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ABSTRACT: Aryl sulfinates are precursors to a diverse number of
sulfonyl-derived arenes, which are common motifs in pharmaceut-
icals and agrochemicals. Here, we report a site-selective two-step
C−H sulfination sequence via aryl sulfonium salts to access aryl
sulfonamides. Combined with site-selective aromatic thianthrena-
tion, an operationally simple one-pot palladium-catalyzed protocol
introduces the sulfonyl group using sodium hydroxymethylsulfinate
(Rongalite) as a source of SO2

2−. The hydroxymethyl sulfone
intermediate generated from the catalytic process can be employed as a synthetic handle to deliver a variety of sulfonyl-containing
compounds.

Sulfur occurs in several different oxidation states; the most
stable hexavalent organosulfur compounds such as

sulfonamides, sulfones, and sulfonyl fluorides are abundant
motifs in pharmaceuticals and agrochemicals.1 Commonly,
sulfonyl functionality is introduced into arenes by electrophilic
aromatic substitution with reagents such as chlorosulfuric acid.2

The limitations of such transformations are the formation of
constitutional isomers and the low functional group tolerance.3

Synthetically valuable sulfonyl-containing molecules can be
obtained by using aryl sulfinates as versatile intermediates,
which can be formed from prefunctionalized arenes such as aryl
halides,4 aryl boronic acids,5,6 aryl Grignard reagents,7,8 or aryl
iodonium salts9 in the presence of sulfur dioxide surrogates.10

Additionally, primary11,12 and secondary13 sulfonamides can
generate sulfinates in situ acting as terminal functional groups.
However, the site selectivity of the synthesis of the starting
materials remains a challenge for many of those substrates.14−16

Here, we present a two-step C−H sulfination sequence of site-
selectively formed aryl thianthrenium salts under the action of a
palladium catalyst and the inexpensive industrial reagent
sodium hydroxymethanesulfinate (Rongalite) to synthetically
access the sulfinate salt precursor, hydroxymethylsulfone.
Subsequent electrophilic trapping of the sulfinate can be useful
for functional group diversification (Scheme 1).
Given that sulfinates can often be difficult to purify, strategies

for accessing sulfonamides among other valuable sulfonyl-
containing groups entail a two-step one-pot procedure by using
the aryl sulfinate in a subsequent transformation.17−23 Aryl
sulfinates can be obtained from the reaction of aryl nucleophiles
with SO2, which is a toxic gas and is therefore frequently
replaced with solid SO2 surrogates such as the adduct of SO2
with DABCO, called DABSO.24 Suitable aryl nucleophiles are
Grignard reagents,7 aryl-zinc compounds,8 and arylboronic
acids,5,6 all of which react well with DABSO. The generation of

arylsulfinates from aryl electrophiles such as aryl halides4 and
SO2 (surrogates) is also possible when using an additional
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Scheme 1. Synthetic Approaches to Aryl Sulfonyl Groups

Scheme 2. Formation of Phenyl Hydroxymethyl Sulfone en
Route to a Sulfonamidea

aTwo-step yield of the sulfonylation. Reaction conditions: (i)
sulfonium salt (0.2 mmol), Pd(dppf)Cl2 (5 mol %), Rongalite (1.5
equiv), i-PrOH (0.2 M), 60 °C, 12 h; (ii) Et3N (2.0 equiv),
morpholine (2.0 equiv), NCS (2.0 equiv), 25 °C, 1 h.
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reducing agent.19 An alternative route for generating sulfinates
from aryl electrophiles, without the need for an exogenous
reducing reagent, would be the reaction with a source of SO2

2−,
such as Rongalite (sodium hydroxymethylsulfinate), an
industrial bleaching and reducing reagent.25 While alkyl halides

have been converted to alkyl sulfinates by reaction with
Rongalite,26 methods for achieving aromatic sulfinylation with
Rongalite remain unexplored. Although previous methods for
making aryl sulfinates are practical when synthetic handles
already exist, selective installation of halo or boryl substituents

Scheme 3. Evaluation of Thianthrenium Salts for the Palladium-Catalyzed Coupling with Rongalite toward the Synthesis of
Sulfonamidesa

aReaction conditions: (1) sulfonium salt (0.1−0.2 mmol), Pd(dppf)Cl2 (5 mol %), Rongalite (1.5 equiv), i-PrOH (0.2 M), 60 °C, 12 h; (2) Et3N
(2.0 equiv), R1R2NH (2.0 equiv), NCS (2.0 equiv), 25 °C, 1 h. bYield of thianthrenation. cTwo-step yield of sulfonylation. dYield of the
thianthrenation from ref 28. eYield of the thianthrenation from ref 27. fYield of the thianthrenation from ref 29. gMeCN was used as a co-solvent.
hTwo-step yield of the sulfonylation with (2) hydroxylamine-O-sulfonic acid (4.0 equiv) and sodium acetate (7.0 equiv), at 25 °C for 1 h, instead
of Et3N and NCS.
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at a late stage can be challenging.14−16 The combination of site-
selective thianthrenation and the first example of a palladium-
catalyzed C−S bond forming reaction using Rongalite grants
access to aryl hydroxymethyl sulfones, masked sulfinates that
undergo a base-mediated fragmentation to release aryl
sulfinates.
In our previous work,27 we capitalized on the exquisite

selectivity of aromatic C−H thianthrenation for subsequent
site-selective functionalization in a two-step process to access
various functional groups via palladium or photoredox
catalysis.28−31 In this study, we envisioned a synthetic strategy
for installing a masked sulfinate via a cross-coupling between
aryl sulfonium salts and Rongalite. In contrast to our previous
sulfone synthesis,27 the sulfinate precursor can be used in situ
for further derivatization.32

We developed reaction conditions to synthesize aryl
hydroxymethyl sulfones [1 (Scheme 2)] from aryl thianthre-
nium salts via a palladium-catalyzed C−S bond formation by
employing Pd(dppf)Cl2 as the catalyst and Rongalite as the
coupling partner in iPrOH at 60 °C. The structure of 1 was
confirmed by NMR spectroscopy and high-resolution mass
spectrometry (see the Supporting Information). In the presence
of a base, intermediate 1 loses formaldehyde, and the aryl
sulfinate is generated in situ. The oxidative amination of the
resulting aryl sulfinate with Et3N (2.0 equiv), morpholine (2.0
equiv), and N-chlorosuccinimide (NCS) (2.0 equiv) at 25 °C
for 1 h resulted in sulfonamide 2 in 73% yield from the
corresponding aryl sulfonium salt TT-1 (Scheme 2).
The optimal reaction conditions proved to be effective for

generating a variety of structurally diverse sulfonamides with
respect to the sulfonium salts, using morpholine as a
representative amine component (Scheme 3A). Alkyl-sub-
stituted aryl sulfonamides (3−5) were obtained in 45−64%
yields. A range of electron-rich arenes reacted under our
conditions, providing aryl sulfonamides (6−9) in 51−65%
yields. ortho-Substituted sulfonamides 10 and 11 were obtained
in 50% and 77% yields, respectively. The hydrodefunctionalized
compound was identified as the major side product for these
substrates. Under our coupling conditions, the reactivity of
sulfonium salts exceeds the reactivity of standard palladium
cross-coupling partners, bromo and triflate groups, and

compounds 12 and 13 were obtained in 74% and 60% yields,
respectively. As a further demonstration of the utility of this
methodology, late-stage functionalization of several active
pharmaceuticals and agrochemicals was performed. For these
more complex sulfonium salts (15−20), the solubility in
isopropanol was low and proved to be an obstacle to achieving
full conversion. However, when using the polar aprotic
acetonitrile as a co-solvent, conversion improved and the
morpholino sulfonyl compounds were obtained in 20−67%
yields.
We tested our two-step one-pot procedure with a set of

primary (22−25), benzylic (26 and 27), and secondary (28−
37) amines (Scheme 3B), resulting in 45−91% yields. In
addition, the ammonia-derived sulfonamide 21 could be
obtained in 62% yield with hydroxylamine-O-sulfonic acid in
the presence of sodium acetate.
Finally, we evaluated several common electrophiles in the

synthesis of sulfone derivatives via the hydroxymethyl sulfone
intermediate (Scheme 4). The reaction with alkyl electrophiles,
such as alkyl bromides or epoxides, afforded the alkylaryl
sulfones (38−40) in 55−70% yields. Trapping with a heteroaryl
electrophile in a nucleophilic aromatic substitution reaction
yielded an aryl-heteroaryl sulfone (41) in 60% yield. Sulfonyl
fluoride (42) can be obtained in 72% yield by reaction with the
electrophilic fluorinating reagent N-fluorobenzenesulfoni-
mide.33

In conclusion, we have identified the readily available and
inexpensive SO2

2− source, Rongalite, as a coupling partner in
the palladium-catalyzed sulfination of aryl sulfonium salts.
Besides a highly selective C−H functionalization, the two-step
sequence grants access to valuable sulfinate precursors that can
subsequently be unmasked and afford sulfonamides, which are
important functional motifs in pharmaceuticals and agro-
chemicals among sulfones and sulfonyl fluorides.
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