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Inferring small molecule-miRNA associations (MMAs) is crucial
for revealing the intricacies of biological processes and disease
mechanisms. Deep learning, renowned for its exceptional speed
and accuracy, is extensively used for predicting MMAs. However,
given their heavy reliance on data, inaccuracies during data
collection can make these methods susceptible to noise interfer-
ence. To address this challenge, we introduce the joint masking
and self-supervised (JMSS)-MMA model. This model synergizes
graph autoencoders with a probability distribution-based mask-
ing strategy, effectively countering the impact of noisy data and
enabling precise predictions of unknown MMAs. Operating in
a self-supervised manner, it deeply encodes the relationship
data of small molecules and miRNA through the graph autoen-
coder, delving into its latent information. Our masking strategy
has successfully reduced data noise, enhancing prediction accu-
racy. To our knowledge, this is the pioneering integration of a
masking strategy with graph autoencoders for MMA prediction.
Furthermore, the JMSS-MMA model incorporates a node-de-
gree-based decoder, deepening the understanding of the net-
work’s structure. Experiments on two mainstream datasets
confirm the model’s efficiency and precision, and ablation studies
further attest to its robustness. We firmly believe that this model
will revolutionize drug development, personalized medicine, and
biomedical research.

INTRODUCTION

MicroRNA (miRNA) represents a category of noncoding RNA mole-
cules,' typically composed of approximately 20-25 nt. These molecules
play a pivotal role in the regulation of gene expression.” Small molecules
refer to some relatively small organic molecules, including compounds
and metabolites.” A wealth of research has demonstrated the critical role
that miRNA plays in numerous aspects of human life, such as gene
expression regulation,” cell-cycle control,” development and organo-
genesis,(’ immune response regulation,7 metabolic control,® and even
the initiation and progression of tumors.” It is precisely because of the
key role of miRNA in the human body that more and more researchers
are devoting themselves to the invention of miRNA-targeted drugs."’

However, the traditional experimental method is complicated and re-
quires a lot of time and labor costs.'! Therefore, it is imminent to
develop an efficient model to analyze and calculate the possible associ-
ation between small molecules and miRNA.

Traditional miRNA analysis methods mainly include miRNA sequence
analysis,'>'* which uses high-throughput sequencing technology to
comprehensively detect and quantify miRNA in cells or tissues. This
method can provide a comprehensive miRNA expression profile,
compare miRNA differences between different samples, and effectively
analyze miRNA. Real-time qPCR,'* which is a commonly used quanti-
tative method for miRNA expression, is based on the principle of DNA
synthesis and amplification, can quickly and highly sensitively measure
the expression level of specific miRNA, and can quantitatively analyze
the expression difference of miRNA under different conditions. North-
ern blot,'” which is a traditional miRNA detection method, is used to
analyze the size and expression of miRNA. It separates the total RNA
by electrophoresis, transfers it to the membrane, and then uses the
labeled miRNA probe for hybridization detection to determine the pres-
ence and relative expression level of the target miRNA. Although these
traditional methods are reliable, they are costly in manpower and time.

Recently, with the vigorous development of computer technology and
the emergence of machine learning-based methods,"
have developed related models to solve different biological prob-
lems,'”'® such as predicting noncoding RNA (ncRNA)-protein inter-
actions (NPIs), miRNA-disease association (MDAs), and so on. For
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instance, Zhou et al. used a deep multihead attention mechanism to
mine the information of ncRNA and protein, so as to accurately pre-
dict the NPIs."” Liu et al. adopted a deep autoencoder-based forest
ensemble learning strategy to effectively predict the MDAs.*® Wei
et al. combined contrastive learning with graph neural networks to
enrich the feature representations of drugs and foods to accurately
predict their interactions.”’ These methods have achieved excellent
performance on multiple association prediction tasks, but they cannot
be directly used for small molecule-miRNA associations MMA pre-
diction tasks. This is mainly due to the large differences in data sour-
ces and associated networks. These models need to be appropriately
adjusted before they can be used to infer potential MMAs. Inspired
by these works, the MMA prediction model was also promoted.

Many methods based on matrix completion and machine learning to
predict the MMAs have been developed. Wang et al. proposed a random
forest-based model and integrated multiple similarity features to predict
the MMAs.> Luo et al. proposed a non-negative matrix decomposition
model to discover the unknown MMAs.>® On the basis of this, Ni et al.
combined layer attention network and matrix decomposition to predict
the MMAs.>* Peng et al. proposed a model based on deep autoencoder
and extensible boosting tree to predict the MMAs, making contributions
to biological research.”” Wang et al. adopted matrix decomposition to
calculate the potential representations of small molecules and miRNAs
and then calculate the inner product to score the MMA pairs. The
main highlight is that the missing values of the incidence matrix can
be preprocessed using the WKNKN method.”® Wang et al., on the basis
of the truncated Schatten p-norm, developed an MMA prediction model,
and experimental results demonstrate its advanced performance.” These
methods speed up MMA predictions, but they rely on artificially con-
structed features, making their performance less robust.

Overall, deep learning models performed well in identifying the poten-
tial MMAs. However, the performance of these models often suffers
from noisy data, insufficient feature extraction, and so forth. The
self-supervised learning strategy can automatically extract supervision
signals from input data to perform self-training. Inspired by this, we
proposed an MMA  prediction based on the
graph auto encoder (GAE) framework. The model follows the rules
of self-supervised learning and simultaneously absorbs information
from small molecules and miRNA itself, as well as topological informa-
tion from the MMA network. Then, the proposed model used an edge
decoder and a node decoder to reconstruct the graph, which can obtain
richer and more robust representations from unlabeled graph data. At
the same time, we designed a masking strategy based on Bernoulli dis-
tribution to mask some edges for self-supervised training when
modeling graph data, which effectively mitigate the impact of noise
data. Overall, our contributions can be summarized as the following:

model

(1) Wedeveloped a graph masked autoencoder-based MMA prediction
model that can predict unknown MMAs quickly and accurately.

(2) We designed a masking strategy for graph autoencoder training,
which effectively improves training efficiency and mitigates the
impact of noisy data.
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(3) We designed a degree-based node decoder that can efficiently
learn the latent structure of the small molecule-miRNA graph.

(4) We constructed multiple sets of experiments to verify the perfor-
mance of the model, and verified the role of each part of the
model through parameter experiments.

RESULTS

Experimental setup

We identified known MMAs in the datasets (as shown in Table 1) as
positive samples and randomly picked the same number of negative
samples. The datasets are divided into training set, verification set,
and test set according to the ratio of 8:1:1. To prevent data leakage,
the training set, validation set, and test set are independent and there
are no common MMAs. That is, the MMAs in the training set will
not appear in the validation set and test set. In the experiment, we set
the input feature size of dataset1 to 990, the input feature size of data-
set2 to 1,050, the hyperparameter a to 0.06, and the masking rate p to
0.4. In addition, the encoder was set to a two-layer graph isomorphism
network (GIN), and the embedding sizes were set to 64 and 128, respec-
tively; the decoder and edge decoder are both two-layer multilayer per-
ceptrons (MLPs), and the output sizes are 128 and 64, respectively.

Evaluation indicators

In the experiments, we not only selected area under the receiver oper-
ating characteristic curve (AUC) and area under the precision-recall
curve (AUPR) indicators but we also selected multiple indicators to
comprehensively evaluate the performance of the model, including
accuracy (Acc), sensitivity (Sen), precision (Pre), Spe, F1-score, and
Matthews correlation coefficient (MCC). The calculation formulas
for these indicators are as follows:

TP+TN TP

Acc = ,0en = )
TP+TN+FP+FN TP+FN
TN TP
Spe = ————, Pre =
Pe = INvEp ¢ T TP
Pre-Sen
F1 — score = 2-———,
Pre+Sen
TP x TN — FP x FN
MCC =

\/(TP+FP) x (TP+FN) x (IN+FP) x (TN+EN)
(Equation 1)

In the above equation, TP represents the number of positive MMAs
correctly classified, FP represents the number of misclassified positive
MMAs, TN represents the number of negative MMAs correctly clas-
sified, and FN represents the number of misclassified negative MMAs.

Performance evaluation

To verify the performance of our proposed model, we conducted 5-
and 10-fold cross-validation experiments on two datasets. The dataset
is randomly divided into 5 and 10 parts, one part is left as the test set
for each experiment, and the remaining part is used as the training set.
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Table 1. Statistical information of the datasets

Datasets Small molecules miRNAs Associations
datasetl 831 541 664
dataset2 39 286 664

This strategy can eliminate the impact of the randomness of the data-
set division on the experiment. The AUC curve of the model is shown
in Figures S1 and S2. In the 5-fold cross-validation experiment, the
proposed model obtained an average AUC performance of 99.16%
on datasetl and an average AUC performance of 96.26% on dataset2.
In the 10-fold cross-validation experiment, the proposed model ob-
tained an average AUC performance of 99.90% on datasetl and an
average AUC performance of 97.10% on dataset2.

Similarly, we calculated other indicators in the 5-fold crossover exper-
iment, and the results of each round are given in Table 2, and the
average value is calculated. In addition, we selected DAESTB, which
ranks second in AUC indicator, for comparative analysis. Under the
same dataset division, the Acc, Pre, Sen, MCC, and F1-score indicators
of the DAESTB*® model were counted, and the results are shown in
Table 2. Obviously, except for the Acc indicator, the Pre, Sen, MCC,
and Fl-score indicators of the DAESTB*® model are much lower
than these indicators of the proposed JMSS-MMA model. On the
one hand, it may be because the DAESTB model focuses too much
on the Acc indicator and ignores other indicators when adjusting pa-
rameters. On the other hand, it may be because the DAESTB model
does not consider the imbalance of positive and negative samples.

Comparison with other models

We conducted comparative experiments with DAESTB,”
EKRRSMMA,*® GISMMA,** and BNNRSMMA.* The following is a
brief introduction to these compared models:

(1) DAESTB?’: This model is based on autoencoders and gradient
boosted trees to identify potential MMAs. The similarity matrix
of small molecules and miRNAs, as well as their association ma-
trix data, are collected and input to an autoencoder for encoding.
Then, the model uses gradient boosting trees to classify small
molecule-miRNA pairs.

(2) EKRRSMMA®®: This model is based on the method of ridge
regression, combining dimensionality reduction techniques and
ensemble learning to mine potential MMAs.

(3) GISMMA™: This model is based on the graphlet method, uses 28
isomers to describe the relationship between two small molecules
(or miRNAs), and calculates the number of subgraphs interac-
tions between the the small molecule similarity matrix and the
miRNA similarity matrix to identify MMAs.

(4) BNNRSMMA*: This model identifies unknown MMAs based on
bounded kernel norm regularization. The model integrates the
similarity matrix of small molecules and miRNAs, and constructs
a heterogeneous small molecule-miRNA association network.
Then, it predicts whether there is an association between small
molecules and miRNAs by minimizing its nuclear norm.

Our model is compared with DAESTB,”> EKRRSMMA,** GISMMA,*’
and BNNRSMMA’ models in dataset1 and dataset2, and the results are
shown in Figure S3. Twenty experiments were carried out for each
model to reduce the influence of random factors. The results in Figure S3
show that the JMSS-MMA and DAESTB models based on autoencoders
achieve the better performance, and the other models achieve slightly
worse performance. This shows that the autoencoder can fully extract
the features of the small molecule-miRNA graph. Furthermore, our
model achieves the best performance with the largest average AUC
value. At the same time, the variance of the model performance is min-
imal. This shows that adding a mask strategy and a node decoder can
make the model more robust and stable, which can alleviate the influ-
ence of noisy data in the graph and learn the underlying graph structure.

Table 2. Results of the 5-fold crossover experiment of the JMSS-MMA model on 2 datasets

Datasets Testing set Acc, % Pre, % Sen, % Spe, % Fl1-score, % MCC, %
1 97.7272 98.4615 96.9696 98.4848 97.7099 95.4655
2 98.1061 99.2248 96.9697 99.2424 98.0843 96.2370
3 98.8636 98.4962 99.2424 98.4848 98.8679 97.7300

datasetl 4 95.8333 96.1832 95.4545 96.2121 95.8175 91.6693
5 98.8636 98.4962 99.2424 98.4848 98.8679 97.7301
Average 97.8787 98.1723 97.5757 98.1817 97.8695 95.7663
DAESTB 99.8732 68.5834 19.6942 30.5743 36.6864
1 93.9394 89.7260 99.2424 88.6364 94.2446 88.3773
2 92.8030 87.4172 99.2424 85.6061 93.2862 86.5069
3 89.7727 84.3137 97.7273 81.8182 90.5263 80.5716

dataset2 4 92.0455 88.2759 96.9697 87.1212 92.4188 84.5017
5 90.1515 83.5443 99.2424 80.3030 91.0345 81.9076
Average 91.7424 86.6554 98.4848 84.6969 92.3020 84.3730
DAESTB 94.4876 53.8464 16.6764 25.4554 27.8556
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Table 3. Results of the ablation experiments of the JMSS-MMA model on 2 datasets

Datasets Models AUC AUPR Acc Pre F1-score MCC
w/o mask 80.1768% 89.2827% 88.2576% 99.2424% 86.6953% 78.7167%

dataset1 w/o GAE 77.1768% 85.2827% 84.2576% 94.1176% 82.6953% 72.7137%
JMSS-MMA 99.8508% 99.8719% 99.2424% 99.2424% 99.2424% 98.4848%
w/o mask 91.8905% 90.7293% 72.7273% 94.1176% 64.0000% 51.9719%

dataset2 w/o GAE 88.8905% 87.7293% 69.5142% 91.5132% 62.5124% 49.4233%
JMSS-MMA 97.0156% 95.9959% 93.1818% 91.3043% 93.3333% 86.4530%

In addition to AUC, we further compared various indicators with the
DAESTB model and conducted experiments on both datasets. In
the experiment, we divided the positive and negative proportions of
the samples input into the model to be the same as the DAESTB
setting. We used the heatmap to represent the final experimental re-
sults in Figure S4. From the experimental results, our model is supe-
rior to the DAESTB model in all indicators except Acc, which further
illustrates the superiority of our model.

Ablation experiments

We conducted experiments to explore the impact of GAE technology
and masking strategy on model performance. In the experiments, we
maintained the single variable principle. Table 3 presents the results of
the ablation experiments. In Table 3, ‘w/o mask’ means that the model
does not perform masking operations, and ‘w/o GAE’ means that the
model does not use GAE technology and only uses a graph convolu-
tional network (GCN) as the encoding layer. It can be seen in Table 3
that without performing masking operations or using GAE technol-
ogy, the model performance drops significantly. This shows that the
use of GAE technology can enable the model to absorb the topological
information of the MMA network and the feature of the node itself,
and extract a robust node representation. In addition, performing par-
tial masking operations on the MMA network can alleviate the impact
of redundant data and improve model performance.

Parameter experiments
To explore the impact of parameters on model performance, we con-
structed multiple sets of parameter experiments.

Influence of «

For the node decoder, the hyperparameter o is used to adjust the
weight of its loss. To explore the role of this decoder, we constructed
experiments on the hyperparameter o.. We changed the value of o
on the two datasets to show the performance of the model. In the
experiment, except for the variables to be verified, other parameters re-
mained consistent. For example, the masking rate p is set to 0.4. The
output sizes of the graph neural network (GNN) encoder are 64 and
128, respectively, and the output sizes of the decoder are 128 and 64,
respectively. In datasetl, the initial feature dimension of the node is
990; in dataset2, the initial feature dimension of the node is 1,050.

The results are shown in Figure S5. In particular, & = 0 means not to
use the degree-based node decoder. At this point, the model achieves
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the worst performance. The results in Figure S5 prove that adding a
decoder based on node degree can effectively improve the perfor-
mance of the model, but the weight should not be too large. The value
of the hyperparameter a. is set between 0.002 and 0.01, and the model
can obtain satisfactory performance. When setting the value of the
hyperparameter a to 1, the effect drops significantly. Therefore,
designing a degree-based node decoder can help improve model per-
formance. Moreover, the range of hyperparameter o that can be
selected by the model is relatively large, and the determination of
the parameters is very convenient.

Influence of mask ratio

We designed a masking strategy based on the Bernoulli distribution to
partially mask the input small molecule-miRNA association. To
verify the effect of the masking strategy, we designed parametric ex-
periments on the masking ratio. Keeping other conditions un-
changed, different shading ratios were set to test the performance
of the model. In the experiment, a is set to 0.01, the output sizes of
the GNN encoder are 64 and 128, and the output sizes of the decoder
are 128 and 64. In dataset], the initial feature dimension of the node is
990; in dataset2, the initial feature dimension of the node is 1,050. The
AUC and AUPR were used as evaluation indicators, and the model
without masking strategy was used as the baseline method.

The experimental results in Figure S6 indicate that the performance of
the models with masking are significantly superior to that of the
model without masking. This proves that the proposed masking strat-
egy can effectively improve the performance of the model, probably
because of slowing down the impact of noise in the graph data. In da-
tasetl, the model achieved better performance when the occlusion
rate was 0.1-0.8; in dataset2, the model achieved better performance
when the occlusion rate was 0.3-0.8. Different masking ratios can
affect the performance of the model, but the range of parameters
that can be selected is large. This makes it easy to determine suitable
parameters.

Influence of the GNN layer

In the proposed JMSS-MMA model, the graph encoder is optional
and can be determined as various GNN models. To study the impact
of different GNN encoders on model performance, we selected three
GNN models (GIN, GCN, and sample and aggregate [SAGE]),*~**
and conducted experiments on datasetl and dataset2, respectively.
In Table 4, it can be seen from the results that in dataset1, the model
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Table 4. Results of different GNN encoders of the JMSS-MMA model on 2 datasets

Datasets GNN encoders AUC AUPR Acc Pre Fl-score MCC
GIN 99.8508% 99.8719% 99.2424% 99.2424% 99.2424% 98.4848%

datasetl GCN 99.7188% 99.7705% 98.8636% 98.4962% 98.8679% 97.7301%
GraphSAGE 99.9311% 99.9292% 99.2424% 99.2424% 99.2424% 98.4848%
GIN 97.0156% 95.9959% 93.1818% 91.3043% 93.3333% 86.4530%

dataset2 GCN 97.2854% 96.2432% 93.1818% 90.7143% 93.3824% 86.5227%
GraphSAGE 95.0413% 92.5449% 92.0455% 88.2759% 92.4188% 84.5017%

achieved the best performance using SAGE as the encoder
and achieved suboptimal results using GIN. In dataset2, the model
achieved the best performance using GCN and suboptimal results us-
ing GIN. In general, however, no matter which GNN encoder is used,
the difference in model performance is small. This indicates that the
proposed model can be adapted to different GNN encoders, so the
appropriate GNN encoder can be selected freely and easily.

Case studies

We conducted case analysis experiments to further demonstrate the
practical significance of the model. For a specific small molecule,
the miRNA predicted to be associated with it, or for a specific miRNA,
the small molecule predicted to be associated with it. We selected
small molecules numbered CID: 3121 and CID: 5073, and miRNAs
numbered hsa-mir-192 and hsa-mir-506 for verification.

The miRNA hsa-mir-192 is widely expressed in multiple tissues and cell
types, including liver, kidney, lung, and stomach. It can affect key pro-
cesses such as cell proliferation, apoptosis, differentiation, and meta-
bolism by targeting and regulating the transcription and translation
of multiple genes. In addition, it is also closely related to the occurrence
and progression of various diseases such as tumor development, liver
fibrosis, and cardiovascular disease. The miRNA hsa-mir-506 is
involved in the regulation of various biological processes and diseases,
and its expression level may be regulated by many factors, including
physiological state, disease progression, and environmental stimuli. It
affects key processes such as cell proliferation, apoptosis, differentiation,
invasion, and metastasis by targeting and regulating the transcription
and translation processes of multiple genes. In addition, it is closely
related to the occurrence and progression of various diseases such as tu-
mor development, cancer treatment resistance, and pulmonary fibrosis.

The study of these miRNAs provides insight into the pathogenesis of
diseases and also provides new ideas for the early diagnosis and treat-
ment of related diseases. In our experiment, we first removed these
small molecules and miRNAs from the dataset, and then added
them to the test set to test the prediction effect after training the
model. Since the model output is a probability value, we sorted
them. For small molecules, we selected the top 20 miRNAs that
were predicted to be associated with them; for miRNAs, we selected
the top 10 small molecules that were associated with them and
compared these results with the real results in the database. The final
results are shown in Tables 5, 6 and 7.

It can be seen from the results that after the prediction of our model,
most of the associations have been verified in the database, which
further proves the reliability of our model. For the small molecule
numbered CID: 3121, most of the miRNAs predicted to be associated
with it have been verified in the database. The only remaining miR-
NAs numbered hsa-mir-328, hsa-mir-181c, and hsa-mir-374a have
not been verified in the database. However, there are relevant refer-
ences”® proving that the small molecule numbered CID: 3121 is
indeed associated with these miRNAs. For the small molecule
numbered CID: 5073, there is also a relevant reference’” proving its
association with hsa-mir-135a. Although these miRNAs have not
been verified in the database, for the miRNA numbered hsa-mir-
192, it was also proven that there is an association with the small
molecules numbered CID: 6013 and CID: 60953 predicted by the
model.***? Similar results were found for the miRNA numbered
hsa-mir-506. Therefore, the proposed model can effectively infer
potential MMAs and is expected to provide guidance for diagnosing
diseases and developing treatment options.

DISCUSSION

Accurate identification of MMAs plays an important role in biological
processes such as gene regulation and disease development, and min-
ing more potential associations provide a better understanding of
complex regulatory networks and signal transmission mechanisms
such as gene-disease. In this study, we investigated several deep
learning-based MMA recognition models. These models can show

Table 5. Top 20 CID: 3121-related miRNAs predicted by JMSS-MMA in
dataset2

miRNAs dataset2 miRNAs dataset2
hsa-let-7a-1 definited hsa-mir-124-1 definited
hsa-let-7a-2 definited hsa-mir-124-2 definited
hsa-let-7a-3 definited hsa-mir-124-3 definited
hsa-let-7b definited hsa-mir-18a definited
hsa-let-7i definited hsa-mir-328 undefinited
hsa-mir-101-1 definited hsa-mir-125a definited
hsa-mir-101-2 definited hsa-mir-181c undefinited
hsa-mir-122 definited hsa-mir-21 definited
hsa-mir-125b-1 definited hsa-mir-31 definited
hsa-mir-125b-2 definited hsa-mir-374a undefinited
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Table 6. Top 20 CID: 5073-related miRNAs predicted by JMSS-MMA in
dataset2

miRNA dataset2 miRNA dataset2
hsa-mir-30c-1 definited hsa-mir-660 definited
hsa-mir-337 definited hsa-mir-744 definited
hsa-mir-34a definited hsa-mir-760 definited
hsa-mir-345 definited hsa-mir-769 definited
hsa-mir-376a-1 definited hsa-mir-9-1 definited
hsa-mir-376a-2 definited hsa-mir-9-2 definited
hsa-mir-379 definited hsa-mir-9-3 definited
hsa-mir-381 definited hsa-mir-302b undefinited
hsa-mir-382 definited hsa-mir-135a undefinited
hsa-mir-383 definited hsa-mir-550a-1 undefinited

satisfactory results, but they rarely take into account the influence of
noisy data, and there may be insufficient feature extraction. To this
end, we propose an MMA identification model based on a graph au-
toencoder, which can more fully extract features by modeling the as-
sociation graph of small molecules and miRNAs. We designed a
masking strategy based on Bernoulli distribution, which can effec-
tively remove noise in graph data and improve training efficiency.
Meanwhile, we designed a degree-based node decoder that can effec-
tively reveal the underlying graph structure. Taken together, the pro-
posed model can accurately and efficiently identify potential MMAs.
Multiple sets of experiments were constructed on public datasets, and
the results verified the superior performance of the proposed model.

The proposed model can assist researchers in discovering more po-
tential disease markers and targets, thereby deepening the under-
standing of disease mechanisms and providing new ideas and strate-
gies for early diagnosis and treatment of diseases. The interaction
between small molecules and miRNAs is also one of the important
concerns in the drug development process. A predictive model is pro-
posed to accurately predict the interaction between target small mol-

Table 7. Top 10 hsa-mir-192 and hsa-mir-506 small molecules predicted by
JMSS-MMA in dataset2

small molecules (hsa-mir- small molecules (hsa-mir-

192 related) dataset2 506 related) dataset2
CID:5757 definited CID:5743 definited
CID:4095 definited CID:446220 undefinited
CID:60823 definited CID:31401 definited
CID:5311 definited CID:36462 definited
CID:31703 definited CID:5790 undefinited
CID:6013 undefinited CID:31101 undefinited
CID:36462 definited CID:60953 definited
CID:60700 definited CID:4212 undefinited
CID:446220 definited CID:60838 undefinited
CID:60953 undefinited CID:448537 undefinited
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ecules and miRNA, which is expected to provide guidance for drug
design and screening and accelerate the drug development process.

MATERIALS AND METHODS

Materials

To validate our proposed model, we conducted experiments on two
publicly available datasets. Table 1 shows the statistical information
regarding these datasets.

Methods

To identify potential MMAs accurately and efficiently, we propose the
JMSS-MMA model based on the graph autoencoder and masking strat-
egy of the Bernoulli distribution. The model mainly includes two mod-
ules of data acquisition and model architecture, as shown in Figure 1.
The first module obtains the similarity matrix of small molecules and
miRNAs, which are described in detail in the Dataset section. The second
module feeds these two similarity matrices into the graph autoencoder to
learn the latent structure of the graph and finally identify unknown
MMAs. The following describes the model architecture module in detail.

Model architecture

The JMSS-MMA model mainly adopts the basic architecture of the
graph autoencoder.*” Graph autoencoders are well suited for small
molecule-miRNA interaction graphs and can preserve and learn the
structural information of graphs. Our model is similar to traditional
autoencoders, mainly consisting of two parts: encoder and decoder. In
addition, we designed a masking strategy based on Bernoulli distribu-
tion, which can effectively alleviate the influence of noisy data in the
graph. Also, we designed a degree-based decoder that can better learn
the latent structure of graphs.

GNN encoder

In our model, GIN is adopted as the encoder (GCN and GraphSAGE
are optional), and its core idea is to update the node representation by
iteratively aggregating the node’s neighbor information. In the task of
modeling the small molecule-miRNA relationship, each small mole-
cule node (or miRNA node) is aggregated by its own features and the
features of the associated miRNA nodes at each iteration. MLP is
adopted to update the aggregated node representations. Finally, the
representation of each node is pooled to obtain a representation of
the entire small molecule-miRNA graph. The iterative process of
small molecule node features can be expressed as:

St = MLP*( (1+€) 871+ > M,
be N(a)

(Equation 2)

where S¥ denotes the feature representation of the small molecule
at the k-th iteration, and MLP* denotes the MLP operation applied
at the k-th iteration. ¥ is a learnable scalar parameter used to balance
the contribution of its own features and neighbor features. N(a) rep-
resents the neighbors of the small molecule node a. Mk ~! represents
the feature representation of the miRNA b after the k-I-th iteration.
The update process of miRNA node features is similar, and the calcu-
lation is as follows:
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Figure 1. Flowchart of the JMSS-MMA model

(Equation 3)

Mk = MLP"((I +e) M+ Z s’;*).

ae N(b)

Decoder

The decoder mainly consists of two parts: one is an edge decoder and the
other is a node encoder. They both consist of two layers of MLPs. The role
of the edge decoder is to reconstruct the adjacency matrix of the graph—
that is, to reconstruct the small molecule-miRNA association matrix. Spe-
cifically, after concatenating the embeddings of small molecule-miRNA
pairs, their scores are calculated by MLP to predict whether the associa-
tion exists. During the training process, the reconstructed MMAs and
the real MMAs are used to calculate the loss value with the BCE function:

Edgeloss = ()’ - l)lOg(l - P) - leg(p),

where p represents the predicted value, that is, the probability of the ex-
istence of the MMA, and the value is between 0 and 1; y represents the
real value (i.e., whether there is this edge, represented by 0 or 1). The func-
tion of the node encoder is to reconstruct the degree of each node (i.e.,
infer the number of miRNA nodes, or small molecule nodes, associated

(Equation 4)

miRNA
similarity matrix &4 Database
miRNA
S
v

Similarity Calculation Method

Functional || Disease-
consistency | based
|

Degree
Decoder

with the small molecule node, or miRNA node). During the training pro-
cess, the predicted node degree and the real node degree are used to calcu-
late the loss value with the mean squared error loss function:

X

1
Degreejoss = X Z ()’i — pi)za

i=1

(Equation 5)

where x represents the number of all nodes, y; represents the actual
degree of the i-th node, and p; represents the predicted degree of
the node. Adding the loss values of the two linearly, we obtain the final
loss value representation of the model:

Srorat = Edgeoss + aDegrees, (Equation 6)

where « is an adjustable hyperparameter used to balance the weights
between the two losses.

Masked strategy
To mitigate the effect of noise in the small molecule-miRNA graph,
we devised a probability distribution-based masking strategy. The
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core idea is to mask some associations in the small molecule-miRNA
graph following a probability distribution. In each round of training,
the model will follow the Bernoulli distribution and mask some
MMAs on the small molecule-miRNA graph. Subsequently, edge de-
coders and degree decoders work together to reconstruct these
masked MMAs. This strategy can effectively remove some of the noise
present in the data. Specifically, we sample the set of known associa-
tions according to the Bernoulli distribution:

Comask ~ Bernoulli(p), (Equation 7)

where p is a probability value between 0 and 1, indicating the masked
ratio of the graph, and different numbers of edges are masked by
setting p values of different sizes.

Prediction

After the above process, the model reconstructs the small molecule-
miRNA graph. We can obtain the representation of small molecule
nodes and miRNA nodes, and use the dot product to calculate the
probability of an association between them:

P = S,.TMJ-7 (Equation 8)

where S; represents the final representation of the i-th small molecule,
M; represents the final representation of the j-th miRNA, and P;; rep-
resents the probability of an association between them.
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