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Related RNA polymerases (RNAPs) carry out cellular gene

transcription in all three kingdoms of life. The universal

conservation of the transcription machinery extends to a

single RNAP-associated factor, Spt5 (or NusG in bacteria),

which renders RNAP processive and may have arisen early

to permit evolution of long genes. Spt5 associates with Spt4 to

form the Spt4/5 heterodimer. Here, we present the crystal

structure of archaeal Spt4/5 bound to the RNAP clamp

domain, which forms one side of the RNAP active centre

cleft. The structure revealed a conserved Spt5–RNAP inter-

face and enabled modelling of complexes of Spt4/5 counter-

parts with RNAPs from all kingdoms of life, and of the

complete yeast RNAP II elongation complex with bound

Spt4/5. The N-terminal NGN domain of Spt5/NusG closes

the RNAP active centre cleft to lock nucleic acids and render

the elongation complex stable and processive. The C-terminal

KOW1 domain is mobile, but its location is restricted to a

region between the RNAP clamp and wall above the RNA exit

tunnel, where it may interact with RNA and/or other factors.
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Introduction

Structural studies of cellular RNA polymerases (RNAPs) from

all three kingdoms of life revealed a conserved enzyme

architecture and active centre (Zhang et al, 1999; Cramer

et al, 2000, 2001, 2008; Vassylyev et al, 2002; Hirata et al,

2008; Korkhin et al, 2009; Grohmann and Werner, 2011). In

contrast, RNAP-associated factors are not conserved between

bacterial, archaeal, and eukaryotic lineages, except for the

transcription elongation factor Spt5 that is called NusG in

bacteria. NusG consists of an N-terminal (NGN) domain and

a flexibly linked C-terminal Kyrides–Onzonis–Woese (KOW)

domain (Knowlton et al, 2003; Mooney et al, 2009). Archaeal

Spt5 is highly homologous to NusG and its NGN domain

associates with the zinc-binding protein Spt4 to form the

Spt4/5 heterodimer (Hirtreiter et al, 2010; Klein et al, 2011).

Eukaryotic Spt4/5 is called DSIF in metazoans and is very

similar to the archaeal heterodimer, except that Spt5 contains

an additional acidic N-terminal region and an additional 3–4

C-terminal KOW domains that are followed by a C-terminal

repeat region (CTR) (Hartzog et al, 1998; Wada et al, 1998;

Guo et al, 2008).

The core function of NusG and Spt4/5 is to stimulate

transcription elongation and RNAP processivity, and this

function resides in the conserved NGN domain (Burova

et al, 1995; Chen et al, 2009). The NGN domain binds the

conserved coiled coil of the RNAP clamp (Sevostyanova et al,

2008; Mooney et al, 2009; Hirtreiter et al, 2010; Sevostyanova

and Artsimovitch, 2010). NusG and Spt4/5 also have addi-

tional roles in transcription-coupled processes. In bacteria,

NusG is required for r factor-dependent transcription termi-

nation (Sullivan and Gottesman, 1992; Cardinale et al, 2008),

and it couples transcription to translation (Burmann et al,

2010; Proshkin et al, 2010). In eukaryotes, Spt4/5 is involved

in mRNA 50-capping (Wen and Shatkin, 1999), promoter-

proximal gene regulation by the negative elongation factor

NELF (Palangat et al, 2005), transcription-coupled DNA

repair (Jansen et al, 2000), organism development (Guo

et al, 2000), and recruitment of activation-induced cytidine

deaminase to DNA during antibody diversification (Pavri

et al, 2010). Spt4/5 is present on all transcribed yeast

genes, and is apparently a general component of the elonga-

tion complex (Mayer et al, 2010).

To understand the mechanisms used by the Spt5/NusG

elongation factor, structural details of its interaction with

RNAP are required. Here, we present the crystal structure of

a conserved complex of Spt4/5 from the archaeon Pyrococcus

furiosus (Pfu) with the RNAP clamp domain. This structure

leads to a reliable atomic model of the eukaryotic RNAP II

elongation complex with Spt4/5, suggests the molecular basis

of transcription processivity, and provides a framework for

further studies of elongation-coupled processes. The Spt5

NGN domain binds over the RNAP active centre cleft between
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the clamp on one side and the protrusion on the other

side, enclosing the DNA–RNA hybrid and maintaining the

transcription bubble. After our work had been completed,

an electron microscopic reconstruction of an RNAP–

Spt4/5 complex was reported that provided a medium-reso-

lution view of the Spt4/5-containing RNAP elongation

complex and resulted in similar overall conclusions (Klein

et al, 2011).

Results

A recombinant RNAP clamp that binds Spt4/5

In long-standing efforts we could prepare milligram quanti-

ties of complexes of recombinant Saccharomyces cerevisiae

Spt4/5 with endogenous yeast RNAP II and of Pfu Spt4/5

with the highly homologous endogenous Pfu RNAP

(Materials and methods; Figure 1A and B). This demon-

strated that recombinantly expressed Spt4/5 binds to endo-

genously purified RNAP, but these preparations never

co-crystallized. We thus considered determining the structure

of the isolated RNAP clamp domain in complex with Spt4/5,

which could enable accurate modelling of the RNAP–Spt4/5

complex. We chose to prepare the Pfu complex because the

Pfu RNAP clamp contains several shorter loops and was thus

predicted to exhibit less surface flexibility. Based on the free

RNAP II structure (Armache et al, 2005), we designed a

fusion protein of the three RNAP polypeptide parts that

constitute the clamp domain. We fused residues 1053–1115,

3–318, and 334–371 of the three largest Pfu RNAP sub-

units B, A0, and A0 0, respectively, separated by short linkers

(Figure 1C). After expression of the fusion protein in bacteria,

a soluble recombinant clamp domain was obtained (rClamp,

Figure 1D). The rClamp protein was correctly folded since it

formed a stable, apparently stoichiometric complex with

recombinant Spt4/5 (Figure 1D).

Structure of RNAP clamp–Spt4/5 complex

The purified rClamp–Spt4/5 complex could be crystallized

and its X-ray structure determined at 3.3 Å resolution

(Materials and methods). For structure solution, we com-

bined experimental phases obtained from anomalous diffrac-

tion of four zinc ions (three in the clamp and one in Spt4)

with model phases obtained by molecular replacement with

the S. cerevisiae clamp structure (Armache et al, 2005). The

Methanococcus janaschii Spt4/5 structure (Hirtreiter et al,

2010) was then fitted into the experimentally phased electron

density map alongside the clamp structure, and after repeated

cycles of rebuilding and refinement, an atomic model of the

complex was refined that only lacked the Spt5 KOW domain,

which was disordered (Table I; Figure 2). In the rClamp–

Spt4/5 complex, the structures of free Spt4/5 and the clamp

in free RNAP are essentially unaltered, except for minor local

conformational changes.

rC
lam

p

rClamp

Spt5

Spt4

170
M

130

Spt
4/

5

rC
lam

p–
Spt

4/
5

100
70
50
40

35

25

15

10

D

M

A′
B

A′′
D

E′

Spt5

F
L HN

Spt4

Spt
4/

5

RNAP

RNAP–S
pt

4/
5

K
P

170
130
100
70
50
40

35

25

15

10

B C

1053 1115 3 318 334 371

GAGSGAGSGGG
B A′ A′′

Linker 1 Linker 2

Coiled coil

rClamp

Rpb2
Rpb1

Spt5

Rpb3

Rpb4
Rpb5

Rpb8

Rpb9
Rpb11Spt4

Rpb6

Rpb10

Rpb7

Rpb12

Spt
4/

5
RNAP II
RNAP II

–S
pt

4/
5A

Spt5

Spt4

Figure 1 Spt4/5 binds endogenous RNAPs and a recombinant RNAP clamp. (A) Yeast (S. cerevisiae) complexes. SDS–PAGE analysis
(Coomassie staining) of purified recombinant Spt4/5 (containing full-length Spt4 and Spt5 residues 283–853), endogenous RNAP II, and
the RNAP II–Spt4/5 complex after size exclusion chromatography. The identity of the bands was confirmed by mass spectrometry. (B) Archaeal
(P. furiosus, Pfu) complexes. SDS–PAGE analysis (Coomassie staining) of purified recombinant Spt4/5 (containing full-length Spt4 and Spt5),
endogenous RNAP, and the RNAP–Spt4/5 complex after size exclusion chromatography. (C) Schematic of the fusion protein used to prepare the
recombinant Pfu clamp domain. Polypeptide regions of the three largest RNAP subunits B, A0, and A0 0 were fused by two short linkers.
Bordering residue numbers are indicated. (D) SDS–PAGE analysis (Coomassie staining) of recombinant Pfu clamp, Spt4/5, and clamp–Spt4/5
complexes.

Table I Diffraction data and refinement statistics

Data collection
Space group C2
Unit cell axes (Å) 168.6, 107.0, 51.1
Unit cell b angle (deg) 97.1
Wavelength (Å) 1.2783
Resolution range (Å) 53.5–3.30 (3.48–3.30)a

Unique reflections 13 603b (1965)a

Completeness (%) 99.8 (99.6)a

Redundancy 5.7 (5.9)a

Mosaicity (deg) 0.32
Rsym (%) 14.0 (83.5)a

I/s(I) 7.4 (2.1)a

Refinement
Non-hydrogen atoms 4187
RMSD bonds 0.010
RMSD angles 1.4
Rcryst (%) 19.3
Rfree (%) 24.7
Preferred (%)c 88.3
Allowed (%)c 97.6
Disallowed (%)c 2.4

aValues in parentheses are for highest resolution shell.
bFriedel pairs not merged.
cRamachandran plot statistics from MolProbity (Chen et al, 2010).
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Conserved clamp–Spt5 interaction

The structure revealed that the NGN domain of Spt5 binds to

the RNAP clamp coiled coil as predicted (Mooney et al, 2009;

Hirtreiter et al, 2010). The clamp–Spt5 interface comprises the

tip and one side of the coiled coil, and a hydrophobic concave

surface patch on the Spt5 NGN domain (Figure 3). The

interaction involves the clamp coiled-coil residues 255–268

from the Pfu RNAP subunit A0, which correspond to residues

279–292 of S. cerevisiae RNAP II subunit Rpb1 and residues

282–295 of Escherichia coli RNAP subunit b0 (Figures 2C and

3). The interaction patch on the Spt5 NGN domain involves

11 residues in three different regions of the primary sequence

that cluster on the domain surface (Figure 2C). A structure-

based alignment of NGN domains from eukaryotic, archaeal,

and bacterial homologues revealed that the surface patch is

generally conserved, including most hydrophobic residues

(Figures 2C and 3). These results are consistent with muta-

genesis data that indicated that the concave patch on the

NGN domain interacts with the clamp (Mooney et al, 2009;

Hirtreiter et al, 2010). The conservation of the clamp–Spt5

interface indicates that our structure is a good model for all

complexes of Spt5/NusG with RNAPs, and suggests a general
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architecture of the Spt5/NusG-containing RNAP elongation

complex, the minimal physiological form of the elongation

complex.

Spt5/NusG closes the RNAP active centre cleft

To obtain a model of the archaeal RNAP–Spt4/5 complex,

we superimposed the clamp domain in our structure with

the clamp in the structure of free Sulfolobus solfataricus

RNAP (Hirata et al, 2008). To obtain models of the bacterial

RNAP–NusG complex and the eukaryotic RNAP II–Spt4/5

complex, we repeated the superposition with the structures

of Thermus thermophilus RNAP (Vassylyev et al, 2007) and

S. cerevisiae RNAP II (Armache et al, 2005), respectively, and

then replaced the archaeal Spt4/5 by T. thermophilus NusG

(Reay et al, 2004) or yeast Spt4/5 (Guo et al, 2008) via

superposition of their NGN domains. The resulting three

models of corresponding complexes from all three kingdoms

of life were free of steric clashes, and even a non-conserved

domain in the bacterial RNAP (Chlenov et al, 2005) could be

accommodated (Figure 4; Supplementary data). The models

showed that the NGN domain resides above the RNAP active

centre cleft, essentially closing the cleft (Figure 4). In the

bacterial model, the NGN domain reaches over the cleft and

resides in contact distance to the RNAP lobe and protrusion

(Figure 4). In the archaeal and eukaryotic models, a contact

of the NGN domain with the protrusion and lobe may also be

possible if the clamp closes slightly further. Spt4 points away

from the RNAP surface, consistent with its non-essential

nature in eukaryotes and with the lack of an Spt4 homologue

in bacteria.

The NGN domain locks nucleic acids in the cleft

We next modelled the RNAP II–Spt4/5 complex with the

DNA template/non-template duplex and the RNA product

by including the nucleic acids from the complete elongation

complex (Kettenberger et al, 2004; Andrecka et al, 2009). To

obtain a model that was free of clashes, only a minor shift of

the upstream DNA was required (Figure 5). The model shows

that Spt4/5 is positioned on the elongation complex such that

the nucleic acids, in particular the DNA–RNA hybrid and the

DNA strands forming the transcription bubble, are locked in

the enzyme active centre cleft (Figure 5). Upstream and

downstream DNA are thus kept separated by Spt4/5. The

DNA upstream duplex and non-template strand within the

bubble run along a positively charged surface of Spt4/5

(Figure 5B). At least part of this surface of the NGN domain

is positively charged in all species investigated, even though

only two basic residue positions are conserved (Figure 2C).

The modelling is consistent with biochemical data, showing

that NusG binds near the upstream edge of the transcription

bubble (Sevostyanova and Artsimovitch, 2010) and that the

NusG paralogue RfaH maintains the upstream bubble

(Belogurov et al, 2010).

Restricted location of the KOW domain above exiting

RNA

We next investigated the possible location of the universally

conserved and flexible KOW domain located just C-terminal

of the NGN domain (Figure 2A). The last ordered residue in

Spt5 (residue E85) is located between the top of the clamp

and wall, about 55 Å above the RNA exit tunnel (Figure 6).

Since the linker from this last ordered residue to the KOW

domain is restricted to a length of 11–13 residues over

species, the location of the KOW domain is restricted to a

sphere of a maximum radius of B45 Å. The sphere encom-

passes the region between Spt4 and the RNAP clamp,

wall, and Rpb4/7 subcomplex (Figure 6). To model possible

locations of the KOW domain, we superimposed the NGN

domains in available NusG/Spt5 structures that contain both

domains (Steiner et al, 2002; Knowlton et al, 2003; Klein et al,

2011), with the NGN domain in our elongation complex

model. The resulting positions of the KOW domain fall within

the sphere and are realistic, as no clashes with RNAP were

observed with the exception of one structure (PDB code

1M1G) (Figure 6 and data not shown). None of the modelled
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KOW domains are close to exiting RNA. Modelling also

showed that the KOW domain cannot reach the RNA exit

tunnel, even when the linker between the NGN and KOW

domains is fully extended. The KOW domain may however

contact RNA that has emerged well beyond the exit tunnel

and has grown to 25–30 nucleotides in length.

Highly extended eukaryote-specific Spt5 regions

We finally considered the possible location of eukaryote-

specific Spt5 regions located C-terminal to the KOW1 domain

(Figure 2A). Because of a very long linker between KOW

domains 1 and 2 (118 and 114 residues in yeast and human

Spt5, respectively), KOW domain 2 and subsequent regions

could reach any position on the Pol II surface. If all linkers

between the KOW domains and the CTR would be fully

extended, the C-terminus of Spt5 would be located around

2000 Å away from the RNAP II surface. This corresponds to

twice the length of a fully extended C-terminal repeat domain

(CTD) of yeast RNAP II (Cramer et al, 2001). In human Pol II,

the Spt5 C-terminus could reach up to 2600 Å from the Pol II

surface, and this would be about 1.6 times the length of a

hypothetical totally extended CTD.

Discussion

Here, we report the crystal structure of a recombinant

RNAP clamp in complex with Spt4/5, the only universally

conserved transcription factor. The structure revealed a con-

served clamp–Spt5 interface and enabled accurate model-

ling of RNAP complexes with Spt4/5 counterparts from all

three kingdoms of life. These results represent a significant

advance in our understanding of transcription complex

architecture since atomic details of RNAP interactions with

transcription factors are to date limited to the bacterial factors

s70 and Gfh1 (Vassylyev et al, 2002; Murakami et al, 2002a;

Tagami et al, 2010), and the eukaryotic factors TFIIS and

TFIIB (Kettenberger et al, 2003; Bushnell et al, 2004;

Kostrewa et al, 2009; Liu et al, 2010).

Our work revealed that the Spt5 NGN domain resides

above DNA and RNA bound in the RNAP active centre

cleft, and provides an explanation for the universal function

of NusG and Spt4/5 in transcription processivity during RNA

elongation. The NGN domain locks nucleic acids in the cleft,

preventing their dissociation and increasing elongation com-

plex stability. In addition, interaction between the positively

charged Spt5 surface and the negatively charged DNA non-

template strand may prevent collapse of the transcription

bubble. Many of these conclusions could be drawn from a

recently published electron microscopic reconstruction of an

RNAP–Spt4/5 complex (Klein et al, 2011) and are confirmed

here and extended based on high-resolution data.

The data further provide insights into the initiation–

elongation transition. During initiation, straight promoter

DNA is melted and loaded into the cleft to trigger RNA

synthesis. This results in upstream and downstream DNA

duplexes that extend from RNAP at approximately right

angles (Figure 5). Subsequent Spt4/5 binding may render

the initiation–elongation transition irreversible, because it

sterically enforces the nucleic acid arrangement and prevents

RNA release and reassociation of DNA strands. Premature

binding of Spt4/5 during initiation is likely prevented by

initiation factors that occupy overlapping binding sites on
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the clamp, in particular the bacterial factor s70 (Vassylyev

et al, 2002; Murakami et al, 2002a, b) and the archaeal/

eukaryotic factor TFE/TFIIE (Chen et al, 2007). In addition,

the results indicate that any model for transcription termina-

tion must explain how Spt4/5 is released from RNAP, to set

free the nucleic acids.

Additional mechanisms contribute to Spt4/5 function

during elongation and remain to be explored on a structural

level. First, in an intact RNAP elongation complex, the

NGN domain may contact the side of the cleft opposite the

clamp, in particular the lobe and/or protrusion. This may

involve subtle alterations in clamp position that could alter

catalytic properties of RNAP allosterically (Hirtreiter et al,

2010) consistent with normal mode analysis (Yildirim and

Doruker, 2004). Second, the conserved KOW1 domain adja-

cent to the NGN domain may contact DNA and/or exiting

RNA, provided that the RNA has reached a length of 25–30

nucleotides, and such contacts could contribute to elongation

complex stability and may also involve the RNAP II sub-

complex Rpb4/7 (Ujvari and Luse, 2006; Cheng and Price,

2008; Missra and Gilmour, 2010). The KOW1 domain also

contacts the bacterial termination factor r and may mediate r
action on nearby exiting RNA. Consistent with this model,

RNAP contacts are limited to the NGN domain and the

KOW domain is mobile. Third, additional KOW domains

that are present in eukaryotic Spt5 could contact exiting

RNA and could reach anywhere on the RNAP II surface to

assist in eukaryote-specific functions. For example, they

could reach to the foot domain of RNAP II that was impli-

cated in mRNA capping (Suh et al, 2010). Finally, the CTR

that is present in eukaryotic Spt5 is subject to phosphory-

lation, and contributes to the recruitment of the PAF complex,

which in turn recruits factors involved in chromatin modi-

fication and mRNA maturation (Liu et al, 2009; Zhou et al,

2009).

Materials and methods

Construct design and cloning
The full-length Pfu genes encoding Spt4 and Spt5 and the
S. cerevisiae genes encoding full-length Spt4 and Spt5 residues
283–853 were cloned into a pET24d-derived bicistronic vector.
This vector contained a second ribosomal-binding site introduced
between the SalI and NotI sites by the primer GTCGACAATAATTT
TGTTTAACTTTAAGAAGGAGATATACATATGGCGGCCGC (SalI and
NotI sites are in italics, the ribosomal-binding site is bold, and
NdeI site is underlined). The Spt4 and Spt5 genes were cloned in the
vector flanked by the sites NcoI/EcoRI and NdeI/NotI, respectively.
Spt5 contained a C-terminal hexahistidine tag. The DNA encoding
for the rClamp was cloned into a pOPINE vector, with the three
fragments connected by two linkers composed of glycines (G),
alanines (A), and serines (S) (Figure 1C).
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Preparation of protein complexes
All proteins were expressed in Rosetta (DE3) pLys S (Novagen)
grown in LB medium at 371C to an OD600 of 0.6. Expression was
induced with 0.5 mM IPTG for 16 h at 201C. Cells were lysed by
sonication in buffer L1 (50 mM Tris pH 7.5, 300 mM KCl, and 3 mM
DTT) for the rClamp and in buffer L2 (25 mM HEPES pH 7.5,
500 mM KOAc, 10 mM Imidazole, 0.1 mM ZnCl2, 10% Glycerol, and
3 mM DTT) for Spt4/5. After centrifugation at 15 000 g for 20 min,
the supernatant was loaded onto a 1.5-ml Ni-NTA column (Qiagen)
for rClamp and onto two 1 ml Ni-NTA columns for Spt4/5. Each
column was equilibrated with the respective L1 or L2 buffer. The
rClamp column was washed with 10 ml and each Spt4/5 column
with 5 ml of L1 (rClamp) or L2 (Spt4/5) buffer plus 100–300 mM
imidazole. For archaeal proteins, a heat step (701C, 10 min) was
used to remove the E. coli contaminant proteins. The samples were
centrifuged at 14 000 g for 10 min and the supernatant was applied
to a Superdex 75 10/300 column (GE Healthcare) equilibrated in
buffer GF1 (20 mM HEPES pH 7.0, 200 mM KCl, 5 mM DTT, and
10% Glycerol) for rClamp and in buffer GF2 (20 mM HEPES pH 7.5,
200 mM KCl, 0.1 mM ZnCl2, 20 mM Imidazole, 2.5 mM DTT, and
10% Glycerol) for Spt4/5. S. cerevisiae RNAP II and Pfu RNAP were
prepared as described (Kusser et al, 2007; Sydow et al, 2009). To
form the archaeal complexes, a three-fold molar excess of Spt4/5
was added to the rClamp or RNAP. For the eukaryotic complex, a
30-fold molar excess of Spt4/5 was added to the Pol II-nucleic acid
complex (Kettenberger et al, 2004). Proteins were incubated for 1 h
at 201C. The archaeal proteins were then incubated at 701C for

10 min. The samples were centrifuged at 14 000 g for 5 min prior to
loading to a Superose 12 10/300 column (GE Healthcare).

Crystal structure determination
The Pfu rClamp–Spt4/5 complex was concentrated to 4 mg/ml.
Crystals grew within 3–4 days at 201C in hanging drops over a
reservoir solution containing 10% PEG 8000, 100 mM Na/K
Phosphate pH 6.2, 150 mM Guanidine hydrochloride, and 200 mM
NaCl. The crystals were cryo-protected by stepwise transfer to their
mother liquor supplemented with increasing concentrations of
glycerol (7, 14, and 22%) and were flash frozen in liquid nitrogen.
Crystals were mounted at 100 K on beamline X06SA of the Swiss
Light Source, Villigen. We collected 3601 of data in 0.251 increments
on a PILATUS 6 M detector (DECTRIS) at the K-absorption edge of
zinc. Diffraction images were integrated and scaled with XDS/
XSCALE (Kabsch, 2010) or MOSFLM/CCP4 (CCP4, 1994; Leslie,
2006), to a high-resolution limit of 3.3 Å. Molecular replacement
was carried out with PHASER (McCoy et al, 2005) using a search
model from yeast RNAP II (Armache et al, 2005) truncated to the
clamp coiled-coil domain. PHASER located the search model but
revealed poor density for Spt4/5. A SAD phasing approach was then
pursued where the intrinsic zinc sites were located using an
anomalous difference Fourier map with phases calculated from the
molecular replacement search solution. Three sites were located
within the clamp coiled-coil domain and used as input sites in SAD
phasing with autoSHARP (Global Phasing Limited), which found an
additional fourth site corresponding to the zinc ion in Spt4.
However, the resulting maps were inadequate for building until
the partial model phases from PHASER were combined with SAD
phases. Subsequent density modification by autoSHARP showed
clear density for Spt5 and weak density for Spt4. To reduce potential
model bias during phasing, a polyalanine model was built into the
initial map and refined before side chain modelling. Model building
and refinement were carried out with COOT (Emsley and Cowtan,
2004) and autoBUSTER (Global Phasing Limited), respectively.

Molecular modelling and figure preparation
Superpositions and molecular modelling was carried out with
COOT (Emsley and Cowtan, 2004), and figures were prepared with
PYMOL. Sequence alignments were edited with ALINE (Bond and
Schuttelkopf, 2009).

Database accession numbers
Coordinates and structure factors for the Pfu RNAP clamp–Spt4/5
complex have been deposited at the protein data bank under
accession number 3QQC.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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