derivatives
(d/dx)jf (x) are square integrable for j = 0, 1, . . . , k. But, provided p is not an even non-negative
integer, the proposed initial data | sin x|p has singular behaviour near x = 0. Specifically,
(d/dx)k| sin x|p is square integrable only if k< p + 1/2. It follows for the Fourier coefficients of
| sin x|p that, if k> p + 1/2,

∞∑
n=−∞

n2k|cn|2 = ∞.

This inequality is incompatible with (B 11), so the initial value problem cannot be solved on any
positive time interval. �

(ii) Grid-dependent computations

The attempt to solve an ill-posed PDE numerically produces unreliable, grid-dependent, results.
Such behaviour has been observed in various physical problems [7–10] where the formulation
was based on an ill-posed system of equations. However, in complicated problems like these,
usually computational resources are stretched to the limit, meaning behaviour under grid
refinement cannot be readily probed. Let us illustrate grid dependence on a much less demanding
problem, the toy problem (B 4) above.

If ε= 0 and with initial conditions

u(x, 0) = a and v(x, 0) = − sin(x)
2

, (B 12)

the (linear) equations (B 4) have the exact solution

u(x, t) = e−t/2

2

[
cos

(
x +

√
3t

2

)
+ cos

(
x −

√
3t

2

)]
+ a − cos x

and v(x, t) = e−t/2

2

[
cos

(
x +

√
3t

2
+ π

6

)
− cos

(
x −

√
3t

2
− π

6

)]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B 13)

The large-time limit of these solutions,

u(x, ∞) = a − cos x and v(x, ∞) = 0, (B 14)

12Of course, the general solution of (B 1) is a linear superposition of the solutions (B 2). We have no need for the general
solution since one counter-example is sufficient to invalidate condition (1) above.
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Figure 6. Numerical solutions of (B 4) with the distance from the asymptotic solution (B 15) in (a) and the fields at t = 100
in (b). Here a= 1.5, ε= 0.01 and the discretization is�x = 2π/100 and�t = 1 × 10−3.
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Figure 7. Numerical solutions of (B 4) with the distance from the asymptotic solution (B 15) in (a) and the fields at t = 12.5
in (b). Here a= 0.5, ε= 0.01 and the discretization is�x = 2π/100 and�t = 1 × 10−3. The vertical dashed line in (a) is
the first time that u= 0.

is also a steady-state solution of the nonlinear system (with ε > 0). If a> 1, then u(x, ∞)> 0, and
the calculations above suggest that the equations will be linearly well-posed. However, if a< 1,
then u(x, ∞) dips below zero over an interval, which suggests that the equations will be ill-posed.

Figure 6, where a = 1.5, and figure 7, where a = 0.5, confirm these expectations. They show
numerical solutions using a central-space forward-time explicit scheme on the periodic domain
x ∈ [−π ,π ] with a spatial resolution of �x = 2π/100. Each figure has two panels, one showing
the temporal evolution of the distance from the asymptotic solution,

Dist = max
{√

|u − u(x, ∞)|2 + |v − v(x, ∞)|2
}

, (B 15)

and the other plotting the two variables u, v at a specific (late) time during the computation.
In figure 6, the well-posed case, the numerical solution converges to the predicted steady-
state solution (B 14) within numerical accuracy. By contrast, in figure 7, after an initial decay,
ill-posedness asserts itself and causes the solution to blow up.

Regarding grid dependence, figure 8 shows another computation in the ill-posed case with
a coarser grid, �x = 2π/30. The solution appears to converge to the steady-state solution, just
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Figure 8. Numerical solutions of (B 4) with the distance from the asymptotic solution (B 15) in (a) and the fields at t = 100
in (b). Here a= 0.5, ε= 0.01 and the discretization is�x = 2π/30 and�t = 1 × 10−3. The vertical dashed line is the first
time that u= 0.

like in the well-posed case. In other words, the computations on the coarse grid hide the ill-posed
character of the underlying PDEs. This highlights that, in order to extract meaningful information
from numerical computations, a proper study of grid convergence must be first carried out.

Incidentally, if the grid is made finer than in figures 6 and 7, in the well-posed case a> 1 the
numerical solution converges to the steady-state solution with a smaller numerical error, while in
the ill-posed case it blows up sooner, as expected.
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