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Abstract

Background: Flavonoid metabolites remain in blood for periods of time potentially long enough to allow interactions with
cellular components of this tissue. It is well-established that flavonoids are metabolised within the intestine and liver into
methylated, sulphated and glucuronidated counterparts, which inhibit platelet function.

Methodology/Principal Findings: We demonstrate evidence suggesting platelets which contain metabolic enzymes, as an
alternative location for flavonoid metabolism. Quercetin and a plasma metabolite of this compound, 49-O-methyl quercetin
(tamarixetin) were shown to gain access to the cytosolic compartment of platelets, using confocal microscopy. High
performance liquid chromatography (HPLC) and mass spectrometry (MS) showed that quercetin was transformed into a
compound with a mass identical to tamarixetin, suggesting that the flavonoid was methylated by catechol-O-methyl
transferase (COMT) within platelets.

Conclusions/Significance: Platelets potentially mediate a third phase of flavonoid metabolism, which may impact on the
regulation of the function of these cells by metabolites of these dietary compounds.
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Introduction

Following the ingestion of fruits and vegetables, flavonoids

(Figure 1) abundantly present in these dietary sources are

metabolised [1]. First pass metabolism in enterocytes lining the

wall of the small intestine and subsequent transformations within

liver hepatocytes generate O-methylated, glucuronidated and

sulphated metabolites (Figure 1) [2–9]. It is possible that flavonoid

metabolism is a multistep process that occurs in other locations

including their main transport system, blood. Plasma transit times

of flavonoid metabolites of 30 min-11 h [10,11] may allow these

compounds sufficient time to interact with cellular components of

blood. The plasma metabolite of quercetin, 49-O-methyl quercetin

(tamarixetin), has been reported to be taken up by erythrocytes

[12,13], and the ex vivo inhibition of platelet-leukocyte associations

following ingestion of cocoa flavonoids [14] suggest interactions of

the metabolites of these compounds with leukocytes.

As both erythrocytes [15,16] and leukocytes [17] contain

COMT, flavonoid metabolites may undergo further metabolism

within these cells. The structures of these compounds may also be

modified by platelets equipped with enzymes capable of modifying

molecules through addition of a methyl (COMT) [18,19], a

sulphate (phenol sulphotransferases P-ST or SULT1A1) [20] or a

glucuronide (glucuronosyltransferases) [21] group. Glucuronide or

sulphate groups conjugated to flavonoids within platelets would

deter transport of these compounds across the membrane,

allowing inhibition of platelet signalling by metabolites. Modifica-

tion of these compounds by metabolic enzymes within blood cells

including platelets have not, however, been examined. Platelets

play a central role in haemostasis [22,23] through their

involvement in the repair of minor vascular injuries, and they

also mediate the pathophysiological process, thrombosis [24,25],

when their unregulated activation leads to the formation of

aggregates which block arteries. These cells also represent targets

for the physiological actions of flavonoid metabolites [10,26]. In

the present study, we have investigated the metabolic capabilities

of platelets by studying their ability to transform the structures of

the common dietary flavonoid, quercetin and a plasma metabolite

of this flavonol, tamarixetin.

Results

Quercetin and tamarixetin are internalised by platelets
To determine whether quercetin and tamarixetin were able to

gain access to the platelet cytosol containing metabolic enzymes,

the intrinsic fluorescent properties of quercetin and tamarixetin

[27] were utilised to visualise their potential presence within these

cells. Following incubation with quercetin (100 mM), tamarixetin

(40 mM) or the solvent control, dimethylsulphoxide (DMSO: 0.2%

(v/v)) for 30 min, a series of images in the z dimension were
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obtained at 0.2 mm intervals through the membrane and cytosol of

platelets. A single image of a layer from the middle of the series

illustrated internalisation of quercetin (Figure 2B. i-iii and 2C. i-iii)

and tamarixetin (Figure 2D. i-iii and 2E. i-iii) and magnified

images showed greater detail (quercetin: Figure 2C. i-iii) and

(tamarixetin: Figure 2E. i-iii). Low levels of auto-fluorescence were

detected in untreated platelets (Figure 2A.i-iii).

Quercetin and tamarixetin associate with platelets
The putative ability of platelets to metabolise quercetin and

tamarixetin was investigated by HPLC analysis which involved

measuring the presence of these compohunds and potential

metabolic products in extracts from platelets treated with the

flavonol and metabolite. Platelets were treated with quercetin

(50 mM), tamarixetin (50 mM), or DMSO (0.2% (v/v)) for 5, 40, 60

and 120 min, lysed and spiked with myricetin (50 mM). Quercetin

and tamarixetin were identified at all incubation periods in platelet

extracts (through comparison with appropriate standards), but were

not modified. The retention times (RT) of quercetin (Figure 3A) and

tamarixetin (Figure 3B) were 46.1 and 51.6 min respectively and

that of the external control spike, myricetin (Figure 3F) was 39 min.

The plasma control (Figure 3C) did not contain any compounds and

HPLC analysis of standards showed single peaks at the respective

RT stated above (Figure 3D, E and F). UV spectra of quercetin,

myricetin and tamarixetin measured at 360 nm confirmed the

presence of these compounds in platelet extracts.

Quercetin is metabolised by platelets
Internalisation of quercetin and tamarixetin by platelets raised

the possibility that the flavonol and metabolite may be metabolised

by COMT, P-ST or glucuronidases within these cells. The

concentration and analysis of platelet extracts by HPLC alone was

insufficiently sensitive to detect metabolites of compounds, so MS

was incorporated following HPLC separation. Platelets were

incubated for 5, 40, 60 and 120 min with quercetin (50 mM) or

tamarixetin (50 mM), before lysis and extraction. Quercetin

aglycone (Figure 4A) was converted into a compound that was

detected at an RT (7.5 min) and m/z (317) identical to those of

tamarixetin. The platelet metabolite was detected at low intensity

between 5 (Figure 4A) and 40 min (data not shown) with the ion

detected at higher intensity after 60 min, suggesting a higher

internal concentration (Figure 4B). This species was not detected

at 0 and 120 min. Tamarixetin was not modified by platelets (data

not shown). Other plasma metabolites of quercetin, quercetin-39-

sulphate and quercetin-3-glucuronide were not detected within

platelets treated with either the aglycone or methylated metabolite

(data not shown).

The intensity of the platelet metabolite and quercetin (RT:

7 min; m/z: 303) increased together (Figure 4A and 4B) possibly

due to increased uptake of quercetin over 5–60 min, and the

Figure 2. Platelets internalise quercetin and tamarixetin.
Platelets suspended to a density of 26108 cells.mL21 were incubated
with quercetin (100 mM: (B.i-iii) and (C.i-iii)), tamarixetin (40 mM: (D.i-iii)
and (E.i-iii)) or solvent control (DMSO (0.2% (v/v)): (A.i-iii)) for 30 min.
Fluorescence was detected at 480 nm–500 nm after excitation at
430 nm with an argon laser. Images of a single middle layer from z-
stacks are shown (DMSO control: (A.i-iii), quercetin: (B.i-iii) tamarixetin:
(C.i-iii)) and higher magnifications of areas of interest are also shown
(quercetin: (D.i-iii), tamarixetin: (E.i-iii)). Images represent results from at
least 3 individual experiments.
doi:10.1371/journal.pone.0009673.g002

Figure 1. The structures of quercetin aglycone and plasma
metabolites. Quercetin is part of the flavonol subclass of flavonoids.
Metabolites of quercetin include methylated (49-O-methyl quercetin:
tamarixetin), sulphated (quercetin-39-sulphate) and glucuronidated
(quercetin-3-glucuronide) counterparts.
doi:10.1371/journal.pone.0009673.g001

Platelets Metabolise Quercetin
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intensity of the external control spike, myricetin (RT: 6.5 min; m/

z: 319) remained unmodified (compare Figure 4A to Figure 4B).

To determine that the detected metabolite was due to modification

of quercetin by platelets, untreated platelets (4A inset: plasma

control) and quercetin aglycone (4D.ii inset) were examined to

confirm the absence of tamarixetin. The plasma control extracted

ion chromatogram (EIC) was gated at the RT range for quercetin,

tamarixetin and myricetin (4A inset), and the quercetin standard

EIC was gated at the RT for tamarixetin (4D.ii inset). Very low

levels of erythrocytes (,3% of total cell volume) and leukocytes

(,0.02% of total cell volume) which contain COMT [15–17] were

present within platelet preparations, so it is unlikely, that these cells

were responsible for metabolism of quercetin. Taken together,

these data indicated that quercetin may be methylated at the B

ring C-49 position within platelets.

Discussion

The modification of flavonoid metabolites by platelets circulat-

ing in blood is possible as these cells contain metabolic enzymes

[18–21]. A clear understanding of the metabolism of flavonoids

within plasma may provide greater insight into their pharmaco-

kinetics. It has been reported that quercetin metabolites are

retained within plasma for periods of time ranging from 30 min -

11 h [10,11], and these slow rates of excretion together with

bioavailability profiles of metabolites of this flavonol (100 mg of

quercetin from onions or quercetin-49-glucoside - 7-7.6 mM

quercetin in plasma (11)) suggest they may accumulate with

repeated dietary intake. Therefore, inhibition of signalling proteins

by quercetin metabolites may be due to the concentration of their

levels within cells.

The present study is the first to demonstrate flavonoid

internalisation and metabolism by platelets. Flavonoids and

metabolites have been shown to be taken up by erythrocytes

[12,13], but the structures of these compounds were not reported

to be modified within these cells. Other cells, however, including

dermal fibroblasts [28], neural astrocytes and microglia [29],

intestinal enterocytes [2–6] and liver hepatocytes [7–9] have been

shown to generate methylated, sulphated and glucuronidated

metabolites of flavonoids.

Quercetin was transformed into a compound with a similar

mass as a plasma metabolite of the flavonol, 49-O-methyl quercetin

(tamarixetin), indicating methylation of the B ring catechol group

(see Figure 1). Methylation of quercetin by platelets is feasible as

these cells contain COMT [18,19]. Although bioavailability

profiles observed following the ingestion of quercetin supplements

[10] or dietary sources [11,26] indicate that quercetin aglycone is

not present physiologically, modification of the structure of this

flavonoid by platelets suggests that more extensive metabolism of

quercetin metabolites may occur within these cells. Therefore, the

inhibition of platelet function by quercetin may occur if this

compound was produced as an intermediate during the further

metabolism of internalised metabolites by these cells. The 49-O-

methylated metabolite, tamarixetin, was not altered, but the ability

of this compound to gain access to the platelet cytosolic

compartment (Figure 3) demonstrated the potential for modifica-

tion of the structure of this metabolite through the addition of

sulphate or glucuronide groups on the A–C ring complex (see

Figure 1).

In the present study, a 2-fold increase in the intensity of the

platelet metabolite ion between 5 and 60 min (compare Figure 4A

and 4B) was observed, but the quercetin ion was detected at high

intensity at all incubation periods. These changes in intensity were

suggestive of similar changes in levels of compounds. Typically,

studies investigating flavonoid metabolism demonstrate a reduc-

tion in levels of the compound undergoing metabolism concur-

rently with an increase in levels of the metabolic product.

Previously reported metabolism of quercetin by dermal fibroblasts

demonstrated increasing levels of the flavonol for up to 6 h whilst

levels of generated metabolites increased from 2–18 h [28], and in

Figure 3. Quercetin and tamarixetin associate with platelets. Quercetin (50 mM) and tamarixetin (50 mM) were incubated with platelets
(86108 cells.mL21) for 5, 40, 60 or 120 min prior to lysis with 50% (v/v) methanol and 0.1% (v/v) HCl. Compounds within extracts obtained from
platelet lysates spiked with myricetin (external control compound of similar structure) were separated over 60 min using HPLC analysis with
photodiode array detection. Chromatograms show quercetin ((A)-RT: 46.1 min) and tamarixetin ((B)-RT: 51.6 min) associated with platelets through
comparison with standards (quercetin: D; tamarixetin: 3E), untreated platelets (plasma control: C) and the external control, myricetin ((A, B)-RT:
39 min; F: standard). Insets show UV absorbance spectrum (l: 360 nm) of detected compounds. Data represent 3 individual experiments.
doi:10.1371/journal.pone.0009673.g003

Platelets Metabolise Quercetin
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neural cells levels of quercetin declined steadily over a period of

12 h as metabolite levels increased for 18 h [29]. Loss of the

metabolic product after 120 min, potentially indicates degradation

or externalisation of this compound after 60 min. The production

and export of methylated quercetin metabolites (isorhamnetin and

tamarixetin) by neural cells has been reported [29].

We have demonstrated that platelets are capable of metabolis-

ing quercetin potentially through methylation. As flavonoid

metabolism within the gut (Phase I) and liver (phase II) is well-

established, this finding suggests that the negative modulation of

platelet function by flavonoid metabolites [10,26] may be

mediated by these compounds generated within these cells and

after they are internalised. Quercetin metabolite inhibitory

mechanisms for platelet function may include antagonism of

surface receptors; they may bind to the thromboxane A2 receptor,

as the parent flavonoid has been demonstrated to bind to this

receptor [30,31]. We conclude that a third phase of flavonoid

metabolism involving platelets and other blood cells containing

metabolic enzymes may occur in vivo.

Materials and Methods

Ethics Statement
Blood was obtained from healthy aspirin-free human volunteers

with written informed consent, following approval from the

University of Reading Research Ethics Committee.

Figure 4. Quercetin is metabolised by platelets. Platelets (86108 cells.mL21) pretreated with quercetin (50 mM) and tamarixetin (50 mM) for 5,
40, 60 or 120 min were lysed with 50% methanol and 0.1% formic acid. Extracts from lysed platelets were separated by HPLC utilising UV detection (l:
210 nm) over a period of 20 min, before identification of the protonated masses of compounds using mass spectrometry. Mass spectrums show the
([M+H+]+) of quercetin (molecular mass: 303 Da), the platelet metabolite (molecular mass: 317 Da) and the external control spike, myricetin (molecular
mass: 319 Da) at 5 min (A: with plasma control inset) and 60 min (B). EIC and mass spectrums of standards show tamarixetin (EIC: C.i-RT: 7.5 min; mass
spectrum: C.ii-molecular mass: 317 Da), quercetin (EIC: (D.i)-RT: 7 min; mass spectrum: (D.ii)-molecular mass: 303 Da) with inset MS spectrum showing
the absence of tamarixetin (ii) and myricetin (EIC: (E.i)-RT: 6.5 min; mass spectrum: (E.ii)-molecular mass: 319 Da). Data represent 3 individual
experiments using platelets isolated from 3 different blood donors.
doi:10.1371/journal.pone.0009673.g004

Platelets Metabolise Quercetin
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Materials
Quercetin, tamarixetin and myricetin were purchased from

Extrasynthese (Genay, France) and solubilised in DMSO from

Sigma (Poole, UK). Acetonitrile, formic acid, prostacyclin (PGI2),

sodium chloride (NaCl), hydrated disodium hydrogen phosphate

(Na2HPO4.12H2O) and magnesium chloride (MgCl2) were also

obtained from Sigma. Quercetin-39-sulphate was prepared as

previously described [32] and queretin-3-glucuronide was purified

from French beans by preparative HPLC. Hydrochloric acid

(HCl) and methanol were from Fisher Scientific (Leicestershire,

UK). Potassium chloride (KCl) and sodium hydrogen carbonate

(NaHCO3) were bought from Fisons Plc (Loughborough, UK),

and VectorShieldH was from Molecular Probes (Invitrogen Ltd.;

Paisley, UK).

Analysis of flavonoid and metabolite internalisation
Washed platelets isolated as described previously [33] and

suspended to a density of 26108 cells.mL21 in modified Tyrode’s-

HEPES (134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl,

12 mM NaHCO3, 20 mM HEPES, 1 mM MgCl2, pH 7.3)

buffer, were incubated with quercetin (100 mM), tamarixetin

(40 mM) or DMSO (0.2% (v/v)) for 30 min. Cells were centrifuged

at 14006g, the supernatant was removed and pellets were washed

twice with Tyrode’s-HEPES buffer before fixation in 3.7%

paraformaldehyde for 20 min. To preserve the intrinsic fluores-

cence of quercetin and tamarixetin, fixed cells were treated with

VectorShieldH prior to mounting for confocal microscopy analysis.

Fluorescence was excited at 430 nm with an argon laser and

emitted at 480 nm–500 nm. Three dimensional representations of

platelets were constructed by the generation of sections in the z

dimension and compiled into z-stacks.

HPLC and MS analyses
Platelets isolated as described previously [33] were suspended to

a density of 86108 cells.mL21 before treatment with quercetin

(50 mM), tamarixetin (50 mM), myricetin (50 mM) or DMSO

(0.2% (v/v)) for 5, 40, 60 and 120 min, in the presence of

0.05 mg.mL21 PGI2, to prevent activation. Treated platelets were

centrifuged at 14006g for 10 min at room temperature to remove

excess compound and resuspended with 0.05 mg.mL21 PGI2 in

modified Tyrode’s-HEPES buffer. Platelets and compounds were

incubated at 30uC for 30 min and a final centrifugation step

(14006g for 10 min) was performed to remove residual com-

pound. Platelet pellets were lysed rapidly on ice in aqueous

methanol (50% (v/v)) containing 0.1% HCl and left to solubilise

for 30 min. For samples which underwent LC prior to MS

analysis, 0.1% formic acid was utilised instead of 0.1% HCl to

allow positive ion mode analyses to be conducted. The lysate was

centrifuged (14006g for 10 min at 4uC) and the supernatant/

extract was retained for LC and MS analyses. Platelet extracts

were spiked with 50 mM myricetin, an internal control compound

of similar structure.

Reversed phase HPLC analyses used to demonstrate flavonoid

association with platelets were conducted using an Agilent 1100

LC system containing a Novapak C18 column. The total elution

time for compounds detected using a photodiode array and UV

detection (max. absorbance: 360 nm) was 60 min. HPLC

separation performed prior to MS analysis were conducted using

a gradient increasing buffer B (5% H2O, 94.9% acetonitrile and

0.1% formic acid) from 5% to 100% (and decreasing buffer A

(99.9% H2O and 0.1% formic acid)) within 20 min. Eluted species

were detected by UV spectroscopy (l: 210 nm). Appropriate

flavonoid and metabolite standards were used to identify

compounds, and the LC/MS system was calibrated externally

using agilent tune mix (G2421A) that generated ions at m/z 118,

322, 622 and 922. A time of flight (TOF) mass spectrometer

(Microtof) was utilised to determine masses of compounds. The

molecular masses of quercetin and metabolites are between 300

and 500 daltons (Da), so a mass/charge (m/z) scan range of 100–

1100 Da was used, and the instrument was calibrated in positive

ion mode as extracted compounds were protonated. The Data

Analysis (DA) software package (Bruker, Daltonics) was utilised to

isolate masses and chromatograms of individual compounds, and

masses were isolated from total ion chromatograms (TIC) by

gating the retention time (RT) of individual compounds within an

EIC.
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