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The phagocytic clearance of apoptotic cells is important for maintaining tissue homeostasis,

and defects in phagocytic clearance can lead to inflammatory diseases and autoimmunity [1].

While much is known about how apoptotic cells are cleared, there are many gaps in our

knowledge. In this issue, Zheng Zhou and colleagues at Baylor College of Medicine report the

identification of Rab35 as a new regulator of apoptotic cell clearance using the nematode Cae-
norhabditis elegans [2].

C. elegans is an attractive model for the in vivo study of apoptotic cell clearance. During

development, 131 somatic cells undergo apoptosis in an invariant manner and in the adult

germline approximately 50% of germ cells die by apoptosis [3, 4]. In both cases, apoptotic cells

are quickly engulfed by neighboring cells and degraded. Genetic screens for persistent apopto-

tic cells have identified genes and pathways that mediate apoptotic cell recognition, phagocytic

engulfment, and phagosome maturation and degradation [3–5]. Two parallel genetic pathways

regulate apoptotic cell engulfment [3]. Cell death abnormality (CED)-1, a scavenger receptor,

functions with CED-6 engulfment adaptor PTB domain containing 1 (Gulp1) and the CED-7

adenosine triphosphate-binding cassette (ABC) transporter to recognize phosphatidylserine

on dying cells. The other pathway, defined by the CED-2 adaptor protein, the CED-10 Rac1

guanosine triphosphate hydrolase (GTPase), and its bipartite guanine nucleotide exchange fac-

tor (GEF) CED-5 and CED-12, regulates actin polymerization. Loss of both pathways does not

completely block apoptotic cell clearance [6], suggesting that there may be additional players.

Once internalized, apoptotic cell-containing phagosomes undergo maturation. Phosphati-

dylinositol 4,5-phosphate (PI[4,5]P) is replaced with PI(3)P [7]. This replacement is mediated

in part by the loss of the myotubularin (MTM)-1 PI3-phosphatase, a PI(4,5)P effector, and the

activity of the class II and class III PI3-kinases, phosphoinositide-3-kinase (PIKI)-1, and vacu-

olar protein sorting (VPS)-34, permitting the recruitment of PI(3)P binding proteins such as

the sorting nexin (SNX)-1 [7–9]. Several Rab GTPases control phagosome maturation and

lysosomal degradation. During maturation, RAB-5 recruits the SAND-1/CCZ-1 GEF, which

in turn recruits and activates RAB-7 [10, 11], which along with RAB-2/uncoordinated (UNC)-

108 and RAB-14 promote fusion with lysosomes [12]. In an RNA-mediated interference

(RNAi) screen for additional Rab GTPases that mediate apoptotic cell clearance, Haley and

colleagues identify RAB-35 as a novel regulator of apoptotic cell clearance [2]. C. elegans RAB-

35 was previously found to regulate endosome recycling of the receptor-mediated endocytosis

(RME)-2 yolk receptor in oocytes [13]. In cells from other organisms, Rab35 has been impli-

cated in regulation of the actin cytoskeleton and phagocytosis via regulation of the cell division

cycle 42 (Cdc42), Rac1, and ADP-ribosylation factor 6 (Arf6) GTPases [14–16].
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Haley and colleagues describe a novel in vivo role for the RAB-35 GTPase in the clearance

of apoptotic cells in C. elegans [2]. The authors show that rab-35 mutants have persistent apo-

ptotic cells and that rab-35 is required in the engulfing cell, consistent with a defect in phago-

cytosis and/or phagosome maturation. They find that RAB-35 must cycle between its on and

off states to function, and its localization to phagosomes is increased in the on state. They link

RAB-35 activation in phagocytosis to FLCN-1 (Folliculin1), a candidate RAB-35 GEF distinct

from RME-4, the RAB-35 GEF in yolk trafficking, providing important in vivo evidence to

support the biochemical data with the mammalian homologs [17]. The authors also found evi-

dence for Tre-2/Bub2/Cdc16 (TBC-10) as the relevant RAB-35 GTPase activating protein

(GAP) during phagocytosis, consistent with TBC1D10 functioning as a Rab35 GAP in mam-

malian cells [18] (Fig 1).

RAB-35 localizes to developing pseudopods and has increased localization on phagosomes,

suggesting a function in early phagocytosis events that correlate with the loss of PI(4,5)P and

the gain of PI(3)P [2]. In rab-35 mutants, PI(4,5)P and MTM-1 persists on phagosomes and

the accumulation of PI(3)P and PI(3)P binding proteins are delayed. Also delayed is the

recruitment of RAB-5, the first in a series of Rab GTPases required for efficient phagosome

maturation. Genetic epistasis, together with the finding that RAB-35 localization to phago-

somes precedes RAB-5, suggests that RAB-35 functions upstream of RAB-5 in a common

pathway.

The CED-1 receptor also regulates early steps of phagosome maturation in addition to its

role in apoptotic cell recognition and engulfment [2, 19]. Although ced-1 and rab-35 are phe-

notypically similar, ced-1; rab-35 double mutants displayed more severe maturation defects,

including delayed accumulation of PI(3)P and RAB-5 on phagosome membranes, suggesting

that they function in parallel pathways [2] (Fig 1).

Haley and colleagues identified a second role for RAB-35 in apoptotic cell recognition [2].

They find that rab-35 mutants show a delay in apoptotic cell recognition. rab-35 mutants

strongly enhance the apoptotic cell corpse recognition phenotypes of both ced-1 and ced-5

Fig 1. Model of RAB-35 regulation and function during early phagosome maturation. FLCN-1 activates RAB-35

downstream of an unknown signal, possibly integrin, promoting phagosome localization. RAB-35 functions parallel to

CED-1 to promote the removal of PI(4,5)P and MTM-1, thus permitting the accumulation of PI(3)P. RAB-35, CED-1,

and PI(3)P may promote RAB-5 recruitment and activation on maturing phagosomes. The RAB-35 effector(s) that

mediate these events are not yet known and are thus depicted by dashed lines. RAB-35 would then be inactivated by

TBC-10, which theoretically could be recruited by RAB-5 or other factors on the maturing phagosome.

https://doi.org/10.1371/journal.pgen.1007534.g001
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mutants, and this is more severe in a ced-1; rab-35; ced-5 triple null mutant. The authors con-

clude that rab-35 functions in a third pathway in parallel to the ced-1/-6/-7 and ced-2/-5/-10/-
12 pathways.

Integrin has been proposed to function as an apoptotic cell receptor in C. elegans upstream

of SRC-1 tyrosine kinase, CDC-42, and the CED-10 pathway [20, 21, 22]. Haley and colleagues

confirmed that RNAi of either of the two C. elegans integrin α subunits (ina-1 and pat-2) or

the single β subunit (pat-3) results in an apoptotic cell clearance phenotype. Genetic epistasis

indicates that the integrins function in the same pathway as rab-35.

Overall, these findings represent a significant advance in the field, defining dual roles for

RAB-35 in apoptotic cell clearance in both apoptotic cell recognition and early phagosome

maturation. With new knowledge comes new questions. What are the functional relationships

between integrin and RAB-35? Integrin signaling could potentially activate RAB-35 via

recruitment of FLCN-1 (Fig 1). Alternatively, RAB-35 might regulate endosome recycling of

integrin as it does the RME-2 yolk receptor. Determining if integrin regulates FLCN-1 and

RAB-35 localization and if RAB-35 regulates integrin localization may shed some light on the

mechanisms involved.

During early phagosome maturation, RAB-35 regulates the transition of PI(4,5)P to PI(3)P

and the recruitment of RAB-5 [2]. These novel roles of RAB-35 are likely carried out by one or

more effector proteins. The authors note PI4- and PI5-kinases and phosphatases as good can-

didates. In mammals, oculocerebrorenal syndrome of Lowe (OCRL), an inositol 5-phospha-

tase, is a Rab35 effector that mediates PI(4,5)P breakdown [23]. Especially appealing is that

loss of C. elegans ocrl-1 results in persistent cell corpses, persistent PI(4,5)P on phagosomes, as

well as a delay in RAB-5 recruitment [7]. Therefore, future analysis should determine if

OCRL-1 is recruited and regulated by RAB-35 during phagosome maturation. While the

recruitment of RAB-5 by RAB-35 could be indirect via regulation of PIPs, it is interesting to

speculate a more direct regulation through a Rab cascade as seen with RAB-5 and RAB-7 [11,

24]. In this scenario, RAB-35 could recruit a RAB-5 GEF to activate RAB-5, while RAB-5

could recruit the TBC-10 GAP to inactivate RAB-35. Finally, it would be interesting to deter-

mine if RAB-35 might regulate CED-10, CDC-42, or ARF-6 activity, as suggested from Dro-
sophila and mammalian cell culture studies [15, 16]. This work will surely fuel more

discoveries and continue to delineate the pathways regulating apoptotic cell clearance.
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