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A B S T R A C T   

To quantify the pandemic specific impact with respect to the risk related to the chemical industry, a novel risk 
analysis method is proposed. The method includes three parts. Firstly, the two types of “window of opportunity” 
(WO) theory is proposed to divide an accident life cycle into two parts. Then, a qualitative risk analysis is 
conducted based on WO theory to determine possible risk factors, evolution paths and consequences. The third 
part is a quantitative risk analysis based on a complex network model, integrating two types of WO. The Fuzzy set 
theory is introduced to calculate the failure probabilities of risk factors and the concept of risk entropy is used to 
represent the uncertainty. Then the Dijkstra algorithm is used to calculate the shortest path and the corre
sponding probability of the accident. The proposed method is applied to the SCR denitrition liquid ammonia 
storage and transportation system. The results show that it is a comprehensive method of quantitative risk 
analysis and it is applicable to risk analysis during the pandemic.   
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1. Introduction 

On January 8, 2020, a pandemic pathogen was confirmed as a new 
coronavirus; WHO named this new coronavirus "COVID-19" (Tu et al., 
2020). On January 30, the WHO announced that the COVID-19 was 
listed as a “Public Health Emergency of International Concern” (PHEIC). 
As of May 3, 2020, the number of confirmed cases surpassed 3,349,000, 
continuing to rise (WHO, 2020). The outbreak has had a severe impact 
on a global scale, and many industries face enormous challenges due to 
the strict quarantine policies adopted by many countries. As one of the 
pandemic safety measures, many chemical plants have limited 

personnel at workplaces and shift significantly to remote working. Only 
employees in important production and management positions are 
required to reduce the number of people returning to work. Due to the 
shortage of human resources, the workers’ workload and pressure will 
increase substantially, resulting in plants facing higher risks than usual. 
These measures have caused severe disruptions to normal operations of 
chemical plants. This has created a more challenging environment for 
the process industry to manage the risks of major process accidents. For 
example, Tertiary Butyl Catechol (TBC), a chemical inhibitor, was found 
unavailable on the site and was not added to the tank for one and half 
months (Mathur, 2020). 

The shortage of human resources caused by the pandemic will in
crease the staff workload. The on-site workers speed up operations to 
complete a large amount of work, thereby increasing the probability of 
operational errors; besides, inadequate or no supervision due to human 
resources shortage will increase the probability of operational errors 
turning into accidents. The impact of the pandemic on the accident stage 
is mainly reflected in the daily inspection and maintenance, as well as 
the emergency response time and efficiency. For example, the shortage 
of human resources will reduce the number of on-site inspections and 
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routine maintenance, significantly increasing the potential risks of the 
plant. Besides, when an accident occurs, operators’ response speed and 
efficiency will also be affected to different degrees. The specific impact 
of the pandemic on the process industries is discussed in Section 2. 

In order to analyze the risks in the system, many accident models 
have been proposed. Reason’s (1990) Swiss cheese model significantly 
affects the understanding of an accident. He believes that the occurrence 
of an accident is the result of a combination of factors, including po
tential and direct factors. Leveson (2004) proposed a new accident 
model based on system theory concepts, called the system-theoretic 
accident model and process (STAMP). In her opinion, accidents in 
complex systems occur because the control system fails to deal with 
external disturbances or non-functional interactions between system 
components promptly, rather than merely due to the failure of inde
pendent components. These models cannot represent the overall view of 
system safety, nor can they be adapted to the modeling of multiple 
causal factors. They are mainly descriptive models, not predictive 
models (Rathnayaka et al., 2011). Rathnayaka et al. (2011) developed a 
process accident model, named SHIPP (System hazard identification, 
prediction and prevention). It combines the concepts of Bow-Tie to 
model causality. The probability of accidents can be updated using the 
Bayesian update mechanism. Bayesian network is a popular method for 
conducting quantitative risk analysis for process systems. Abimbola and 
Khan (2014) used the Bayesian network to evaluate the dynamic risk of 
the drilling system, and he used the value of the safety barrier failure 
probability changing with time to obtain the relationship between the 
accident occurrence probability and time. Zarei et al. (2019) used the 
fuzzy Bayesian network (FBN) to perform a quantitative risk assessment 
on a natural gas station. They compared the Bayesian network with FBN, 
and show the advantages of FBN. Yang et al. (2013) proposed a frame
work that used a precursor-based hierarchical Bayesian approach (HBA) 
for rare event frequency estimation and demonstrated it with the BP 
Deepwater Horizon accident in the Gulf of Mexico. Vianello et al. (2019) 
used an API risk-based inspection assessment approach to reduce 
maintenance costs and, increase the plant’s reliability and availability. 
Li et al. (2019) proposed a risk-based accident model to analyze the 
problem of subsea pipeline leakage quantitatively and effectively pre
dicted the probability of subsea pipeline leakage accidents. Milazzo et al. 
(2015) proposed a quantitative risk assessment approach to analyze the 
uncertainties related to the results of the analysis, which derive from 
assumption in the application of the standard models. Vianello et al. 
(2016) used the Inspection Manager software to overcome the 
complexity and time-consuming data collection in RBI. 

The above studies focus on the probability of accidents and the risks 
of comprehensive accident causes. Those methods cannot represent the 
risk of a single path. However, due to the pandemic’s unique and 
complex impact on the chemical industry, it is essential to identify and 
eliminate the most vulnerable risk factors in a limited time. In light of 
the above, it is necessary to design a method that can quickly find the 
most likely accident path and corresponding risk factors. 

This paper aims to establish a risk-based model for hazardous ma
terial leakage accidents in the case of human resources shortage during a 
pandemic. The model is divided into two parts. The first part uses 
qualitative risk analysis to identify the potential risk factors and the 
possible accident consequences during a pandemic. In the second part, 
quantitative risk analysis is applied to determine the accident’s evolu
tion from causes to consequences, quickly identifying the most likely 
path, compute its corresponding probability, and finally discover the 
critical risk factors in the path. The research provides strong support for 
decision-making during the outbreak. 

The remaining parts of this paper are organized as follows. The in
fluence of pandemic in the industry is presented in Section 2. A brief 
description of the proposed method, including the window of opportu
nity, complex network, and risk entropy, is shown in Section 3. The 
qualitative risk analysis based on the window of opportunity and the 
quantitative risk analysis based on the complex network are presented in 
Section 4. Section 5 compares the proposed method with Bow-Tie and 
Bayesian networks for accident modeling. Finally, conclusions are 
drawn in Section 6. 

2. The influence of pandemic in the chemical process safety 

In the face of any pandemic’s rapid spread, and especially in case of 
the COVID-19 pandemic some governments decided to suspend public 
transport and impose a temporarily lockdown to reduce the population 
flow. Even so, it could be observed in many countries that the pandemic 
still spread dramatically and adversely affected people’s lives and 
economy. The delay of the loch-to-work situation caused by this 
outbreak has had a significant impact on the chemical industry. The 
impact of the outbreak on the chemical industry is divided into two 
parts: i) the impact on human errors, and ii) the impact on accident 
stages. 

2.1. The impact on human factors 

The outbreak in China began in early 2020. After the Spring Festival, 

Fig. 1. The pandemic impact on human errors.  
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employees were about to return to work. Due to the pandemic’s impact, 
some non-local employees were not allowed to return to work, or 14 
days of quarantine observation before resuming work (Hao et al., 2020; 
Kumar et al., 2020). This led to a shortage of workers in the plant. Be
sides, in order to implement the pandemic prevention and control 

requirements, some employees were seconded to other departments, 
which made the shortage of some positions more serious. During the 
pandemic, some international routes and ports were shut down (Fu 
et al., 2020), which caused a large amount of hazardous materials to be 
stored in the plant. As the storage tanks are full for a long time and lack 
staff, this has caused delays in daily inspections, supervision, and other 
work. 

The Human Factors Analysis and Classification System (HFACS) 
classifies the causes of accidents into four categories: unsafe acts, the 
preconditions for unsafe acts, unsafe supervision, and organization in
fluence (Shappell and Wiegmann, 2000). With its systematic method
ology and taxonomic nature, the HFACS reduces the incompleteness 
caused by experts’ limited knowledge and missing information during 
the identification and classification of human and organizational factors 
(Fu et al., 2020). According to the unique impact of the pandemic, the 
causes of human error are classified into four categories in this present 
work, namely, operational error (M1), the preconditions for unsafe acts 
(M2), unsafe supervision (M3), and organizational influence (M4). Fig. 1 
demonstrates the logical relationship between the factors caused by the 
pandemic. 

For operational errors, due to the impact of staff shortage and sec
ondment, the tasks assigned to the staff during the pandemic may not be 
familiar to them. Insufficient or no training for the staff may reduce the 
technical ability, safety awareness, and effectiveness of the staff’s su
pervision. For the preconditions for unsafe acts, in response to the call 
for pandemic prevention and control, the staff must wear masks and 
keep a proper distance, which increases the difficulty of communication 
and dramatically reduces the effectiveness of information transmission. 
Besides, due to the long-term wearing of masks and high work pressure, 
employees are likely to make a mistake. This also increases the proba
bility of human errors. For organizational influence, due to the shortage 
of personnel and the increase in the absenteeism rate of the personnel, 
the daily production, and management of the plant can only rely on a 
few employees. In this case, there will be unclear task assignments, 
unreasonable scheduling, night work, and over time, which increases 
the staff’s burden and increases the probability of human error. The 
impact of the pandemic on workers will be throughout the entire pro
duction process. Table 1 demonstrates the risk factors of human errors. 
The specific analysis of the human errors is shown in Section 4.2. 

2.2. The impact on accident stages 

The concept of window of opportunity (WO) is mostly used in the 
medical field to indicate the best time to treat a disease (Ismail et al., 
2017; Langer et al., 2011; Sweeney, 1997; Andersen, 2003). WO rep
resents the best time to invest in a business and the best time to catch up 
with competitors (Kwak and Yoon, 2020; Yap and Truffer, 2019). In this 
research, the time from the accident precursor stage to the time before 
the accident termination is defined as the WO representing the best time 
for the system to prevent and control accidents. The life cycle of an 
accident can be divided into two stages, each stage corresponding to a 
WO. The first stage is the accident precursor stage, corresponding to the 
first type of WO (FWO). The second stage is the accident evolution stage, 
corresponding to the second type of WO (SWO). The pandemic’s impact 
is different at each stage, but one thing in common is that it shortens the 
window of opportunity. During the accident precursor period before the 
accident initiation stage (i.e., FWO), the operators’ main task is daily 
inspections to identify and eliminate risk factors in time. The FWO can 
be divided into three segments, as shown in Fig. 2 (a). Under normal 
circumstances, routine inspection and maintenance will promptly and 
effectively discover and eliminate risk factors, thus reducing the prob
ability of accidents and extending the time of FWO. However, due to the 
shortage of human resources during the pandemic, the number and 
frequency of daily inspections are relatively low. Besides, with the 
increased workload and pressure of workers, the effectiveness of in
spection and maintenance will be reduced, resulting in a reduced 

Table 1 
Descriptions of risk factors for human errors.  

Symbol Risk factors Symbol Risk factors 

X1 Inadequate knowledge X9 No supervision 
X2 Inadequate technique X10 Inadequate 

supervision 
X3 Inadequate human resources X11 Unclear task 

assignment 
X4 Inadequate training X12 Increased absenteeism 

of workers 
X5 Inadequate communication X13 High work stress 
X6 Communication failure X14 Night work 
X7 Temperature discomfort X15 Unscheduled working 

hours 
X8 Prolonged wearing of masks leads 

to oxygen deprivation 
– –  

Fig. 2. The window of opportunity (WO) in process industries.  

Fig. 3. The proposed methodology for assessing the accident shortest path and 
its probability under the influence of COVID-19. 
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probability of finding and eliminating risk factors. This means that the 
number of risk factors present in the plant during the pandemic is higher 
than usual significantly shortening the FWO. For the accident evolution 
stage (SWO), the operators’ main task is to take emergency measures to 
prevent the escalation of the accident. The SWO can be divided into 
three segments, as shown in Fig. 2 (b). Whether and what measures were 
taken in each time period would lead to the accident develop in different 
directions. Due to the shortage of human resources and emergency 
supplies, the response speed of workers, the speed of taking measures 
and the effectiveness will be affected during the pandemic. Therefore, 
the development path of the accident cannot be effectively cut off in 
time, which will shorten the SWO and lead to the rapid escalation of the 
accident into a catastrophe. 

3. The proposed methodology 

In the last section, we analyzed the special impact of the pandemic on 
chemical process safety. The methodology is developed in this section to 
deal with those special risk factors, which include identifying the po
tential risk factors, accident scenarios, and assessing the accident 
shortest path and its probability under the influence of a pandemic. The 
proposed methodology is comprised of several steps, as demonstrated in 
Fig. 3. Each step of the methodology is discussed in detail in the 
following section. 

3.1. Window of opportunity theory 

In recent decades, a large number of catastrophic accidents have 
occurred in the process industry. The most common example of these 
accidents is personnel poisoning, fire, and vapor cloud explosion (VCE). 
Leakages are often the causes of these accidents. Therefore, this paper 
focuses on investigating leakage-induced accident risks in the process 
industry under the pandemic situation. Dangerous gas leakage accidents 
can be divided into several stages on the time axis, and each stage will 
exhibit different dynamic characteristics. The time from the accident 
precursor stage to the time before the accident termination is called the 
window of opportunity (WO)，as shown in Fig. 4. Whether and what 
measures are taken in each period would lead to the accident develop in 
different directions. 

There are two types of WO: the first type of WO (FWO) refers to the 
stage of the accident precursor stage. Potential risk factors exist in this 
stage, but they are not eliminated in a timely and effective manner. As 
time goes on, they eventually lead to accidents. Notably, during the 
pandemic situation, the impact of human resources shortage shortened 
the FWO. It may increase the probability of human errors. Therefore, 
studying the FWO is beneficial to deal with the special effects of the 
pandemic. The purpose of studying the FWO is to discover and eliminate 
the risk factors before the accident occurs and extend the FWO, to pre
vent the occurrence of accident fundamentally. The second type of WO 

(SWO) refers to the time from the accident occurrence to the time before 
the accident terminates. During this period, the initial accident may lead 
to a disastrous accident. Due to the pandemic’s impact, the speed of 
emergency response will be reduced when an accident occurs. This in
creases the probability that the initial accident evolves into a catastro
phe. SWO aims to analyze the cause of barrier failure and to take 
adequate measures to control the development path of accidents and 
reduce their consequences. The relationship between the WO and the 
accident life cycle is shown in Fig. 4. 

3.2. Complex network and risk entropy 

Complex networks are between regular networks and random net
works connected by logical operators. Initial events may evolve into 
result events through different network paths (Meng et al., 2019). The 
subtle relationship between the nodes is a guarantee that the entire 
system will normally complete the assigned tasks. The complex network 
abstracts the basic events and intermediate events as discrete points and 
abstracts the relationship between events as a directed edge with 
weights. The directed edge represents the relationship between events, 
and the weight represents the degree of connection. It is described by a 
directed acyclic sparse matrix connection graph G=(N, E, W), where N =
(1, 2, … n) is the set of nodes; E = (e1, e2, … en) is the set of edges; W =
(w1, w2, … wn) is the set of weights of the edges. 

This paper introduce the Dijkstra algorithm to calculate the shortest 
path of an accident under the impact of pandemic. The implementation 
of the algorithm is based on greedy thinking. The basic idea is to traverse 
all nodes from one vertex until finding the shortest path to the endpoint. 
The algorithm adds the edge weights contained in each path, and the 
path with the smallest total edge weight is the shortest path from the 
start point to the end. In a complex network, the nodes’ edge weights are 
represented by probabilities, the shortest path is: 

Max
∏

Pi,j⋅xi,j

s.t.xi,j =

{
1, ni,j = 1
0, ni,j = 0

(1) 

In the formula, i and j are any two nodes in a complex network； 
when xij = 1, it means that there is risk transmission path between nodes 
i and j; when xij = 0 means that there is no direct connection between i 
and j; Pij represents the probability of risk transfer from node i to node j. 
The maximum value is the optimal solution, that is, the path with the 
highest probability of accident. 

Since the algorithm adds all the edge weights to find the shortest 
path, and the probability cannot be added, so the risk entropy with 
additivity is introduced to express the edge weights between nodes. 
Entropy is a state function introduced by Clausius in 1867 to complete 
the quantification of the second law of thermodynamics, which has 
evolved into a measure of system disorder or uncertainty (Clausius, 

Fig. 4. The relationship between two types of WO and accident development.  
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Fig. 5. Reaction principle diagram of SCR denitration.  

Fig. 6. The process of SCR denitrition liquid ammonia storage and transportation system.  

Fig. 7. Fault tree analysis of liquid ammonia storage and transportation system.  
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1867). Shannon (1948) used information entropy to describe the un
certainty of an information source. Drawing on the definition of 
self-information in information theory, this paper uses self-information 
to represent the edge weights between nodes, called risk entropy. For 
the event xi with probability P(xi), its self-information is I(xi) (Shannon, 
1948): 

I(xi)= − ln P(xi) (2) 

The calculation of an accident shortest path can be converted into the 
optimal solution problem. Since the higher the probability of an event, 
the smaller the self-information; therefore, the shortest path of an ac
cident is the path with the lowest risk entropy. The objective function is 
transformed into a risk entropy function, as shown in the following 

equation: 

Min
∑

− ln
(
Pi,j⋅xi,j

)

s.t.xi,j =

{
1, ni,j = 1
0, ni,j = 0

(3)  

4. Case study 

4.1. SCR denitration liquid ammonia storage and transportation system 

The flue gas generated by coal combustion in thermal power plants 
contains enormous nitrogen oxides. To prevent environmental pollu
tion, the flue gas should be denitrified. SCR technology refers to the 
process of reducing agent under the action of catalyst to convert nitro
gen oxides in flue gas into nitrogen and water. Ammonia gas is usually 
selected as a reducing agent, and the reaction temperature is 
280–420 ◦C, the specific reaction process is shown in Fig. 5. 

Ammonia as a reducing agent is used in the denitration process. 
Fig. 6 represents the process flow diagram for the ammonia storage and 
transportation system in the SCR denitration process. The liquid 
ammonia from the transport vehicle is discharged into the liquid 
ammonia storage tank, and the evaporated gas is discharged into the 
evaporator and buffer tank. The liquid ammonia is pumped to the 
evaporator for evaporation. Then the evaporated ammonia gas is dis
charged into the buffer tank, which stabilizes the supply of ammonia 
gas. Finally, the ammonia gas enters the SCR denitrification system. The 
residual NH3 in the storage tank, evaporator, and buffer tank is absorbed 
by the industrial water in the ammonia dilution tank. Then it is dis
charged into the wastewater tank. Finally, it is pumped to the industrial 
wastewater station. 

4.2. Qualitative risk analysis based on WO theory  

(1) Hazard identification 

The research of FWO aims to identify potential risk factors to prevent 
accidents. In this period, the Fault tree model is used to find potential 
risk factors according to the process flow in Fig. 7. 

Due to the special impact of the pandemic on the WO and human 
errors, the probability of equipment failure being detected and elimi
nated is reduced, while the probability of human errors has increased. 
This makes accidents’ probability higher than normal. Equipment and 
human factors are the main causes of leakage accident. The equipment 
factors of liquid ammonia storage and transportation system can be 
divided into two parts, namely storage equipment and pipeline equip
ment. In the pandemic situation, human factors are mainly composed of 
four parts, which are operation errors, poor information transmission, 
unreasonable work design and poor working environment. There are 28 
basic events and 19 intermediate events in the fault tree, which means 
that there are 28 risk factors that may cause an accident in the FWO 
under the impact of a pandemic. If these risk factors can be eliminated in 
a timely and effective manner during FWO, the leakage accident can be 
avoided. The identified risk factors are shown in Fig. 7 and Table 2.  

(2) Accident sequence 

When an accident occurs, the safety barrier’s effectiveness de
termines the accident propagation scenarios, and each scenario can be 
represented by an accident evolution path. Due to the impact of the 
epidemic, the frequency and efficiency of safety barrier inspection and 
maintenance are reduced, leading to an increased possibility of safety 
barrier failure. Besides, the shortage of human resources reduces the 
speed of emergency response. The research of SWO aims to identify the 
potential accident evolution path. In this period, the Event Tree model 
can be used to find out the possible failure reasons of the safety barriers 
and the potential development path of the accident. Ammonia is not 

Table 2 
Initial nodes and intermediate nodes for ammonia leakage accident.  

Symbol Basic event Symbol Basic event 

X1 Unreasonable design X42 Smoking 
X2 Poor acceptance quality X43 Lightning stroke 
X3 Internal corrosion X44 Static electricity 
X4 External corrosion X45 Strike sparks 
X5 Overpressure X46 On-site information 

failure 
X6 Overfilling X47 Off-site information 

failure 
X7 Valve failure X48 Poor human resources 
X8 Flange seal failure X49 Poor rescue resources 
X9 Gasket failure X50 Inadequate training 
X10 Pipe joint weld rupture X51 Emergency exits 

closed 
X11 Internal corrosion of pipeline X52 Inadequate experience 
X12 External corrosion of pipeline M1 Equipment factors 
X13 External force damage M2 Human factors 
X14 Inadequate knowledge M3 Tank leakage 
X15 Inadequate technique M4 Piping system leakage 
X16 Inadequate human resources M5 Tank original defect 
X17 Inadequate training M6 Tank rupture 
X18 No supervision M7 Corrosion 
X19 Inadequate supervision M8 Fatigue of tank 
X20 Inadequate communication M9 Pipeline rupture 
X21 Communication failure M10 Pipeline corrosion 
X22 Temperature discomfort M11 Operation error 
X23 Prolonged wearing of masks leads 

to oxygen deprivation 
M12 Inadequate training 

X24 Unclear task assignment M13 Supervision failure 
X25 Increased absenteeism of workers M14 Preconditions for 

unsafe acts 
X26 High work stress M15 Information transfer 

failure 
X27 Night work M16 Poor working 

environment 
X28 Unscheduled working hours M17 Unreasonable work 

design 
X29 Unreasonable detector 

arrangement 
M18 Improper schedules 

X30 Detector failure M19 long-time working 
X31 Out of detection range M20 Gas detection failure 
X32 Long delay in inspection M21 Isolation barrier 

failure 
X33 Poor safety awareness M22 Automatic gas 

detection failure 
X34 Detection alarm failure M23 Manual gas detection 

failure 
X35 Signal failure M24 ESD failure 
X36 Shutdown valve failure M25 Manual shutdown 

failure 
X37 Insufficient daily maintenance of 

the shutdown system 
M26 Operation error 

X38 Manual valve failure M27 Information transfer 
failure 

X39 Lack of training M28 Emergency rescue 
failure 

X40 Operating procedures are not 
standardized 

M29 Emergency 
evacuation failure 

X41 Insufficient daily maintenance    
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easily ignited, and the explosion limit of ammonia is 15.7%–27.4%. 
However, when ammonia gas accumulates in large quantities, there will 
still be explosion accidents in the presence of ignition sources (Inanloo 
and Tansel, 2015; Tan et al., 2020). The types of safety barriers in this 

article are mainly divided into three categories, namely the dispersion 
prevention barrier, the ignition prevention barrier, and the emergency 
response barrier. The effectiveness of the safety barrier is affected by 
multiple risk factors. In Fig. 8A and B, C, D, E means safe, near miss, 

Fig. 8. Event tree analysis of liquid ammonia storage and transportation system.  

Fig. 9. Complex network model for liquid ammonia storage and transportation system during the pandemic.  
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poisoning accident, explosion accident, and catastrophe, respectively. 
The details are shown in Fig. 8 and Table 2. 

4.3. Quantitative risk analysis based on WO theory 

The study of WO can effectively identify the cause, evolution path, 
and consequences of the accident under the impact of a pandemic. In 
order to quantitatively analyze the accident risk, the complex network is 
introduced to integrate the two types of WO (FWO and SWO) to calcu
late the shortest path and the probability of the accident. The fuzzy set 
theory can be used to present subjective, vague, linguistic and imprecise 
data and information effectively, in which fuzzy numbers scored by 
invited experts will characterize the probability values of primary 
events, and subsequently fuzzy number in linguistic term can be trans
formed into fuzzy failure (prior) probability of factors (Chang et al., 
2019; Zarei et al., 2019). In the present work, expert elicitation is 
introduced to calculate the failure probabilities of the events. The 

specific calculation procedure can be seen in Zarei et al. (2019). 
Table Appendix A demonstrates expert judgments, aggregation of fuzzy 
numbers, fuzzy possibility, and the probability of root events in Figs. 7 
and 8. 

4.3.1. Complex network modeling 
The complex network model (Fig. 9) was developed based on the 

identified risk factors (Fig. 7) and their relationships (Fig. 8). In order to 
simplify the modeling process of a complex network, node types are 
divided into two categories: equipment factors and human factors. There 
are 85 nodes and 131 edges in the complex network model, and the risk 
factors associated with each node are shown in Table 3. 

The complex network’s edge weights are expressed by probabilities. 
In this paper, when a node i has only one parent node j, the edge weight 
Wji between the two is the failure probability of the node i. The Fuzzy set 
theory is used to calculate the specific failure probability of factors 
(Lavasani et al., 2011). When a node has more than one parent node, the 
node represents an intermediate event. At this point, the edge weights 
between the node and its parent nodes are obtained according to the 
relationship between the AND gate and the OR gate in Figs. 7 and 8. In 
the complex network, the edge direction is used to indicate the risk 
transitivity, and the edge weight is used to indicate the risk value. Ac
cording to Eq. (2), all edge weight values of risk factors are converted 
into risk entropy, as shown in Table 4. 

4.3.2. Accident shortest path calculation 
The purpose of accident scenario calculation is to search for the 

shortest path from the initial event to the resulting event. The shortest 
path of a dangerous gas leakage accident is equivalent to the path with 
the lowest risk entropy. Based on the Dijkstra algorithm and Equation 
(3), MATLAB software is used to calculate the shortest path of the ac
cident caused by various risk factors. The results are shown in Table 5. 

The shortest paths of leakage and escalation accidents caused by 
different risk factors are listed in Table 5. The nodes in each path are the 
principal risk factors in the accident evolution. According to Table 5, an 
ammonia leakage accident caused by human errors is the shortest, fol
lowed by equipment factors. It can be seen that the probability of human 
factors increase due to the impact of the pandemic has increased, 
thereby increasing the probability of leakage accidents. The shortest 
leakage accident path is 2 → 26→40 → 46→48, and its probability is 
1.49E-02, indicating that after a few steps, the initial event can cause a 
leakage accident. When ammonia leakage occurs, the dispersion pre
vention barrier will eventually fail due to the automatic detector failure, 
long delayed inspection and manual detection failure, resulting in a 
large amount of ammonia leakage and dispersion. As ammonia gas is 
highly corrosive and toxic, workers will have obvious uncomfortable 
reactions when inhaled, such as cough, dizziness and dyspnea. This has 
seriously affected the speed and efficiency of personnel emergency 
response. Ammonia is not easily ignited. However, due to the failure to 
take effective measures to control the leakage of ammonia gas, a large 
amount of ammonia gas accumulates, and explosion accidents will occur 
under the conditions of the existence of ignition sources, which further 
caused damage to personnel and the plant. The shortest escalation ac
cident path is 2 → 26→40 → 46→48 → 52→74 → 81→83 → 64→84 → 
68→79 → 85, and its probability is 1.06E-08. 

It can be seen from Table 5 that different initial events cause leakage 
accidents, and to avoid the occurrence of leakage accidents, corre
sponding measures can be taken in the FWO, such as strengthening 
routine inspection, reduce work stress and have a reasonable work 
schedule. When the leakage accident occurs, the shortest development 
path of the accident is almost the same. A long delay in inspection, static 
electricity, and inadequate human resources are the leading causes of 
the failure of dispersion prevention barriers, ignition prevention bar
riers, and emergency response barriers, respectively. When the leakage 
accident occurs, to avoid the escalation of the accident, corresponding 
measures can be taken in SWO to cut off the expansion path of the 

Table 3 
Descriptions of risk factors in the complex network.  

Number Risk factor Number Risk factor 

1 Equipment factor 44 Operation error 
2 Human factor 45 Information transfer failure 
3 Unreasonable design 46 Unreasonable work design 
4 Poor acceptance quality 47 Poor working environment 
5 Internal corrosion 48 Leakage accident 
6 External corrosion 49 Unreasonable detector 

arrangement 
7 Overpressure 50 Detector failure 
8 Overfilling 51 Out of detection range 
9 Valve failure 52 Long delay in inspection 
10 Flange seal failure 53 Poor safety awareness 
11 Gasket failure 54 Detection alarm failure 
12 Pipe joint weld rupture 55 Signal failure 
13 Internal corrosion of pipeline 56 Shutdown valve failure 
14 External corrosion of pipeline 57 Insufficient daily 

maintenance of the 
shutdown system 

15 External force damage 58 Manual valve failure 
16 Inadequate knowledge 59 Lack of training 
17 Inadequate technique 60 Operating procedures are 

not standardized 
18 Inadequate human resources 61 Insufficient daily 

maintenance 
19 Inadequate training 62 Smoking 
20 No supervision 63 Lightning stroke 
21 Inadequate supervision 64 Static electricity 
22 Inadequate communication 65 Strike sparks 
23 Communication failure 66 On-site information failure 
24 Unclear task assignment 67 Off-site information failure 
25 Increased absenteeism of 

workers 
68 Poor human resources 

26 High work stress 69 Poor rescue resources 
27 Night work 70 Inadequate training 
28 Unscheduled working hours 71 Emergency exits closed 
29 Temperature discomfort 72 Inadequate experience 
30 Prolonged wearing of masks 

leads to oxygen deprivation 
73 Automatic gas detection 

failure 
31 corrosion 74 Manual gas detection 

failure 
32 Fatigue of tank 75 ESD failure 
33 Pipeline corrosion 76 Operation error 
34 Inadequate training 77 Manual shutdown failure 
35 Tank original defect 78 Information transfer failure 
36 Tank rupture 79 Emergency rescue failure 
37 Pipeline rupture 80 Emergency evacuation 

failure 
38 Inadequate skill 81 Gas detection failure 
39 Supervision failure 82 Isolation barrier failure 
40 Improper schedules 83 Dispersion barrier failure 
41 long-time working 84 Ignition barrier failure 
42 Tank leakage 85 Emergency response 

barrier failure 
43 Piping system leakage    
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Table 4 
wt of edges in the complex network.  

Edge Direction Probability Risk entropy Edge Direction Probability Risk entropy 

e1 1 → 3 4.760× 10–4  7.651 e67 40 → 46 0.996 0.004 
e2 1 → 4 9.820× 10–4  6.926 e68 41 → 46 0.996 0.004 
e3 1 → 5 9.050× 10–4  7.008 e69 42 → 48 0.850 0.163 
e4 1 → 6 2.800× 10–3  5.892 e70 43 → 48 0.850 0.163 
e5 1 → 7 3.200× 10–3  5.736 e71 44 → 48 0.850 0.163 
e6 1 → 8 2.000× 10–3  6.224 e72 46 → 48 0.850 0.163 
e7 1 → 9 1.740× 10–3  4.053 e73 47 → 48 0.850 0.163 
e8 1 → 10 5.000× 10–3  5.298 e74 48 → 49 2.300× 10–3  6.057 
e9 1 → 11 5.000× 10–3  5.298 e75 48 → 50 6.000× 10–3  5.112 
e10 1 → 12 6.300× 10–3  5.072 e76 48 → 51 3.400× 10–3  5.684 
e11 1 → 13 2.000× 10–3  6.227 e77 48 → 52 1.810× 10–2  4.010 
e12 1 → 14 2.000× 10–3  6.224 e78 48 → 53 1.410× 10–2  4.258 
e13 1 → 15 1.100× 10–3  6.806 e79 48 → 54 9.821× 10–4  6.926 
e14 2 → 16 7.200× 10–3  4.939 e80 48 → 55 6.188× 10–4  7.388 
e15 2 → 17 7.200× 10–3  4.939 e81 48 → 56 7.500× 10–3  4.894 
e16 2 → 18 1.810× 10–2  4.010 e82 48 → 57 5.000× 10–3  5.298 
e17 2 → 19 7.500× 10–3  4.894 e83 48 → 58 4.600× 10–3  5.389 
e18 2 → 20 2.000× 10–3  6.224 e84 48 → 59 3.200× 10–3  5.736 
e19 2 → 21 3.700× 10–3  5.587 e85 48 → 60 2.300× 10–3  6.057 
e20 2 → 22 6.000× 10–3  5.114 e86 48 → 61 7.500× 10–3  4.894 
e21 2 → 23 6.600× 10–3  5.024 e87 49 → 73 0.988 0.012 
e22 2 → 24 3.200× 10–3  5.736 e88 50 → 73 0.988 0.012 
e23 2 → 25 8.200× 10–3  4.808 e89 51 → 73 0.988 0.012 
e24 2 → 26 1.810× 10–2  4.010 e90 52 → 74 0.968 0.033 
e25 2 → 27 1.410× 10–2  4.258 e91 53 → 74 0.968 0.033 
e26 2 → 28 5.000× 10–3  5.298 e92 54 → 75 0.986 0.014 
e27 2 → 29 5.000× 10–3  5.298 e93 55 → 75 0.986 0.014 
e28 2 → 30 1.300× 10–3  6.676 e94 56 → 75 0.986 0.014 
e29 3 → 35 0.999 0.001 e95 57 → 75 0.986 0.014 
e30 4 → 35 0.999 0.001 e96 58 → 77 0.983 0.017 
e31 5 → 31 0.996 0.004 e97 59 → 76 0.995 0.005 
e32 6 → 31 0.996 0.004 e98 60 → 76 0.995 0.005 
e33 7 → 32 0.995 0.005 e99 61 → 77 0.983 0.017 
e34 8 → 32 0.995 0.005 e100 76 → 77 0.983 0.017 
e35 13 → 33 0.996 0.004 e101 73 → 81 0.957 0.044 
e36 14 → 33 0.996 0.004 e102 74 → 81 0.957 0.044 
e37 18 → 34 0.975 0.025 e103 75 → 82 0.969 0.032 
e38 19 → 34 0.975 0.025 e104 77 → 82 0.969 0.032 
e39 20 → 39 0.994 0.006 e105 81 → 83 0.927 0.076 
e40 21 → 39 0.994 0.006 e106 82 → 83 0.927 0.076 
e41 22 → 45 0.987 0.013 e107 83 → 62 0.0015 6.527 
e42 23 → 45 0.987 0.013 e108 83 → 63 1.369× 10–4  8.897 
e43 24 → 40 0.971 0.029 e109 83 → 64 2.800× 10–3  5.892 
e44 25 → 40 0.971 0.029 e110 83 → 65 9.753× 10–4  6.933 
e45 26 → 40 0.971 0.029 e111 62 → 84 0.995 0.005 
e46 27 → 41 0.981 0.019 e112 63 → 84 0.995 0.005 
e47 28 → 41 0.981 0.019 e113 64 → 84 0.995 0.005 
e48 29 → 47 0.994 0.006 e114 65 → 84 0.995 0.005 
e49 30 → 47 0.994 0.006 e115 84 → 66 5.000× 10–3  5.298 
e50 35 → 42 0.990 0.010 e116 84 → 67 5.000× 10–3  5.298 
e51 31 → 36 0.991 0.009 e117 84 → 68 1.810× 10–2  4.010 
e52 32 → 36 0.991 0.009 e118 84 → 69 8.500× 10–3  4.764 
e53 36 → 42 0.990 0.010 e119 84 → 70 5.000× 10–3  5.298 
e54 9 → 43 0.962 0.039 e120 84 → 71 8.200× 10–3  4.804 
e55 10 → 43 0.962 0.039 e121 84 → 72 5.700× 10–3  5.161 
e56 11 → 43 0.962 0.039 e122 66 → 78 0.990 0.010 
e57 12 → 37 0.989 0.011 e123 67 → 78 0.990 0.010 
e58 33 → 37 0.989 0.011 e124 68 → 79 0.969 0.032 
e59 15 → 37 0.989 0.011 e125 69 → 79 0.969 0.032 
e60 37 → 43 0.962 0.039 e126 70 → 79 0.969 0.032 
e61 16 → 38 0.961 0.040 e127 71 → 80 0.986 0.014 
e62 17 → 38 0.961 0.040 e128 72 → 80 0.986 0.014 
e63 34 → 38 0.961 0.040 e129 78 → 85 0.946 0.056 
e64 38 → 44 0.955 0.046 e130 79 → 85 0.946 0.056 
e65 39 → 44 0.955 0.046 e131 80 → 85 0.946 0.056 
e66 45 → 48 0.850 0.163 – – – –  
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accident, to avoid the occurrence of the escalation of the accident. 
The shortest path of an explosion accident caused by human factors 

and equipment factors are shown in Fig. 10. The blue line in the figure 
represents the shortest accident path caused by equipment factors; the 
green line represents the shortest accident path caused by human fac
tors, and the red line represents the common path of the accident caused 
by both. There are some identical risk factors in the shortest path of 
different accidents. 

The risk factors of each path are interlinked. Targeted measures can 
be taken to cut off the development path of the accident and make the 
accident develop in a relatively favorable direction. For equipment 
factors, targeted inspection should be carried out as much as possible in 
the case of human resources shortage. Especially for components with 
high failure frequency (such as valve failure in this case), the effec
tiveness of inspection and maintenance should be increased. This can 
not only effectively reduce the number of risk factors and the failure 
probability, but also extend the time of FWO to carry out more in
spections and repairs. Besides, it can compensate for some of the impact 
of the human resources shortage. For human errors, reasonable work 

arrangement and communication can not only reduce the workers’ 
pressure but also reduce the impact caused by the poor working envi
ronment. Targeted development of emergency plans during the 
pandemic can reduce the decision time and the probability of decision 
failure. It can also improve the effectiveness of emergency response, and 
control the direction of accidents in a limited time to reduce accident 
consequences. 

5. Discussions 

5.1. Comparison with Bow-Tie and Bayesian networks for accident 
modeling 

Bow-Tie (BT) and Bayesian network (BN) model are widely used as 
risk analysis techniques in the field of chemical process safety (Ferdous 
et al., 2012; Khakzad et al., 2013; Abimbola and Khan, 2014; Zarei et al., 

Table 5 
The shortest path of different accidents during the pandemic.  

Initial 
event 

The shortest path Risk 
entropy 

Probability 

1 1 → 9→43 → 48 4.255 1.42×

10–2  

1 1 → 9→43 → 48→52 → 74→81 → 
83→64 → 84→68 → 79→85 

18.413 1.01×

10–8  

2 2 → 26→40 → 46→48 4.206 1.49×

10–2  

2 2 → 26→40 → 46→48 → 52→74 → 
81→83 → 64→84 → 68→79 → 85 

18.364 1.06×

10–8   

Fig. 10. The shortest paths of different initial events during the pandemic.  

Table 6 
The difference between the proposed method and BT and BN.  

Methods Aspects 

Model 
structure 

Inputs Outputs 

BT model Sequential Failure data expert 
judgements 

Possible accident 
consequences and their 
probability 

BN model Non- 
sequential 

Failure data expert 
judgements and 
abnormal state 

Possible accident 
consequences and their 
probability 

The 
proposed 
method 

Non- 
sequential 

Failure data expert 
judgements 

1)Possible accident 
consequences and their 
probability 
2)Critical and shortest 
accident route  
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2019). BT is used to represent the relationship between the cause of an 
accident, the path of the accident, the consequences of the accident and 
the measures to prevent the accident. It is a risk analysis method that is 
easy to use and operate, and it is highly visual. BT can graphically 
represent the entire life cycle of an accident, and help workers establish 
effective measures to prevent accidents. However, most of the modern 
complex industrial systems suffer from multiple failure modes and 
exhibit dynamic failure behaviour. Therefore, conventional tool is un
able to deal with dynamic failure behaviour of complex systems (Kabir, 
2017). BT, as a conventional risk analysis method, uses generic failure 
data. This makes it to be non-case-specific and introduce uncertainty 
into the results (Li et al., 2016). Besides, it cannot represent the risk of a 
single path. 

BN is a probabilistic inference technique for reasoning in uncertain 
situations, which can relax the limitation of conventional methods and 
consider conditional dependence and common failures in the process of 
accident modeling (Yuan et al., 2015). However, BN focus on solving the 
overall risk of accidents, and cannot represent the risk of a single path. 
During the pandemic, due to the shortage of human resources, it is 
essential to identify and eliminate the most vulnerable risk factors in 
limited time. This can increase WO’s time so as to make more rounds of 
inspection and maintenance. Compared with the BN method, this 
method fully displays the risk factors on the network graph systemati
cally and intuitively on the basis of considering the uncertainty. The 
detailed difference between the proposed method and BT and BN is 
shown in Table 6. 

The proposed methodology leverages the strength of BT and BN, 
which mapped from Fault Tree and Event Tree, and considers the data 
uncertainty. It can solve the probability of the path between any nodes, 
and quickly identify the shortest path of accidents, and most the 
vulnerable risk factors, to provide more targeted decision support for 
accident prevention and control during a pandemic. 

5.2. The impact of pandemic with respect to process industry 

The pandemic’s impact on the process industry is mainly reflected in 
two aspects: human errors and accident stages. Human errors should be 
analyzed from four aspects: organization, unsafe supervision, pre
conditions for unsafe acts, and unsafe acts. Due to the shortage of human 
resources, there will be secondments during the epidemic, workers’ 
ambiguity about new tasks, and insufficient training will increase the 
probability of human errors. Besides, organizations will take various 
measures to deal with the impact of the pandemic. The manager may 
make wrong decisions or policies because of lack of experience in the 
pandemic. For the influence of unsafe supervision, the lack of human 
resources will reduce or even eliminate normal supervision efficiency, 
thereby increasing the risk of accidents. For the preconditions of unsafe 
acts, the shortage of human resources caused by the pandemic increases 
the workers’ stress and workload. The on-site workers speed up opera
tions to complete many tasks, thereby increasing the probability of 
operational errors. 

The impact of the pandemic on the accident stage is mainly reflected 
in the daily inspection and maintenance as well as the emergency 
response time and efficiency. In the FWO, the shortage of human re
sources will reduce the number of on-site inspections and routine 
maintenance. Due to the lack of normal inspection and maintenance, the 
possibility of accidents in the process industry is greatly increased. Due 
to the impact of the pandemic, personnel’s emergency efficiency and 
response time will be greatly affected in the event of an accident, thus 
shortening SWO. This means that when the initial accident occurs, the 

probability of accident escalation increases greatly, increasing the risk of 
the process industry. 

According to the shortest path calculation results, the main reason 
for the leakage accident in the process industry is the valve failure 
caused by insufficient maintenance, and the delayed inspection finally 
leads to the leakage accident. When the automatic gas detector fails, the 
shortage of human resources leads to manual detection failure, which 
leads to the failure of the dispersion prevention barrier. Due to the 
pandemic’s impact, no fire prevention measures were taken after the 
leakage accident, which eventually led to the explosion accident. 
Emergency rescue is not carried out in a timely and effective manner 
because of the pandemic’s impact and personnel poisoning, which 
causes severe casualties, property losses, and environmental damage. 

6. Conclusions 

The special influence of a pandemic on chemical process safety is 
analyzed, and is divided into two parts: the impact on human errors and 
the accident stages. For human errors, operational errors, information 
transmission failure, unreasonable working hours, and poor working 
environment are the main causes of human errors. For accident stages, 
the number of workers is reduced during the pandemic, thereby 
increasing the number of risk factors and the probability of failures, 
shortening the window of opportunity and increasing the possibility of 
accidents. 

The WO concept is proposed to analyze the special risk factors during 
a pandemic, and to divide the accident life cycle into two parts. It reveals 
the possible risk factors, accident scenarios and accident consequences 
of chemical process safety under the impact of a pandemic. 

Based on a qualitative risk analysis, the complex network is intro
duced to integrate the WO. The complexity of accident process is dis
played intuitively on the network model. The Dijkstra algorithm is used 
to find the shortest path of an accident and to identify the shortest path 
caused by different risk factors. Since the probabilities cannot be added, 
the use of the Dijkstra algorithm is limited. In order to overcome this 
shortcoming, the concept of risk entropy is proposed to convert proba
bility into risk entropy to represent edge weights. Human error caused 
by high working pressure as the initial event leads to the shortest path of 
escalation accident. 

The advantages and disadvantages of the BT and BN models are 
analyzed. The results show that BT and BN have their own strengths, but 
they cannot calculate the risk of a single path. The proposed method 
combines the advantages of BT and BN to make the modeling process 
and results more scientific. It can more effectively reduce the probability 
of accidents during the pandemic within a limited time. Taking targeted 
measures can cut off the development of the accident and make the 
accident develop in a relatively favorable direction. It has certain en
gineering significance for reducing the probability of accidents and 
controlling the consequences of accidents during any pandemic. 
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Appendix A 

Expert judgment, fuzzy possibilities (FPs) and fuzzy probabilities (FPr) of root events in fault tree and event tree.  

Symbol Ea 1 E 2 E 3 E 4 Aggregation of Fuzzy Numbers FPsb FPrc 

X1 VL L L M 0.11 0.22 0.26 0.40 0.25 0.0005 
X2 L M L L 0.15 0.31 0.31 0.47 0.31 0.0010 
X3 VL L L H 0.17 0.28 0.31 0.44 0.30 0.0010 
X4 L M M M 0.24 0.42 0.42 0.60 0.42 0.0028 
X5 M L M M 0.25 0.44 0.44 0.63 0.44 0.0032 
X6 M L L M 0.21 0.38 0.38 0.56 0.38 0.0020 
X7 H M H H 0.53 0.69 0.69 0.85 0.69 0.0174 
X8 M H L M 0.32 0.50 0.50 0.68 0.50 0.0050 
X9 M M M M 0.30 0.50 0.50 0.70 0.50 0.0050 
X10 L H M H 0.37 0.53 0.53 0.69 0.53 0.0063 
X11 L H VL M 0.24 0.36 0.39 0.53 0.38 0.0020 
X12 M L L M 0.21 0.38 0.38 0.56 0.38 0.0020 
X13 VL M VL H 0.20 0.28 0.33 0.47 0.32 0.0011 
X14 M H L H 0.39 0.55 0.55 0.72 0.55 0.0072 
X15 M H L M 0.32 0.50 0.50 0.68 0.50 0.0072 
X16 H H H M 0.54 0.70 0.70 0.86 0.70 0.0181 
X17 M H M M 0.37 0.56 0.56 0.75 0.56 0.0075 
X18 M L L M 0.21 0.38 0.39 0.56 0.38 0.0020 
X19 M H VL M 0.30 0.44 0.47 0.63 0.46 0.0037 
X20 H H L L 0.38 0.53 0.53 0.68 0.53 0.0060 
X21 M L VH M 0.37 0.54 0.56 0.70 0.54 0.0066 
X22 M M M M 0.30 0.50 0.50 0.70 0.50 0.0050 
X23 L H L VL 0.20 0.32 0.34 0.48 0.33 0.0013 
X24 M M L M 0.25 0.44 0.44 0.63 0.44 0.0032 
X25 H L M H 0.41 0.57 0.57 0.73 0.57 0.0082 
X26 H H H M 0.54 0.70 0.70 0.86 0.70 0.0181 
X27 M H VH M 0.49 0.65 0.69 0.82 0.66 0.0141 
X28 M M M M 0.30 0.50 0.50 0.70 0.50 0.0050 
X29 M M VL M 0.23 0.38 0.41 0.58 0.40 0.0023 
X30 L H VH L 0.38 0.52 0.55 0.66 0.53 0.0060 
X31 M M M L 0.26 0.45 0.45 0.64 0.45 0.0034 
X32 H H H M 0.54 0.70 0.70 0.86 0.70 0.0181 
X33 M H VH M 0.49 0.65 0.70 0.82 0.66 0.0141 
X34 L M L L 0.15 0.31 0.31 0.47 0.31 0.0010 
X35 L M VL L 0.12 0.25 0.27 0.42 0.27 0.0007 
X36 M M H M 0.37 0.56 0.56 0.75 0.55 0.0075 
X37 M M M M 0.30 0.50 0.50 0.70 0.50 0.0050 
X38 M L VH L 0.33 0.48 0.51 0.64 0.49 0.0046 
X39 M M L M 0.25 0.44 0.44 0.63 0.44 0.0032 
X40 M M VL M 0.23 0.38 0.41 0.58 0.40 0.0023 
X41 M M H M 0.37 0.56 0.56 0.75 0.56 0.0075 
X42 M VL M L 0.19 0.33 0.35 0.52 0.35 0.0015 
X43 L L VL VL 0.06 0.14 0.18 0.31 0.17 0.0001 
X44 L L H M 0.26 0.42 0.42 0.58 0.42 0.0028 
X45 VL L M M 0.16 0.28 0.31 0.47 0.31 0.0010 
X46 M M M M 0.30 0.50 0.50 0.70 0.50 0.0050 
X47 M M M M 0.30 0.50 0.50 0.70 0.50 0.0050 
X48 H H H M 0.54 0.70 0.70 0.86 0.70 0.0181 
X49 H H L M 0.42 0.58 0.58 0.74 0.58 0.0085 
X50 M M M M 0.30 0.50 0.50 0.70 0.50 0.0050 
X51 VH L M M 0.41 0.57 0.60 0.72 0.57 0.0082 
X52 H M L M 0.35 0.52 0.52 0.69 0.52 0.0057  
a Expert judgment (E). 
b Fuzzy possibilities (FPs). 
c Fuzzy probabilities (FPr). 
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