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Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex

phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary

change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during

evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how

multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution.

Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines

increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is

compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into

account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much

more complex view of how populations respond to selection.
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Evolutionary change can only occur in the presence of variation,

and when dealing with complex multivariate phenotypes (con-

sisting of multiple traits) the patterns and magnitude of genetic

covariation between traits can radically influence the course of

evolution (Lande 1979; Felsenstein 1988). The standing genetic

covariation of a given population depends on its evolutionary

history, and can be altered by selection, drift, mutation, and re-

combination (Turelli and Barton 1994; Jones et al. 2004, 2014).

These changes in covariation, in turn, can alter how a population

responds to further selection or other evolutionary processes. So,

if we are to understand how populations evolve and how the cur-

rent phenotypic diversity observed in nature came to be, then the

∗These authors contributed equally to this work.

question of how genetic variation changes under various evolu-

tionary processes becomes central to biology (Mitchell-Olds et al.

2007).

How a single trait responds to directional selection is a well-

studied problem (Falconer and Mackay 1996). In general, we ex-

pect the response to selection to gradually erode genetic variation,

as the many loci influencing a given trait go to fixation and, in the

absence of mutation, preclude further evolutionary change (Bul-

mer 1971). If mutation is present and of sufficient magnitude, the

variation removed by selection can be replenished and the rate of

evolutionary change remains constant, at least for a time.

A theory on how directional selection and covariation interact

to produce the response to selection on multiple traits was pro-

posed by Lande (1979). This author related the standing genetic
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covariation, represented by the additive genetic covariance matrix

(G), to the selection gradient (β), a vector of selection coefficients

acting independently on each trait, to predict the response to se-

lection (�z̄). The Lande equation (�z̄ = Gβ) predicts a response

that is dependent on covariation, which means that selection can

even lead to changes in traits that were not directly under selec-

tion (Cheverud 1984). Since more traits are presumably affected

by more loci, in the multivariate case genetic architecture can

become quite complicated, and consequently the erosion of ge-

netic variation by selection is much more complex (Wolf et al.

2000; Pavlicev et al. 2008; Wagner and Zhang 2011). This con-

flict between selection and the maintenance of genetic variation

in multiple traits remains a fundamental and puzzling problem in

evolutionary biology (Walsh and Blows 2009).

One way to investigate the effects of selection on covariation

is to use artificial selection experiments. Wilkinson et al. (1990)

used experimental Drosophila populations selected for body size

and found significant differences in correlation patterns between

the different directions of selection, and even changes in the sign of

some genetic correlations. Notwithstanding, analyzing the same

dataset, Shaw et al. (1995) showed that the differences found by

Wilkinson et al. (1990) are compatible with drift. Bryant et al.

(1986) and Whitlock et al. (2002) also used Drosophila to show

that both an increase and a decrease of genetic variation is possible

under drift, probably due to genetic interactions like dominance

and epistasis (Cheverud and Routman 1995). Taken together, these

results present a conflicting picture on how covariation evolves,

and on the potential evolutionary consequences of these changes.

On a macroevolutionary scale, retrospective studies have at-

tempted to quantify the interplay of genetic constraints and pheno-

typic divergence. Pitchers et al. (2014) found no consistent pattern

on how genetic covariation and intensities of selection affect the

magnitude of evolutionary response. However, they did not take

the multivariate aspect of the phenotype space into consideration

and, since the orientation of selection alters the available variation

for response, this can explain the lack of a clear pattern. As for

the general pattern of bivariate correlations, Roff and Fairbairn

(2012) surveyed estimates of selection gradients and correlations

to test the hypothesis that high correlation between co-selected

traits are advantageous, and found that traits that are selected in

the same direction indeed tend to be more correlated than average.

A well-studied case is the mammalian cranium, where covaria-

tion patterns tend to be stable (Porto et al. 2009), and phenotypic

divergence is frequently size related and aligned with the main

axis of within-population covariation, the genetic line of least re-

sistance (Schluter 1996; Marroig and Cheverud 2010; Marroig

et al. 2012; Porto et al. 2013). If this alignment of divergence

and variation is a consequence of genetic constraints limiting the

response to selection, or a case of selection altering covariation,

or both, is still an open question.

Recently, several attempts have been made to directly in-

vestigate the behavior of the G-matrix under directional selec-

tion. Careau et al. (2015) used a large population of mice to select

for changes in a multivariate behavior trait, and showed that se-

lection reduced the available variation for adaptive response, sig-

nificantly reducing the rate of adaptation after a few generations

and reducing the amount of variation in the direction of selection.

This is consistent with a traditional model of selection depleting

variation extended to a multivariate context: even when variation

is present in all traits in a complex system, combinations of traits

may lack additive variation to respond to selection (Hine et al.

2011). On the other hand, Assis et al. (2016) used historical and

modern samples of wild chipmunks separated by 100 generations,

and showed that both the mean values of several cranium traits

and the covariation between them had been altered by natural se-

lection. Surprisingly, multivariate variation had increased in the

direction of selection, suggesting that past selection can influence

the standing covariation in a nonintuitive way, potentially facili-

tating further evolutionary responses in the same directions. These

conflicting results regarding the interaction of multivariate varia-

tion and directional selection can be understood in light of recent

theoretical work that allows for complex genetic architectures.

Heritable genetic covariation is determined by aspects of the

genetic architecture like pleiotropy and linkage disequilibrium.

Complex multivariate phenotypes, like skeletal traits, are influ-

enced by a large number of loci, and covariation among these traits

can be reasonably predicted from the pattern of shared pleiotropy

(i.e., traits that have more loci affecting them simultaneously

tend to be more correlated (Kenney-Hunt et al. 2008)). Porto

et al. (2016) tested this hypothesis directly, comparing the level

of pleiotropy between two species with different levels of pheno-

typic integration, and found that the more integrated species also

showed higher levels of pleiotropy. In addition to pleiotropy, gene

interactions (epistasis) can significantly influence covariation and

alter patterns of pleiotropy (Wolf et al. 2005, 2006; Pavlicev et al.

2008). Simulations using the information that epistatic interac-

tions can provide variation in pleiotropy and covariance patterns

have shown how selection can promote changes in pleiotropy

that can change covariation (Jones et al. 2014; Melo and Marroig

2015). Furthermore, Pavlicev et al. (2011) proposed a model for

phenotypic evolution of multiple traits accounting for the influ-

ence of epistasis on the covariation between traits that shows how

natural selection can increase the amount of variation along the

direction of selection, exactly the kind of effect observed in Assis

et al. (2016) and Roff and Fairbairn (2012).

In this article, we attempt to elucidate how directional selec-

tion interacts with and molds covariation using an experimental

approach. Since selection on size is responsible for major morpho-

logical diversification (Baker et al. 2015), we used an evolutionary

experimental approach in mice to investigate how evolutionary
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changes in a multivariate system of phenotypic traits alters the

pattern and magnitude of association between these traits. Mice

lines were selected for an increase and for a decrease in over-

all size, and we focused on the evolutionary consequences of the

changes in standing covariation in the cranium. Under a traditional

additive model of covariation, we expect selection to deplete vari-

ation in the direction of selection, while under a more complex

genetic architecture, including epistatic variation in pleiotropy,

we expect the variation to be reorganized and increased in the

direction of selection. This experimental approach allows us to

understand the maintenance and reorganization of variation in a

complex system and its consequences to evolution.

Materials and Methods
EXPERIMENTAL SELECTION LINES

This study was performed using animals from a long-term exper-

iment involving one control line and two pairs of selected lines.

In total, we used five groups: one control line t and four selected

lines: upwards s’, downwards s, upwards h’, and downwards h.

In 1985, a control population t with an effective population size

Ne ≈ 40 was founded with breeders chosen at random from an

CF1 outbred population of Ne ≈ 80 at the Facultad de Ciencias

Veterinarias (Universidad Nacional de Rosario, Argentina). Then,

two line-pairs of two-way individual selection for body weight at

49 days of age (s and h: downwards selected lines; s’ and h’:

upwards selected lines) were founded from control line t, with

mice drawn from generation three for s and s’ and from gener-

ation eight for h and h’ (Fig. S1, Oyarzabal 2011; Renny et al.

2014).

For control t line, effective population size was maintained

by randomly choosing 20 individuals of each sex and avoiding

full-sib mating. Selection on overall size was performed choosing

the heaviest (for upwards lines) or lightest (for downwards lines)

individuals for reproduction in each generation. Average effec-

tive population size of selected lines was maintained selecting six

breeders of each sex for the downwards lines and four breeders

of each sex for upwards lines. The difference in the number of

breeders between upwards and downwards lines was due to the

lower fertility of the lightest mice (Bernardi et al. 2009). Full-sib

mating was also avoided in all the selected lines, except for the

first generations of h and h’ lines. For all matings, females were

exposed to males in the ratio of 1:1. All the animals were cho-

sen regardless of their inbreeding coefficients and the selection

differentials. After ≈ 50 generations, the increase in inbreeding

coefficients and the standard cumulative selection differentials

were similar for selected lines (Table S1). See supporting infor-

mation for additional information on number of weighted animals

per generation (Fig. S2) and on average weight per generation

(Fig. S3) for the full experiment.

SAMPLES

We had access to ≈ 65 individuals from around the 50th genera-

tion of each line (for a total sample of 329), with well-balanced

sex ratios (see Table S2 for details). Mice were euthanized by

cervical dislocation according to the American Veterinary Med-

ical Association 2007 Guidelines on Euthanasia. We prepared

all specimens in a dermestarium and removed their cranium and

mandible. We collected 32 homologous anatomical landmarks in

both sides of their cranium (Fig. S4, but see Cheverud (1995)

and Garcia et al. (2014) for more details and the rationale for

choosing these landmarks). To reduce measurement error, each

anatomical marker was captured twice using a Microscribe MX

3D digitizer (Immersion Corporation, San Jose, California). We

calculated a set of 35 euclidean distances (Fig. S4) between the

landmarks using the average between both sides of the cranium for

symmetrical distances, and the average between replicas of each

individual. We opted for linear distances instead of following the

current trend of using landmark data in a Geometric Procrustes

Analysis (GPA) because GPA tends to disperse local variation and

lead to misleading conclusions in regards to integration and mod-

ularity (see van der Linde and Houle (2009) and Márquez (2012)

for details and possible solutions inside a landmark approach) and

so that our results would be comparable to other assessments of

integration in the mammalian cranium (Porto et al. 2009, 2013).

DIRECTION OF PHENOTYPIC DIVERGENCE

The multivariate phenotypic mean is a vector consisting of the

mean of each cranial trait. To identify the direction in multivari-

ate space for the phenotypic divergence between the two-way

divergent selections, we calculated the vector of mean phenotypic

divergence (δz). Each element of this vector was calculated as

the difference between the pooled multivariate phenotypic mean

of the lines selected for increase in weight and the pooled mul-

tivariate phenotypic mean of the lines selected for decrease in

weight. We test if δz is indeed related to cranial size by com-

paring this vector with an isometric vector of equal loadings in

all traits, which represents a direction of isometric size variation.

High correlation between δz and the isometric vector indicates δz

is related to cranial size. We also follow Mosimann (1970) and

use the geometric mean of the cranial distances as a measure of

overall isometric cranial size on an individual. This measure is

highly correlated with the centroid size of cranial landmarks.

COVARIANCE MATRICES

Phenotypic and additive genetic covariance matrices (P- and

G-matrices) for cranial traits of each line were obtained using

a Bayesian sparse factor mixed model (BSFG). This is a robust

method for estimating high dimensional G- and P-matrices from

limited samples proposed by Runcie and Mukherjee (2013) and

implemented in MATLAB (2013) by the authors. We removed
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differences due to age, generation, and sex by using these groups

as fixed effects in the mixed model. The models ran for 3000

iterations of burn in, followed by 100,000 iterations with thinning

interval of 100. Convergence was assessed by inspecting trace and

auto-correlation plots. From this model, we obtained a posterior

distribution of 1000 covariance matrices for each line that sum-

marizes the uncertainty in the estimation of respective covariance

matrices, and we used this distribution in all posterior analysis

to generate posterior distributions for all the calculated statistics.

This allows us to take uncertainty into account when comparing

the lines. Default priors had little effect on the covariance matri-

ces, and mean posterior matrices were similar to matrices from a

traditional MANCOVA.

Here we use P-matrices as a proxy for the respective additive

genetic matrices (G-matrix), which are the important parameter in

multivariate evolution. This was done because when calculating

the effective sample size of our pedigree using the approxima-

tions from Raffa and Thompson (2016) we arrived at very low

effective samples: around one sibpair for each individual line and

around ten sibpairs for the full pedigree. This means that the

pedigree for the sample we measured is such that G-matrices for

each line are estimated with far too much uncertainty to be useful

(even when using the BSFG model). Fortunately, P-matrices are

probably a better estimate of the underlying genetic covariance

pattern (Roff 1995; Marroig et al. 2012) and are informative on the

underlying pleiotropic structure of genetic effects (Kenney-Hunt

et al. 2008; Porto et al. 2016). To test the validity of this ap-

proximation, we calculated a pooled within-group P-matrix and a

pooled within-group G-matrix estimated by the BSFG model us-

ing all of the individuals and controlling for differences in means

between the lines. We then compare these matrices to confirm

that the P- and G-matrices are similar. Matrix correlation between

the pooled-within P- and pooled-within G-matrices was 0.95

for Random Skewers method (Cheverud and Marroig 2007, see

Table S3). Matrix correlation between the posterior mean P-

matrices of each line and the pooled-within G-matrix were all

above 0.86 (Table S3), supporting the idea that G and P are simi-

lar. This hypothesis of similarity between P and G has been tested

several times for this set of traits, and has been shown to be quite

accurate in rodents (Garcia et al. 2014), and in mammals over-

all (Cheverud 1988; Porto et al. 2009, 2016, 2015; Marroig and

Cheverud 2010; Hubbe et al. 2016).

MATRIX COMPARISONS

Since we are interested in changes in the influence of the covari-

ance patterns on evolution, we assess the overall level of simi-

larity between the covariance matrices for all the lines using two

comparison methods that have immediate evolutionary interpre-

tations, the Bayesian versions of the Random Skewers method

and Krzanowski method proposed in Aguirre et al. (2014). The

Random Skewers method (Cheverud and Marroig 2007) uses the

Lande equation to simulate the response to random selection gra-

dients, and the responses to the same selection gradient are then

compared using vector correlations (the cosine of the angle be-

tween them) for the two matrices being compared. Aguirre et al.

(2014) uses these random responses to identify directions in which

the set of matrices being compared differ in their amount of avail-

able variation. So, this method allows us to explore differences in

the distribution of variation in multiple directions of the pheno-

type space. The Krzanowski method (Krzanowski 1979) measures

how similar the spaces spanned by the first several eigenvectors of

the matrices being compared. For two matrices, the Krzanowski

correlation is the mean of the squared vector correlations between

all pairs of the first eigenvectors, usually the first n/2 − 1, where

n is the dimensionality of the matrices. A Krzanowski correlation

of 1 means the spanned spaces are exactly congruent, and a corre-

lation of zero means the spaces are orthogonal. We can expand this

method to several matrices by defining the H matrix (Krzanowski

1979):

H =
p∑

i=1

Ai At
i

where Ai is a column matrix containing the first n/2 − 1 eigen-

vectors of the i-th matrix being compared, p is the number of

matrices being compared, and t denotes matrix transposition. The

expectation of H is p times the covariance matrix of eigenvec-

tors, and H/p tends to this covariance matrix for large p. The

eigenvalues of H are bounded by p, and any eigenvalue equal to

p indicates the associated eigenvector can be reconstructed by a

linear combination of the eigenvalues included in the Ai matrices,

and so is shared by all the matrices. An eigenvalue of less than

p indicates that at least one of the Ai matrices can not span that

eigenvector, and so the space is not completely shared between

all the matrices. To test if our matrices share the same subspace,

we follow Aguirre et al. (2014) and construct a randomized set of

matrices under the assumption that all matrices are sampled from

the same population (see the supporting information in Aguirre

et al. (2014)). Observed and randomized eigenvalues of H are

compared using posterior credibility intervals. If the randomized

and observed eigenvalues of H are the same, we conclude the

matrices share the same subspace.

EVOLUTIONARY STATISTICS

To assess the evolutionary consequences of the selection regimes

on the covariance matrices, we calculated a series of evolution-

arily informative statistics. In the following, G is an arbitrary

covariance matrix, G−1 is the inverse of G, tr (G) is the trace

of G, λG
i is the i-th eigenvalue of G, < ·, · > represents the dot

product between two vectors, cos(·, ·) is the cosine of the an-

gle between two vectors (or their vector correlation), and E[·]β
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represents the expected value over random β vectors with unit

norm. (A) The magnitude of integration, calculated as the mean

of the squared correlations between all traits. (B) The propor-

tion of variation associated with the leading eigenvalue (E1% =
λG

1 /tr (G)). (C) The ability of the populations to respond in

the direction of selection, calculated as the mean flexibility
(sensu Marroig et al. 2009), which is given by the mean vector

correlation between random selection gradients and their re-

spective expected response to selection given the Lande equa-

tion ( f̄ = E[cos(Gβ, β)]β). (D) The available variation for direc-

tional selection, calculated as the mean evolvability (Hansen and

Houle 2008), which is given by the mean projection of the re-

sponses to the random selection gradients on these same selection

gradient (ē = E[< Gβ, β >]β). The mean evolvability can also

be calculated as the trace of the matrix being considered divided

by the number of dimensions, so it is clearly a measure of total

variation (Hansen and Houle 2008). Also, from the definition of

the cosine between two vectors, flexibility in the direction of a

given unit β can also be expressed as the ratio between evolv-

ability in the direction of β and the norm of Gβ. We used a set

of 1000 random selection gradients to calculate mean flexibility

and mean evolvability. We then used these statistics to investigate

how directional selection is affecting the evolutionary potential of

each line.

We also evaluated how the direction of phenotypic divergence

was related to the standing variation in the P-matrices. In this sym-

metrical directional selection case (i.e., where the two directions

of selection are aligned but opposite) the direction of divergence

δz describes the same direction as �z. Furthermore, because our

selection gradient is related to cranial size, the direction of pheno-

typic divergence is also a better predictor of the actual direction of

selection than the selection gradient estimated indirectly from the

response to selection and the G-matrix using the Lande equation

(see supporting information for more details, and Marroig et al.

(2012)). We used three directional metrics, (1) we calculated the

ratio of the evolvability in the direction of the mean phenotypic

divergence (with δẑ being the unit vector in the direction of di-

vergence) and the mean evolvability along random phenotypic

directions (scaled directional evolvability) as a measure of how

biased the variation is in the direction of phenotypic divergence

(< Gδẑ, δẑ > /ē); (2) similarly, we also measured the change in

conditional evolvability, which measures the mean response to se-

lection in the direction of a given β when other directions are under

stabilizing selection (Hansen and Houle 2008). Mean conditional

evolvability is calculated as c̄ = E[(< G−1β, β >)−1]β, and we

define the ratio between conditional evolvability in the direction

of phenotypic divergence and mean conditional evolvability along

random phenotypic directions as the scaled directional condi-
tional evolvability (< G−1δẑ, δẑ >)−1]/c̄) (3) we compared the

alignment between δz and the first eigenvector of the covariance

matrix for each line, using vector correlations. This correlation is

a measure of how aligned the main axis of variation in the popu-

lation is with regards to the realized evolutionary change. Since

the first eigenvector in mammalian cranial matrices is usually re-

lated to size variation (Porto et al. 2009) and selection was on

overall size, we expect a high alignment between the phenotypic

divergence and standing variation. We test if the first eigenvectors

(E1s) are indeed related to cranial size by comparing the E1s of

the mean posterior matrices of all lines with the isometric size

vector. High correlation between the E1s and the isometric vector

indicates the E1s are related to cranial size.

Results
PHENOTYPIC DIVERGENCE

Both the upwards and the downwards selection resulted in changes

in the weight of the corresponding s|s’ and h|h’ lines (Figs. S3

and S5). Both directional selection induced lower variation in

weight, with the animals from the downwards selection showing

smaller weights than those from the upwards selection, regardless

of sex. In contrast, the control t line exhibited a large weight

variation, which spanned the full variation range presented by

the selected animals. The cranial traits also showed divergence

between all four selected lines, with downwards selection showing

smaller cranial size than those from the upwards selection, and

the control t line being somewhat superimposed with the upwards

lines (Figs. 1 and S6 for the complete set of cranial traits). The

vector of phenotypic divergence (δz) had a correlation of 0.82

with the isometric vector, indicating that divergence in cranial

traits was mainly in the cranial size direction.

MATRIX COMPARISONS

In the Krzanowski subspace comparisons all eigenvalues were

not significantly different between the observed and randomized

matrix comparisons (Fig. 2 A). As for the the Bayesian Random

Skewers projection, we identified several directions with different

amounts of phenotypic variation in each line (first few directions

in Fig. 2 B and full results in Fig. S7). In most directions, the

control line has significantly more variation than the selected lines.

But this reduction is not uniform in all directions, and in several

directions the selected lines have variation that is comparable to

the control line. We provide in the supporting information the

same set of results using G-matrices (Fig. S8). These results are

considerably noisier, but consistent with the results obtained using

the P-matrices.

EVOLUTIONARY STATISTICS

The distribution of mean values of evolutionary statistics showed

a rise in integration and in the proportion of variation associated

with the first eigenvector in selected lines when compared to the
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Figure 1. Distribution of the standardized isometric cranial size variable, calculated as the geometric mean of cranial traits by line and

sex. Upwards lines are larger than downwards lines, while control line t is similar to the upwards lines.

Figure 2. (A) Bayesian Krzanowski shared subspace. Eigenvalues for the H matrix are not significantly different in the randomized and

observed matrices, indicating a shared subspace and a stable set of eigenvectors in all the lines. (B) Bayesian Random Skewers Projection.

Here we only show the first eight eigenvectors of the decomposition, which are representative of the full set of eigenvectors (Fig. S7). In

most directions the control line has higher variation than the selected lines, but in several directions the control and selected lines show

comparable levels of variation, indicating that the loss of variation in the selected lines was not uniform in all directions. A version of

this figure using the G-matrices is available in the Supporting Information (Fig. S8)

control t line (Fig. 3 A and B). All selected lines also showed

a decline in evolvability and flexibility when compared to the

control (Fig. 3 C and D). First eigenvectors for each line are given

in Table S4, along with correlations between the first eigenvector

and an isometric size vector. All correlations between E1s and

the isometric vector were higher than 0.71, indicating that all first

eigenvectors are related with cranial size.

The scaled directional evolvability, the ratio of evolvability

in the direction of δz and the mean evolvability, shows a clear

increase with selection, with selected lines showing about double

the ratio observed in the control line (Fig. 4 A). The vector corre-

lation between δz and the E1 increased in all selected lines, while

this correlation in the control line shows a lower mean correlation

(around 0.6) and wider posterior distribution. Downward selected

lines have correlations of first eigenvector and δz above 0.9 and

upwards selected lines above 0.75 (Fig. 4 B).

Discussion
Our experimental approach allows us to investigate how direc-

tional selection alters multivariate covariation, and what are the

consequences of this interaction to evolution and diversification.

Selected lines diverged in both weight and cranial traits, and

the changes in the cranium were aligned with the main axis

EVOLUTION OCTOBER 2017 2 3 7 5



ANNA PENNA ET AL.

Figure 3. Comparison of covariation patterns between control and selected lines using evolutionary statistics. (A) Magnitude of inte-

gration measured as mean squared correlation between all traits; (B) Proportion of variation associated with the first eigenvector, which

is related to size variation; (C) Mean flexibility; (D) Mean evolvability. Curves represent posterior distributions obtained using the sample

of P-matrices from the BSFG model. Confidence interval and mean for all curves can be found in Table S5. The same set of results using

G-matrices are available in Fig. S9. G-matrix results are noisier, but consistent with the results obtained using the P-matrices, suggesting

the changes we observed indeed occurred in the G-matrices.

of variation, which is a direction associated with cranial size.

While to some extent this is an unsurprising result given that

selection was on overall size, our results illustrate how rapidly

covariation can change under directional selection. In particular,

the magnitude of association between traits is more malleable

than the pattern of association.

Patterns of covariation were fairly similar in all lines, a result

consistent with the observed pattern for natural populations of

mammals in general, even when comparing covariation between

different orders (Porto et al. 2009). Krzanowski subspace compar-

ison showed all the lines share the subspace spanned by the first

half of the eigenvectors. Regarding the distribution of variation,

the Bayesian Random Skewers showed that in some directions the

control line has more variation than the selected lines, while in

others control and selected lines have comparable levels of vari-

ation. Taken together, these matrix comparison results indicate a

stable set of eigenvectors, spanning a similar space in all the lines,

and a nonisotropic reduction in variation in the selected lines,

that is, some directions lost more variation than others (Figs. 2

and S7).

As for integration, all selected lines increased their magnitude

of association between traits. The maximum observed difference

in mean squared correlation is almost 0.05 (when comparing the

control t line and the downwards h line) a difference comparable to

those observed between mammalian orders (Marroig et al. 2009).

This increase in integration is mirrored by the observed increase

in the proportion of variation associated with the first eigenvector,

which is related to size. This is expected, because size variation

can be interpreted as coordinated variation in all traits, and so an

increase in size variation leads to higher correlations between all

traits (Porto et al. 2013). Therefore, the rise in integration in the

selected lines is due to an increase in the proportion of variation

that is related to cranial size (which changed due to selection on

overall size).

This increase in integration is also reflected in the flexibility,

which is lower in all the selected lines. Flexibility measures the
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Figure 4. (A) Scaled direction evolvability, the ratio of evolvability in the direction of phenotypic divergence (δz) and the mean evolv-

ability for each line; (B) Scaled direction conditional evolvability, the ratio of conditional evolvability in the direction of δz and the mean

conditional evolvability for each line; (C) the vector correlation between δz and first eigenvector for each line. Curves represent posterior

distributions obtained using the sample of P-matrices from the BSFG model. Confidence interval and mean for all curves can be found

in Table S6. The same set of results using G-matrices are available in Fig. S10. G-matrix results are noisier, but consistent with the results

obtained using the P-matrices, suggesting the changes we observed indeed occurred in the G-matrices.

ability of a population to respond in the direction of selection,

and because a larger proportion of cranial variation in the selected

lines is concentrated in size variation, less variation is available to

respond in other directions. Also, the mean evolvability, or total

available variation for responding to selection, is smaller in the

selected lines.

At first sight, this is compatible with the idea that directional

selection depletes variation. However, focusing only on the reduc-

tion of total variation is misleading. Taking the multivariate aspect

of this system in consideration, the distribution of the available

variation is also changing. Although total variation in all direc-

tions is smaller in the selected lines (Fig. 3, panel D), the increase

in the proportion of variation associated with the first eigenvector

(Fig. 3, panel B) (which is highly related to cranial size, Table S4)

means the proportion of variation in the direction of evolution-

ary divergence is in fact increasing in the selected lines (Fig. 3,

panels A and B), and the first eigenvector is also more aligned

with the direction of divergence in the selected lines (Fig. 4 C).

This reorganization of variation is supported by the change in the

scaled directional evolvability and scaled conditional evolvability,

which show that the scaled variation in the direction of divergence

is almost doubled in selected lines when compared to the control

(Fig. 4 A and B).

This relative increase in variation is incompatible with the

traditional view of depletion of variation in the direction of selec-

tion due to the fixation of additive alleles. Under a purely additive

model of cranial variation, as rare additive alleles with effects on

size move to fixation, they could increase genetic variation for size

in the process (Burger and Lynch 1995). In large populations this

increase in variation under directional selection can be maintained

by new mutations that arise and sweep to fixation. In principle we

cannot rule out this possibility, but we are observing this effect

after about 50 generations of strong directional selection

(Table S1), after which we would expect the initial increase of

variation to have disappeared as those initially rare alleles be-

come fixed, and, because of our low effective population sizes,

the influx of new mutations should be negligible. Also, increase in

size variation due to additive alleles would be more likely to occur

in traits that are controlled by a small number of loci (Burger and

Lynch 1995; Jain and Stephan 2015), which is not likely to be the
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case for the cranium (Leamy et al. 1999; Wolf et al. 2005; Porto

et al. 2016). Furthermore, the genetic basis of morphological co-

variation is unlikely to be purely additive (Phillips et al. 2001;

Whitlock et al. 2002). The changes are also not likely to be due to

drift alone, as all the selected lines are consistent in their covari-

ation patterns, and under drift we would expect a more random

distribution of differences between the lines. However, epistatic

interactions can provide a source of standing variation that allows

the increase of variation in the direction of selection (Cheverud

and Routman 1995; Wagner et al. 2007; Pavlicev et al. 2011; Melo

and Marroig 2015), and can bias further mutations to be aligned

with this direction (Jones et al. 2007, 2014).

Because genetic architectures can interact with selection in

different ways, we expect different outcomes depending on the

complexity of the genetic architecture underlying the set of traits

under investigation: additive variation is expected to be consumed

in the direction of selection, while epistatic variation can lead to

an increase in variation in the direction of selection. Careau et al.

(2015) showed that directional selection on behavior traits follows

the expectation of the additive model, with a loss of variation

in the direction of selection and a plateau in the response to

selection after a few generations. In our experiment, as expected

by the additive model, we also see a loss of total variation in the

selected lines, but this reduction is nonisotropic. Some directions

lost more variation than others, and the direction of selection

ended up with proportionally more variation in the selected lines,

suggesting the influence of epistasis and a more complex genetic

architecture underlying the covariation of cranial traits. Assis et al.

(2016) reported the same kind of realignment of variation and

selection as we did, but saw no loss of variation in samples from

modern populations after selection, when compared to historical

samples. This could be related to the large effective sample sizes

in the wild chipmunk populations considered, and suggests that

large populations can reorganize covariation patterns in response

to selection with no loss in total variation. Neither our results

nor those from Assis et al. (2016) allow us to evaluate limits

in the response to selection in the cranium, leading to plateaus in

response, but we speculate that in large populations the availability

of standing epistatic variation and the biasing of new mutations

in the direction of selection could delay the onset of the kind of

plateau in multivariate evolutionary response seen in Careau et al.

(2015).

The observed increase in integration over a microevolution-

ary time scale also has consequences for our understanding of

macroevolutionary patterns. In mammals, changes in the magni-

tude of integration are much more common than changes in the

pattern of trait association (Porto et al. 2009). Our results sug-

gest that these difference can be explained by the pervasiveness

of selection on size along the mammalian clade (Marroig and

Cheverud 2005; Baker et al. 2015). Lineages that underwent se-

lection on size might have higher integration, and those whose

selective response were not size-related might have lower inte-

gration. Also, divergence that is aligned with covariation can not

be interpreted as only a product of constraints, since selection can

directly reshape variation (Punzalan and Rowe 2016).

Here, we attempt to elucidate the effect of directional se-

lection on covariation, and how this impacts evolution. We use

experimental selection on size to answer this question, and find

that selection can actively restructure covariation, and, in addition

of depleting multivariate covariation, can reorganize standing co-

variation in the direction of evolutionary response, increasing a

population’s relative ability to respond to selection in that direc-

tion. This is in accordance with recent models of phenotypic co-

variation that include a more realistic genetic architecture, and an

experimental evidence of directional selection shaping variation

in nonintuitive ways. Along with recent empirical, theoretical, and

simulation work, our results reinforce a shift in our understanding

of how populations are shaped by natural selection. An obvious

next step is to combine this sort of experimental selection with

genetic mapping to understand, at the genomic level, how this

reorganization of variation is taking place.
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