RESEARCH Open Access

High triglyceride-to-high-density lipoprotein cholesterol ratio predicts poor prognosis in new-onset heart failure: a retrospective study

Junfei Weng^{1,2†}, Wei Dong^{2†}, Ruichun Liao^{1,2†}, Yaofu Zheng^{2†}, Xu Fang^{2†}, Jiaxiang You^{1,2†}, Zhichao Wang², Yingbing Zuo^{1,2}, Xuanying Chen² and Xiaoping Peng^{2*}

Abstract

Background There is limited research on the relationship between the triglyceride-to-high-density lipoprotein cholesterol (TG/HDL-C) ratio and outcomes in new-onset heart failure (HF). Therefore, this study aimed to explore the association between TG/HDL-C ratio and clinical outcomes in these patients.

Methods A retrospective cohort of 614 adults with new-onset HF hospitalized at The First Affiliated Hospital of Nanchang University between July 2021 and December 2022 was analyzed. The primary endpoint was major adverse cardiovascular events (MACE), defined as cardiovascular (CV) death and HF rehospitalizations within 12 months after discharge. Kaplan–Meier (K–M) curves, restricted cubic spline (RCS) analysis, and Cox regression evaluated the association between TG/HDL-C ratio and MACE risk.

Results Patients were divided into four quartiles (Quartile 1, 2,3 and 4) based on their TG/HDL-C ratios. The mean age was 68.94 ± 14.34 years, with 59.12% male. The mean left ventricular ejection fraction (LVEF) was $46.59 \pm 10.89\%$, with 45.11% having an LVEF $\leq 40\%$. During the 12-month follow-up, 156 patients experienced MACE, comprising 18 CV deaths and 138 HF rehospitalizations. The Quartile 4 group had the highest MACE risk incidence compared to other groups (P < 0.001). K–M analysis confirmed that the Quartile 4 group was associated with an increased cumulative incidence of MACE, HF rehospitalization, and CV death (all P < 0.001). RCS analysis revealed a positive nonlinear relationship between the TG/HDL-C ratio and MACE risk (P < 0.001), with a sharp risk increase above a ratio of 1.08. After adjustment, TG/HDL-C ratio was independently associated with MACE (HR: 1.44, 95% CI: 1.29–1.60). Compared to Quartile 1, adjusted HRs were significantly higher in Quartiles 2, 3, and 4 (all P < 0.005).

[†]Junfei Weng, Wei Dong, Ruichun Liao, Yaofu Zheng, Xu Fang and Jiaxiang You contributed equally to this work.

*Correspondence: Xiaoping Peng cdyfypxp@163.com

Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Conclusions The TG/HDL-C ratio is independently associated with 12-month MACE risk in new-onset HF patients. It may serve as a simple, cost-effective marker to improve early risk stratification and guide closer monitoring and tailored management in this high-risk population.

Keywords Triglyceride-to-high-density lipoprotein cholesterol ratio, New-onset heart failure, Poor prognosis, Nonlinear association

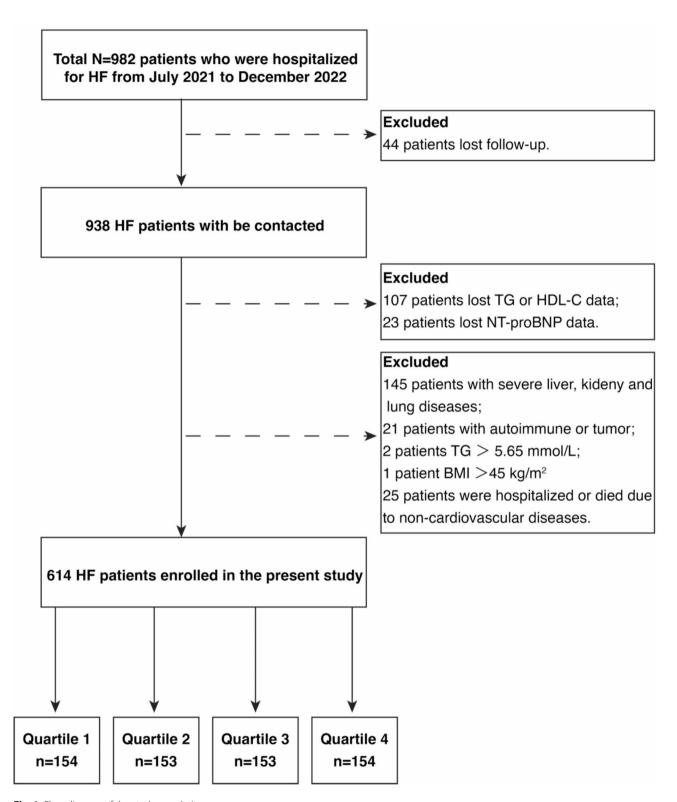
Background

Heart failure (HF) arises from a wide range of cardiac and noncardiac conditions and is characterized by a high incidence and poor prognosis. Globally, over 64 million people are currently diagnosed with HF. As population age, the prevalence of chronic conditions such as coronary atherosclerotic disease (CAD), hypertension, diabetes, and obesity continue to rise, leading to increased HF incidence, prevalence, and mortality rates [1-3]. This underscores the urgent need for research to improve the treatment and prognosis of HF, thereby reducing its societal and familial burden. The primary pathophysiological basis of HF is myocardial remodeling—a complex process often accompanied by metabolic disturbances, including insulin resistance, dyslipidemia, and altered fatty acid metabolism [4-8]. As metabolic dysfunction is an important driver of HF pathophysiology, evaluating these metabolic abnormalities and HF prognosis through novel biomarkers is crucial for improving clinical outcomes [9].

Lipid profiling, a commonly used tool, provides insights into metabolic health and risks for conditions such as fatty liver, pancreatitis, metabolic syndrome, insulin resistance, and cardiovascular disease. Elevated Triglycerides (TG), contributes to lipotoxicity and oxidative stress, are a significant risk factor for cardiovascular disease [10, 11]. Meanwhile, low high-density lipoprotein cholesterol (HDL-C) levels impair cholesterol transport and reduce HDL-C's protective anti-inflammatory and antioxidant functions [12-14]. The TG/HDL-C ratio, which integrates these two lipid markers, has been recognized as a marker of insulin resistance and metabolic syndrome [15–17]. In addition, elevated TG/HDL-C ratios have been associated with increased cardiovascular risk, particularly in patients with coronary artery disease (CAD) [16, 18]. Although metabolic dysfunction plays a key role in HF progression, the prognostic value of the TG/HDL-C ratio in HF, particularly in new-onset cases, remains unclear. As a recognized marker of insulin resistance and metabolic syndrome, the TG/HDL-C ratio may help predict adverse outcomes in this population. This study aimed to assess its prognostic significance in newonset HF by evaluating its association with major adverse cardiovascular events (MACE), including cardiovascular (CV) death and HF rehospitalization.

Materials and methods

Study design and participants


This study included 982 consecutive adult patients with new-onset HF hospitalized at the Department of Cardiology at The First Affiliated Hospital of Nanchang University between July 2021 and December 2022. Inclusion were: (1) aged18-90 years; (2) confirmed diagnosis of HF on the basis of the 2021 ESC guidelines [19], characterized by symptoms (e.g., dyspnea, fatigue), signs (e.g., jugular venous distension, edema), N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels ≥ 125 pg/mL, and echocardiographic evidence of structural or functional cardiac abnormalities. Exclusion criteria included: (1) loss to follow-up; (2) missing critical clinical data (e.g., TG, HDL-C, and NT-proBNP); (3) hematologic diseases, autoimmune diseases, or malignant tumors; (4) severe disease affecting major organs, such as liver or kidney dysfunction (estimated glomerular filtration rate (eGFR) < 30 mL/min/1.73 m² or transaminase levels > 5 times the upper limit of normal); (5) recent glucocorticoid use; (6) suspected familial hypertriglyceridemia (fasting $TG \ge 5.65 \text{ mmol/L}$); (7) extreme body mass index (BMI) values (BMI \geq 45 kg/m²). Patients with missing critical clinical data were excluded from the final analysis. Given the small proportion of missing data, no data imputation was performed. Based on these criteria, 614 individuals were included (Fig. 1).

Data collection

Data were extracted from a retrospective HF database containing demographic, laboratory, imaging, and clinical details. Fasting venous blood samples were collected on the second hospitalization day, and laboratory analyses adhered to standard protocols. Key parameters included TG, HDL-C, fasting blood glucose (FBG), like left ventricular ejection fraction (LVEF), and QRS duration (QRSd), along with comorbidities such as diabetes mellitus (DM), coronary artery disease (CAD).

Follow-up arrangements

Patients were monitored for 12 months post-discharge through phone calls or outpatient visits every 3 months. To enhance data accuracy, reported HF rehospitalizations were cross-checked with hospital electronic medical records. The primary study endpoint was the first occurrence of major adverse cardiovascular events (MACE). The time to the first occurrence of MACE was

Fig. 1 Flow diagram of the study population HF: heart failure; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; BMI: body mass index; NT-proBNP: N-terminal pro-B-type natriuretic peptide

recorded as the endpoint time. Trained researchers confirmed events via patient interviews and medical records.

Definitions

TG/HDL-C ratio The fasting serum triglyceride level (mmol/L) divided by the high-density lipoprotein cholesterol level (mmol/L).

Body mass index (BMI) Calculated as body weight (kg) divided by height squared (m²).

New York heart association (NYHA) functional classification Symptoms and physical activity limitations were categorized into four classes (I, II, III, and IV) based on severity, following the 2021 ESC Guidelines [19].

Estimated Glomerular Filtration Rate (eGFR) Calculated via using the formula: eGFR (ml/min/1.73 m²) = 175 \times [Scr (mg/dL) – 1.234] \times [age (years) – 0.179] \times 0.79, which is based on the Modification of Diet in Renal Disease (MDRD) equation as defined by the Chinese eGFR Investigation Collaboration [20].

Major adverse cardiovascular events (MACE) Defined as HF rehospitalization (due to worsening HF) and CV death (e.g., death caused by myocardial infarction, stroke, or other cardiovascular events).

Ethics statement

This study adhered to the Helsinki Declaration and was approved by the Ethical Review Board of The First Affiliated Hospital of Nanchang University (Ethical Number: IIT2024402). The requirement for informed consent was waived by the ethics committee due to the retrospective nature of the study, and all data were anonymized and handled with strict confidentiality.

Statistical analysis

SPSS 24.0 and R 4.2.3 were used for analyses. Continuous variables were tested for normality and expressed as mean \pm SD or medians with interquartile ranges. Comparisons were conducted using t-tests, Mann-Whitney U tests, χ^2 tests, or Fisher's exact tests. Kaplan-Meier curves and Cox proportional hazards models assessed associations between TG, HDL-C, and TG/HDL-C ratio with MACE risk. Pairwise comparisons between quartiles were not performed. Restricted cubic splines (RCS) were employed to analyze non-linear relationships. Sensitivity analyses validated findings. A two-sided P value < 0.05 was considered statistically significant.

Results

Baseline characteristics

A total of 982 patients were initially diagnosed with HF and admitted to our department. Of these, 318 patients were excluded for the following reasons: 38 were lost to follow-up, 107 had missing TG or HDL-C data, 23 had missing NT-proBNP data, and 194 had severe comorbidities, including severe liver, kidney, or lung diseases; autoimmune disorders; or tumors. Ultimately, 614 patients met the inclusion criteria and were included in the study.

Based on TG/HDL-C ratios, the 614 patients were divided into four groups: Quartile 1 (n = 154), Quartile 2 (n = 153), Quartile 3 (n = 153), and Quartile 4 (n = 154). Baseline characteristics of these groups are summarized in Table 1(see Table 1 at the end of the document). The mean age of all patients was 68.94 ± 14.34 years, with 59.12% being male. Causes of HF included ischemic heart disease (34.04%), myocardial disease (6.03%), valvular disease (20.03%), and other causes (39.9%). The mean LVEF was 46.59 ± 10.89%, with heart failure with preserved ejection fraction(HFpEF, LVEF≥50%)), heart failure with mildly reduced ejection fraction(HFmrEF, 41% < LVEF < 50%) and heart failure with reduced ejection fraction(HFrEF, LVEF ≤ 40%) accounting for 28.18%, 26.71% and 45.11% of cases, respectively. No significant differences in LVEF distribution were observed among the four quartile groups (P = 0.14). Patients in the Quartile 4 group tended to be younger and exhibited lower LVEF, and exhibited a more adverse metabolic profile, including higher BMI, hemoglobin (Hb), total cholesterol (TC), fasting blood glucose (FBG), and glycated hemoglobin (HbA1c%) levels (all P<0.05). Additionally, Quartile 4 patients also had significantly higher rates of DM, and sodium-glucose cotransporter-2 (SGLT2) inhibitor use, at 27.92% and 36.36%, respectively (all P < 0.05), highlighting a close link between metabolic dysregulation and HF risk.

TG/HDL-C ratio and outcomes

During the 12-month follow-up, 154 patients (25.41%) experienced MACE, including 138 HF rehospitalization (22.48%) and 18 CV death (2.93%) (Table 1). Patients in Quartile 4 (highest TG/HDL-C ratio) had the highest MACE incidence (40.38%), significantly exceeding the rates observed in Quartiles 1–3 (P<0.001). Compared to those who did not experience these events, patients in the MACE, HF rehospitalization, and CV death groups exhibited higher TG/HDL-C ratios (Additional file 1: Table S1; Additional file 2: Table S2; Additional file 3: Table S3).

Kaplan-Meier survival curve indicated that patients in the Quartile 4 group had a significantly higher risk of MACE, HF rehospitalization, and CV death (all Logrank P<0.001, Fig. 2). In subgroup analyses, TG levels in

Table 1 Baseline characteristics of the study population according to the TG/HDL-C ratio quartiles

Variables	Total (n=614)	Quartile 1 (n = 154)	Quartile 2 (n = 153)	Quartile 3 (n = 153)	Quartile 4 (n = 154)	<i>P</i> -value
		TG/ HDL-C≤0.71	0.71< TG/ HDL-C≤1.12	1.12< TG/ HDL-C≤1.80	1.80< TG/HDL-C	
Age (years), Mean ± SD	68.94 ± 14.34	73.85 ± 11.09	70.29 ± 13.52	67.67 ± 15.08	63.94 ± 15.52	< 0.001*
Male, n (%)	363 (59.12)	85 (55.19)	87 (56.86)	90 (58.82)	101 (65.58)	0.264
Smoke, n (%)	100 (16.29)	22 (14.29)	26 (16.99)	23 (15.03)	29 (18.83)	0.702
NYHA class, n (%)						0.12
II	206 (33.55)	53 (34.42)	50 (32.68)	51 (33.33)	52 (33.77)	
III	313 (50.98)	86 (55.84)	69 (45.10)	77 (50.33)	81 (52.60)	
IV	95 (15.47)	15 (9.74)	34 (22.22)	25 (16.34)	21 (13.64)	
LVEF-based HF classification, n (%)						0.14
HFpEF (LVEF≥50%)	173 (28.18)	36 (23.38)	39 (25.49)	50 (32.68)	48 (31.17)	
HFmrEF (41%< LVEF < 49%)	164 (26.71)	34 (22.08)	45 (29.41)	41 (26.80)	44 (28.57)	
HFrEF (LVEF ≤ 40%)	277 (45.11)	84 (54.55)	69 (45.10)	62 (40.52)	62 (40.26)	
HF causes, n (%)						0.066
Ischemic	209 (34.04)	51 (33.12)	45 (29.41)	52 (33.99)	61 (39.61)	
Myocardial disease-related	37 (6.03)	5 (3.25)	7 (4.58)	12 (7.84)	13 (8.44)	
Valvular disease-related	123 (20.03)	40 (25.97)	28 (18.30)	33 (21.57)	22 (14.29)	
Others (as arrhythmias etc.)	245 (39.90)	58 (37.66)	73 (47.71)	56 (36.60)	58 (37.66)	
Length of Stay (Days), Mean ± SD	8.71 ± 4.56	7.93 ± 3.86	9.29±5.44	8.60 ± 4.00	9.00±4.69	0.051
Weight (kg), Mean ± SD	59.72±13.53	55.71 ± 10.99	59.50 ± 13.22	60.49 ± 14.60	63.20 ± 14.10	< 0.001*
BMI (kg/m2), Mean ± SD	22.44±4.17	21.25 ± 3.57	22.43 ± 4.24	22.67 ± 4.29	23.42 ± 4.28	< 0.001*
Laboratory parameters	22.112 1117	21.23 = 3.37	22.13 = 1.2 1	22.07 = 1.29	20.12 _ 1.20	
RBC (10^12/L), Mean ± SD	4.13±0.78	3.95 ± 0.70	4.06±0.72	4.26 ± 0.84	4.23±0.82	0.001*
Hb (g/L), Mean ± SD	121.93 ± 23.15	118.45 ± 21.02	120.18 ± 22.21	123.16±23.97	125.93 ± 24.74	0.024*
CRP (mg/L), M (Q_1 , Q_3)	6.96 (2.36, 16.74)	5.26 (1.98,	8.96 (4.99, 15.10)	5.83 (1.73, 17.62)	6.78 (3.48, 18.77)	0.176
Cit (iiig) 2), ivi (Q), Q3)	0.50 (2.50, 10.7 1)	15.46)	0.50 (1.55, 15.10)	3.03 (1.73, 17.02)	0.70 (3.10, 10.77)	0.170
NT-ProBNP (pg/ml), M (Q ₁ , Q ₃)	2956.50 (1275.95, 6985.50)		3466.50 (1852.40, 9213.30)	3141.00 (1330.00, 6292.60)	2660.30 (1055.03, 7695.00)	0.046*
TC (mmol/L), Mean ± SD	3.89 ± 1.10	3.83 ± 0.97	3.72 ± 1.09	3.90 ± 1.07	4.12 ± 1.23	0.014*
TG (mmol/L), Mean ±SD	1.36±0.91	0.70±0.21	0.94 ± 0.27	1.37±0.48	2.44 ± 1.07	< 0.001*
HDL-C (mmol/L, Mean ± SD	1.06±0.36	1.40±0.35	1.03 ± 0.26	0.97±0.31	0.83 ± 0.23	< 0.001*
Table 1(continued)						
Variables	Total (<i>n</i> = 614)	Quartile 1 (<i>n</i> = 154)	Quartile 2 (<i>n</i> = 153)	Quartile 3 (<i>n</i> = 153)	Quartile 4 (<i>n</i> = 154)	<i>P</i> -value
	(· · ·)	TG/ HDL-C≤0.71	0.71 <tg <br="">HDL-C≤1.12</tg>	1.12 <tg <br="">HDL-C≤1.80</tg>	1.80< TG/HDL-C	
LDL-C (mmol/L), Mean ± SD	2.28±0.88	2.33±0.91	2.19±0.89	2.31 ± 0.94	2.29±0.78	0.501
eGFR [ml/ (min*1.73m ²)], M (Q ₁ , Q ₃)	0.37 (0.27, 0.45)	0.38 (0.30, 0.45)	0.36 (0.24, 0.44)	0.36 (0.28, 0.45)	0.37 (0.27, 0.46)	0.132
CK-MB, M (Q ₁ , Q ₃)	18.00 (13.80, 23.40)	18.00 (14.00, 22.80)	18.30 (13.20, 25.00)	18.00 (14.00, 23.90)	17.15 (13.07, 22.40)	0.514
FPG (mmol/L), Mean±SD	6.69 ± 2.87	5.91 ± 2.08	6.35 ± 2.55	6.74 ± 2.50	7.73 ± 3.76	< 0.001*
HbA1c (%), Mean±SD	6.32 ± 1.14	6.07 ± 0.75	6.12±0.94	6.41 ± 1.12	6.69 ± 1.51	< 0.001*
LVEF (%), Mean ± SD	46.59 ± 10.89	48.81 ± 10.28	46.78 ± 10.70	45.50 ± 11.46	45.28 ± 10.84	0.017*
LVEDD (mm), Mean ± SD	54.01 ± 9.97	53.21 ± 9.16	53.88 ± 9.73	54.03 ± 10.07	54.92 ± 10.88	0.518
LAAPD (mm), Mean ± SD	43.39±8.36	43.88 ± 8.73	44.55 ± 8.10	42.62 ± 8.60	42.51 ± 7.88	0.09
IVSD (mm), Mean ± SD	9.95 ± 1.74	9.73 ± 1.43	10.01 ± 1.76	10.10 ± 1.93	9.97 ± 1.81	0.284
QRSd (ms), Mean ± SD	108.62 ± 23.58	107.56 ± 23.69	111.18 ± 24.86	106.90 ± 24.04	108.85 ± 21.61	0.4
Comorbidities						
DM, n (%)	137 (22.35)	20 (12.99)	34 (22.37)	40 (26.14)	43 (27.92)	0.008*
Hypertension, n (%)	232 (37.79)	52 (33.77)	53 (34.64)	65 (42.48)	62 (40.26)	0.316
CAD, n (%)	230 (37.46)	54 (35.06)	51 (33.33)	55 (35.95)	70 (45.45)	0.12
PCI, n (%)	70 (11.40)	15 (9.74)	12 (7.84)	20 (13.07)	23 (14.94)	0.198

Table 1 (continued)

Variables	Total	Quartile 1	Quartile 2	Quartile 3	Quartile 4	<i>P</i> -value
	(n = 614)	(n = 154)	(n = 153)	(n=153)	(n=154)	
Valvular diseases, n (%)	222 (36.16)	68 (44.16)	53 (34.64)	54 (35.29)	47 (30.52)	0.086
AF, n (%)	261 (42.51)	69 (44.81)	71 (46.41)	64 (41.83)	57 (37.01)	0.36
CKD, n (%)	177 (28.83)	31 (20.13)	46 (30.07)	52 (33.99)	48 (31.17)	0.042*
COPD, n (%)	102 (16.61)	48 (31.17)	17 (11.11)	23 (15.03)	14 (9.09)	< 0.001*
Medical therapy						
ACEI/ARB/ARNI, n (%)	501 (82.13)	131 (86.18)	121 (79.61)	126 (82.89)	123 (79.87)	0.398
Beta blocker, n (%)	464 (76.07)	111 (73.03)	105 (69.08)	124 (81.58)	124 (80.52)	0.028*
Diuretics, n (%)	490 (80.33)	126 (82.89)	122 (80.26)	120 (78.95)	122 (79.22)	0.817
SGLT2 inhibitors, n (%)	172 (28.20)	30 (19.74)	37 (24.34)	49 (32.24)	56 (36.36)	0.005*
Lipid lowering therapies, n (%)	283 (46.09)	71 (46.10)	62 (40.52)	70 (45.75)	80 (51.95)	0.257
Outcomes						
MACE, n (%)	156 (25.41)	18 (11.64)	41 (26.28)	34 (21.79)	63 (40.38)	< 0.001*
CV Rehospitalization, n (%)	138 (22.48)	17 (11.04)	39 (25.49)	31 (20.26)	51 (33.12)	< 0.001*
CV death, n (%)	18 (2.93)	1 (0.65)	2 (1.31)	3 (1.96)	12 (7.79)	0.001*

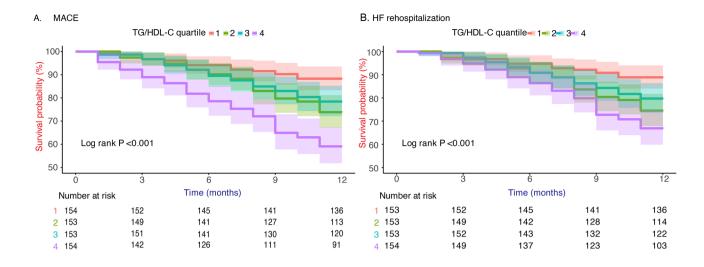
Continuous variables are expressed as mean±standard deviation, or as medians and interquartile ranges; Categorical variables are expressed as frequency (percentage).

NYHA: New York Heart Association; LVEF: left ventricle ejection fraction; HFpEF: HF with Preserved Ejection Fraction; HFmrEF: HF with Mid-Range Ejection Fraction; HFmrEF: HF with Mid-Range Ejection Fraction; HFmrEF: HF with Reduced Ejection Fraction; BMI: body mass index; RBC: red blood cell; Hb: hemoglobin; CRP: C-reactive protein; NT-proBNP: N-terminal pro-B-type natriuretic peptide; TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; eGFR: estimated glomerular filtration rate; CK-MB: creatine kinase isoenzymes; FPG: fasting plasma glucose; HbA1c: hemoglobin A1c; LVEDD: left ventricular end diastolic dimension; LAAPD: left atrium anteroposterior diameter; IVSD: interventricular septum diameter; QRSd: QRS duration; DM: diabetes mellitus; CAD: coronary artery disease; PCI: percutaneous coronary intervention; AF: atrial fibrillation; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; MACE: major adverse cardiovascular; ACEI/ARB/ARNI: angiotensin-converting enzyme inhibitor/angiotensin receptor blocker/ angiotensin receptor II blocker-neprilysin inhibitor; SGLT2i: sodium-glucose cotransporter-2 inhibitors.

Quartile 4 were associated with significantly higher risks of MACE, HF rehospitalization, and CV death (Log-rank P<0.001, P<0.001 and P=0.025, respectively; Additional file 1: Fig. S1); In contrast, higher HDL-C levels were only associated with reduced HF rehospitalization risk (Log-rank P=0.021), with no significant associations found for MACE or CV death (Log-rank P=0.058 and P=0.170, respectively; Additional file 2: Fig. S2).

Nonlinear relationship between the TG/HDL-C ratio and MACE risk

Figure 3 demonstrates the nonlinear relationship between the TG/HDL-C ratio and MACE risk in patients with new-onset HF, as analyzed using a Cox proportional hazards regression model with RCS analysis. After adjusting for multiple comprehensive factors (gender, DM, age, weight, BMI, FBG, HbA1C and LVEF), the findings confirmed a nonlinear association between the TG/HDL-C ratio and MACE incidence (P for nonlinear = 0.026), with a cut-off point at 1.08. Based on this, a two-piecewise Cox proportional hazards regression model was applied to determine the HRs and CIs on either side of the inflection point (Table 2). Below the inflection point (TG/HDL-C ratio < 1.08), the HR was 1.38 (95% CI: 1.19-1.59), indicating a moderate increase in MACE risk with rising TG/HDL-C ratios; Above the inflection point (TG/ HDL-C \geq 1.08), the HR increased sharply to 7.27 (95% CI: 1.56–33.89), highlighting a steep rise in adverse events in patients with elevated TG/HDL-C ratios.


Association between the TG/HDL-C ratio and other factors

To explore the association between the TG/HDL-C ratio and various clinical and metabolic factors that play important roles in HF development, a Pearson correlation test was performed. The results identified significant correlations between the TG/HDL-C ratio and FPG, BMI and HbA1c in HF patients, with correlation coefficients of R = 0.196, 0.176 and 0.107, respectively (all P < 0.001, Fig. 4). However, traditional HF markers such as LVEF and NT-proBNP did not show significant correlations with the TG/HDL-C ratio in the overall population (Additional file 4: Table S4). Notably, in patients with HFpEF, TG/HDL-C ratio showed a weak positive correlation with NT-proBNP (r = 0.135, P = 0.026), while no significant correlations were observed in HFrEF or HFmrEF patients (Additional file 5: Table S5).

Correlation between the TG/HDL-C ratio and MACE risk

Since the baseline characteristics and based on established clinical relevance, we performed univariate and multivariate Cox proportional hazards regression analyses to explore the association between the TG/HDL-C ratio and MACE, and the results are presented in (Additional file 3: Fig. S3) and Table 3. When treated as a continuous variable, each 1-unit increase in the TG/

^{*} P<0.05. SD: standard deviation, M: Median, Q₁: 1st Quartile, Q₃: 3rd Quartile.

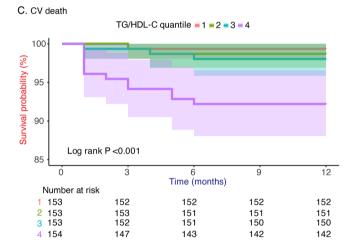


Fig. 2 Kaplan–Meier analyses for different endpoints among the TG/HDL-C ratio quartiles. A: MACE. B: CV death. C: HF rehospitalization. CV, cardiovas-cular; HF, heart failure

HDL-C ratio was associated with a 31% higher risk of adverse events in Model 1 (HR = 1.31, 95% CI: 1.20-1.44, P < 0.001). After adjusting for multiple factors, including Gender, Age, BMI, FDG, RBC, Hb, NT-proBNP, TC, LDL, eGFR, FPG, HbA1c, LVEF, DM, Hypertension, CAD, CKD, COPD, Smoke, ACEI/ARB/ARNI, Beta blocker, Diuretics and SGLT2 inhibitors, the risk increased to 44% in Model 4 (HR = 1.44, 95% CI: 1.29-1.60, P < 0.001). When considering the TG/HDL-C ratio was analyzed as a categorical variable, the risk of MACE was significantly higher in the upper quartiles (Quartile 2, Quartile 3 and Quartile 4) compared to the Quartile 1 group (all P < 0.05). In Model 4, Quartile 2 had an HR of 2.44 (95% CI: 1.34–4.46, P=0.004), Quartile 3 had an HR of 2.78 (95% CI: 1.49-5.16, P=0.001), and Quartile 4 had an HR of 5.78 (95% CI: 3.08–10.08, *P*<0.001). These findings underscore the clinical utility of the TG/HDL-C ratio for risk stratification in patients with new-onset HF,

identifying those at significantly higher risk for adverse events within 12 months.

Sensitivity analysis

To validate the relationship between the TG/HDL-C ratio and MACE risk incidence, multiple sensitivity analyses were conducted (Table 4). In the subgroup of patients with a BMI < 24 kg/m² (Model I), adjusting for factors such as age, FDG, RBC, Hb, neutrophils (Neu), CRP, NT-proBNP, TC, LDL, eGFR, FBG, HbA1c, LVEF, diabetes mellitus (DM), hypertension, CKD, COPD, smoking status, ACEI/ARB/ARNI, beta blockers, diuretics, and SGLT2 inhibitors, the TG/HDL-C ratio was significantly associated with MACE (HR = 1.51, 95% CI: 1.04–2.20, P=0.028). Similar associations were observed in patients without diabetes (Model II) and in those not receiving SGLT2 inhibitors (Model III), with HRs of 1.58 (95% CI: 1.26–1.99, P<0.001) and 1.53 (95% CI: 1.19–1.97, P<0.001), respectively. Furthermore, when analyzed as a

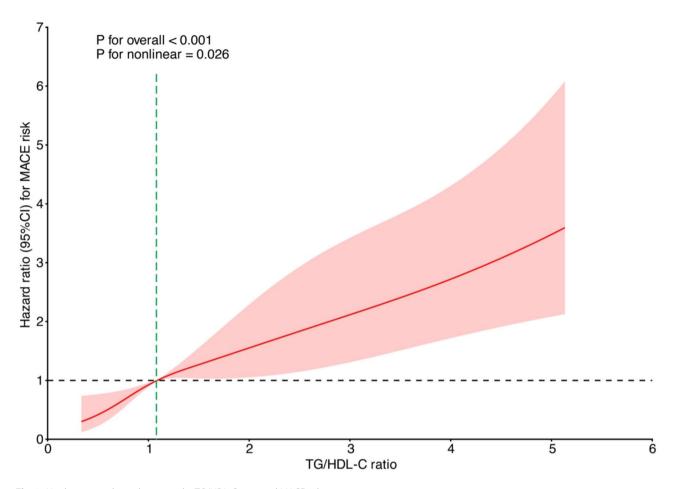
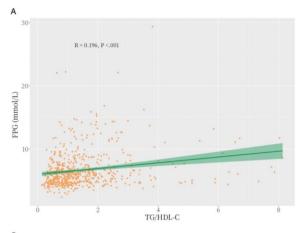


Fig. 3 Nonlinear correlation between the TG/HDL-C ratio and MACE risk

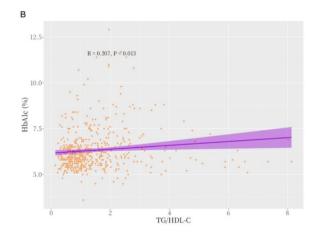
Table 2 Results of the two-piecewise linear regression model

Outcome: MACE	HR (95%CI)	P-value
Fitting model by standard linear regression	1.44 (1.29, 1.60)	< 0.001
Inflection points of the TG/HDL-C ratio	1.08	
< 1.08	1.38 (1.19, 1.59)	< 0.001
≥1.08	7.27 (1.56, 33.89)	0.012
P for log-likelihood ratio test		0.026

categorical variable, the TG/HDL-C ratio demonstrated a consistent positive association with MACE across all subgroups (all P<0.05). These sensitivity analyses reinforce the robustness and reliability of our findings, highlighting the independent prognostic value of the TG/HDL-C ratio across different clinical contexts.


Discussion

This study examined the relationship between the TG/HDL-C ratio and clinical outcomes in patients with new-onset HF. Our findings demonstrate that a higher TG/HDL-C ratio is strongly associated with an increased risk of MACE within 12 months, including HF rehospitalization and CV death. The TG/HDL-C ratio emerged as an independent predictor of MACE, both as a continuous


and categorical variable, even after adjusting for confounders. These results highlight its value as a reliable and practical prognostic marker for risk stratification in this population.

IR, a hallmark of metabolic syndrome, plays a central role in this process by disrupting glucose and lipid metabolism, heightened inflammatory responses, and oxidative stress [21, 22]. These factors exacerbate myocardial remodeling and accelerate HF progression. Although the hyperinsulinemia-euglycemic clamp (HEC) is considered the gold standard for measuring IR, its complexity and cost limit use [23]. The homeostasis model assessment of insulin resistance (HOMA-IR) index provides a practical alternative, though it is unsuitable for individuals using exogenous insulin or with β -cell dysfunction [24]. To address these limitations, markers such as the triglyceride-glucose index (TyG), triglyceride-glucose body mass index (TyG-BMI), TG/HDL-C ratio, and metabolic score for insulin resistance (METS-IR) have gained traction as reliable, cost-effective, and straightforward surrogates for assessing IR [25–29].

Most prior studies have examined the TG/HDL-C ratio in coronary artery disease and metabolic syndrome

(2025) 25:251

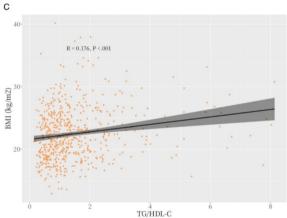


Fig. 4 Correlation between the TG/HDL-C ratio and FPG (A), HbA1c (B) and BMI (C). PG: fasting plasma glucose; HbA1c: hemoglobin A1c; BMI: body mass index

Table 3 Correlation between the TG/HDL-C ratio and MACE risk in different models

Exposure	Model 1		Model 2		Model 3		Model 4	
	HR (95%CI)	P	HR (95%CI)	P	HR (95%CI)	P	HR (95%CI)	P
#TG/HDL-C ratio	1.31 (1.20, 1.44)	< 0.001	1.39 (1.26, 1.53)	< 0.001	1.41 (1.27, 1.56)	< 0.001	1.44 (1.29, 1.60)	< 0.001
TG/HDL-C ratio quartiles								
Q1	1.00 (Reference)		1.00 (Reference)		1.00 (Reference)		1.00 (Reference)	
Q2	2.35 (1.35, 4.10)	0.003	2.80 (1.56, 5.03)	< 0.001	2.52 (1.39, 4.57)	0.002	2.44 (1.34, 4.46)	0.004
Q3	1.93 (1.08, 3.42)	0.025	2.48 (1.36, 4.52)	0.003	2.25 (1.22, 4.17)	0.009	2.78 (1.49, 5.16)	0.001
Q4	4.16 (2.46, 7.02)	< 0.001	6.27 (3.57, 11.02)	< 0.001	5.25 (2.95, 9.34)	< 0.001	5.57 (3.08, 10.08)	< 0.001

[#]TG/HDL-C as a continuous variable. HR: Hazard Ratio; CI: Confidence Interval; Q: Quartile.

Model 1: Crude.

Model 2: Adjust Gender, Age.

Model 3: Adjust Gender, Age, BMI, FDG, RBC, Hb, NT-proBNP, TC, LDL, eGFR, LVEF, Hypertension, CAD, CKD, COPD, Smoke.

Model 4: Adjust Gender, Age, BMI, FDG, RBC, Hb, NT-proBNP, TC, LDL, eGFR, FBG, HbA1c, LVEF, DM, Hypertension, CAD, CKD, COPD, Smoke, ACEI/ARB/ARNI, Beta blocker, Diuretics, SGLT2 inhibitors.

[30–32]. For instance, Alifu et al. [30] and Liu et al. [32] reported its association with increased MACE risk in chronic coronary syndrome and community-based cohorts. However, research on the TG/HDL-C ratio is limited, particularly for new-onset HF. Our study addresses this gap and provides new evidence supporting the prognostic relevance of the TG/HDL-C ratio in this vulnerable population.

In our study patients with higher TG/HDL-C ratios experienced significantly higher cumulative MACE rates. For example, 40.38% of patients in Quartile 4 faced MACE, including 33.12% hospitalized for HF and 7.79% who died from CV causes, compared to lower rates in Quartiles 1–3. One molecular link between the TG/HDL-C ratio and IR is apolipoprotein C-I (ApoC-I), a key regulator of TG and HDL-C levels. Reduced ApoC-I

Table 4 Relationship between the TG/HDL-C ratio and the MACE in different sensitivity analyses

Exposure	Model I, HR (95%CI)	P	Model II, HR (95%CI)	P	Model III, HR (95%CI)	P
#TG/HDL-C ratio	1.46 (1.24 ~ 1.71)	< 0.001	1.53 (1.35 ~ 1.74)	< 0.001	1.54 (1.35 ~ 1.75)	< 0.001
TG/HDL-C ratio quartiles						
Q1	1.00 (Reference)		1.00 (Reference)		1.00 (Reference)	
Q2	2.21 (0.96 ~ 5.08)	0.062	2.40 (1.17~4.93)	0.017	3.00 (1.39~6.46)	0.005
Q3	3.71 (1.63 ~ 8.45)	0.002	2.68 (1.28 ~ 5.62)	0.009	2.52 (1.14~5.57)	0.023
Q4	5.80 (2.57 ~ 13.10)	< 0.001	5.81 (2.87 ~ 11.77)	< 0.001	6.56 (3.13 ~ 13.73)	< 0.001

[#] TG/HDL-C as a continuous variable; HR: Hazard Ratio; CI: Confidence Interval; Q: Quartile.

Model I was used for sensitivity analysis in participants with BMI < 24 kg/m2. Adjusted Gender, Age, FDG, RBC, Hb, NT-proBNP, TC, LDL, eGFR, FBG, HbA1c, LVEF, DM, Hypertension, CKD, COPD, Smoke, ACEI/ARB/ARNI, Beta blocker, Diuretics, SGLT2inhibitors

Model II was used for sensitivity analysis in participants without DM. Adjusted Gender, Age, BMI, FDG, RBC, Hb, NT-proBNP, TC, LDL, eGFR, FBG, HbA1c, LVEF, Hypertension, CKD, COPD, Smoke, ACEI/ARB/ARNI, Beta blocker, Diuretics, SGLT2inhibitors.

Model III was used for sensitivity analysis in participants without SGLT2 inhibitors treatment. Adjusted Gender, Age, BMI, FDG, RBC, Hb, NT-proBNP, TC, LDL, eGFR, FBG, HbA1c, LVEF, DM, Hypertension, CKD, COPD, Smoke, ACEI/ARB/ARNI, Beta blocker, Diuretics.

levels are associated with worsening IR, elevated fasting blood glucose, and an increased risk of developing diabetes [33].

A novel finding of this study was the nonlinear relationship between the TG/HDL-C ratio and MACE risk, with an inflection point at 1.08. Below this point, the hazard ratio (HR) for MACE was 1.38 (95% CI: 1.19-1.59), indicating a moderate risk increase; Above the inflection point, the HR increased sharply to 7.27 (95% CI: 1.56-33.89), reflecting a steep escalation in risk. Notably, what changes below the inflection point is the slope of the curve, but that indeed patients with a low TG/HDL ratio have lower risk of MACE. These findings underscore the importance of closely monitoring HF patients with elevated TG/HDL-C ratios during hospitalization and follow-up. This data-driven threshold requires further validation in larger, diverse cohorts, but it highlights the need for closer monitoring and more intensive management in patients with TG/HDL-C ratios exceeding 1.08.

Metabolic dysregulation, characterized by abnormalities in lipid and glucose metabolism, plays a pivotal role in HF progression. This interplay is both causative and complementary, collectively worsening the prognosis of HF [9, 34, 35]. Beyond traditional markers such as NT-proBNP and LVEF, metabolic syndrome components-hypertension, obesity, hyperglycemia, and dyslipidemia—also predict HF outcomes [34, 36, 37]. In this study, patients with new-onset HF in the highest TG/ HDL-C ratio group were younger than those in other groups but exhibited a higher prevalence of elevated BMI, FPG, and HbA1c levels (P<0.001). Furthermore, the proportion of DM was significantly greater in the Quartile 4 group compared to the Quartile 1 group[43 (27.92%) vs. 20 (12.99%), P = 0.008], identifying a strong association between these metabolic syndrome markers and adverse outcomes in HF patients [38-42]. Additionally, diabetes mellitus was significantly more prevalent in Quartile 4 (27.92%) compared to Quartile 1 (12.99%, P = 0.008). The TG/HDL-C ratio showed positive correlations with BMI (R = 0.176, P < 0.001), FBG (R = 0.196, P < 0.001), and HbA1c (R = 0.107, P = 0.013), and a negative correlation with age (R = -0.226, P < 0.001). Regarding traditional HF markers, TG/HDL-C ratio did not correlate with NT-proBNP or LVEF in the overall cohort. However, subgroup analysis revealed a weak positive correlation between TG/HDL-C ratio and NT-proBNP in HFpEF patients (r = 0.135, P = 0.026), while no significant correlations were found in HFrEF or HFmrEF patients. This suggests that TG/HDL-C ratio may reflect myocardial stress more prominently in HFpEF, though further studies are needed to confirm this. To further evaluate the independent prognostic value of TG/HDL-C ratio, our multivariable Cox regression and sensitivity analyses consistently demonstrated that the TG/HDL-C ratio is an independent predictor of MACE, reinforcing its potential utility in routine clinical practice. Beyond traditional risk factors, monitoring TG/HDL-C may help identify highrisk new-onset HF patients who could benefit from more intensive metabolic and cardiovascular management.

Notably, a study by Zhou et al. demonstrated that the TG/HDL-C ratio is associated with both 5-year and 360-day mortality in ICU-admitted HF patients, focusing on all-cause mortality [43]. In contrast, our study concentrated on newly diagnosed HF patients, with MACE—including HF rehospitalization and CV death—as the primary endpoint over 12 months. This distinction underscores the TG/HDL-C ratio's prognostic value in early HF stages, supporting its utility in risk stratification and guiding early intervention strategies.

Conclusions

This study highlights the TG/HDL-C ratio as a new marker that independently predicts the risk of MACE in new-onset HF patients during the first year after discharge. Incorporating this marker into routine risk assessment may help identify high-risk patients for closer monitoring and early intervention. Prospective multicenter studies with longer follow-up and diverse

populations are warranted to validate the prognostic utility of the TG/HDL-C ratio and explore its potential integration into HF risk stratification frameworks.

Limitations

This study has several limitations. First, being a singlecenter retrospective study with a small, homogeneous sample, its findings may lack generalizability. Multicenter, diverse cohort studies are needed to validate these results. Second, the retrospective design also limits causal inference, and the bidirectional relationship between HF and the TG/HDL-C ratio complicates interpretation. Third, conclusions are based on a one-year follow-up period, leaving uncertainty about whether the TG/HDL-C ratio serves as a long-term risk factor. Extended follow-up studies are needed for further validation. Fourth, TG and HDL-C levels were measured during hospitalization, which may not fully reflect the patients' overall glycemic and lipid metabolic status. Fifth, direct comparisons between the TG/HDL-C ratio and other established lipid and metabolic markers (e.g., LDL-C, apolipoprotein B, and the triglyceride-glucose index) were not performed, limiting the ability to assess its incremental predictive value relative to traditional markers. Sixth, subgroup analyses by HF etiology or severity were not conducted due to limited sample size, leaving the applicability of these findings across HF subtypes uncertain. Future studies with extended follow-up and broader populations are warranted. Finally, this study did not apply competing risk analysis, such as the Fine and Gray model, which could have provided additional insights into the distinct risks of HF rehospitalization and CV death. Future studies with larger cohorts could further explore these risks using appropriate competing risk models and comparative analyses with other lipid and metabolic markers to further clarify the prognostic role of the TG/HDL-C ratio in new-onset HF.

Abbreviations

TG Triglyceride

HDL-C High-density lipoprotein cholesterol
TG/HDL-C Triglyceride to high-density lipoprotein cholesterol

HF Heart failure

MACE Major adverse cardiovascular events

CV Cardiovascular
K-M Kaplan-Meier
RCS Restricted cubic splines
CI Confidence interval
HR Hazard ratio

NYHA New York Heart Association
BMI Body mass index

RBC Red blood cell
Hb Hemoglobin
CRP C-reactive protein

NT-proBNP N-terminal pro-B-type natriuretic peptide

TC Total cholesterol

LDL-C Low-density lipoprotein cholesterol eGFR Estimated glomerular filtration rate CK-MB Creatine kinase isoenzymes

FPG Fasting plasma glucose HbA1c Hemoglobin A1c

LVEF Left ventricle ejection fraction
LVEDD Left ventricular end diastolic dimension
LAAPD Left atrium anteroposterior diameter
IVSD Interventricular septum diameter
ORSd ORS duration

QRSd QRS duration
DM Diabetes mellitus
CAD Coronary artery disease

PCI Percutaneous coronary intervention

AF Atrial fibrillation
CKD Chronic kidney disease

COPD Chronic obstructive pulmonary disease MACE Major adverse cardiovascular event

CV Cardiovascular

ACEI/ARB/ARNI Angiotensin-converting enzyme inhibitor/angiotensin

receptor blocker/ angiotensin receptor II blocker -

neprilysin inhibitor

SGLT2i Sodium-glucose cotransporter-2 inhibitors

Supplementary Information

The online version contains supplementary material available at https://doi.or q/10.1186/s12872-025-04706-8.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Supplementary Material 8

Acknowledgements

We are indebted to all the members who contributed to this work.

Author contributions

X.P designed the study. J.W, W.D, R.L, Y.Z, J.Y and X.F acquired the data, analyzed and interpreted the data. Y. Z and X.C performed the statistical analysis. J.W drafted the manuscript. revised the manuscript. All the authors have read and approved the final manuscript.

Funding

The study was supported by the National Nature Science Foundation of China (8206020488).

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This study adhered to the Helsinki Declaration and was approved by the Ethical Review Board of The First Affiliated Hospital of Nanchang University (Ethical Number: IIT2024402). The requirement for informed consent was waived by the ethics committee due to the retrospective nature of the study, and all data were anonymized and handled with strict confidentiality.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹The 1 st affiliated hospital, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City 330006, Jiangxi Province, People's Republic of China

²The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Donghu District, Nanchang City 330006, Jiangxi Province, People's Republic of China

Received: 31 January 2025 / Accepted: 25 March 2025 Published online: 02 April 2025

References

- Becher PM, Lund LH, Coats AJS, Savarese G. An update on global epidemiology in heart failure. Eur Heart J. 2022;43(32):3005–7.
- Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–87.
- Disease GBD, Injury I, Prevalence C. Global, regional, and National incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–858.
- Hahn VS, Petucci C, Kim MS, Bedi KC Jr., Wang H, Mishra S, Koleini N, Yoo EJ, Margulies KB, Arany Z, et al. Myocardial metabolomics of human heart failure with preserved ejection fraction. Circulation. 2023;147(15):1147–61.
- Hundertmark MJ, Adler A, Antoniades C, Coleman R, Griffin JL, Holman RR, Lamlum H, Lee J, Massey D, Miller J, et al. Assessment of cardiac energy metabolism, function, and physiology in patients with heart failure taking Empagliflozin: the randomized, controlled EMPA-VISION trial. Circulation. 2023;147(22):1654–69.
- Abdellatif M, Sedej S, Kroemer G. NAD(+) metabolism in cardiac health, aging, and disease. Circulation. 2021;144(22):1795–817.
- Zhou Q, Yang J, Tang H, Guo Z, Dong W, Wang Y, Meng X, Zhang K, Wang W, Shao C, et al. High triglyceride-glucose (TyG) index is associated with poor prognosis of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2023;22(1):263.
- Lee MMY, Brooksbank KJM, Wetherall K, Mangion K, Roditi G, Campbell RT, Berry C, Chong V, Coyle L, Docherty KF, et al. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation. 2021;143(6):516–25.
- Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.
- Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384(9943):626–35.
- Nordestgaard BG. Triglyceride-Rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118(4):547–63.
- Denimal D, Nguyen A, Pais de Barros JP, Bouillet B, Petit JM, Verges B, Duvillard L. Major changes in the sphingophospholipidome of HDL in non-diabetic patients with metabolic syndrome. Atherosclerosis. 2016;246:106–14.
- Zhang T, Chen J, Tang X, Luo Q, Xu D, Yu B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesityinduced dyslipidemia and atherosclerosis. Lipids Health Dis. 2019;18(1):223.
- Camont L, Lhomme M, Rached F, Le Goff W, Negre-Salvayre A, Salvayre R, Calzada C, Lagarde M, Chapman MJ, Kontush A. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, antiinflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol. 2013;33(12):2715–23.
- 15. Quispe R, Martin SS, Jones SR. Triglycerides to high-density lipoprotein-cholesterol ratio, glycemic control and cardiovascular risk in obese patients with type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 2016;23(2):150–6.
- Eeg-Olofsson K, Gudbjornsdottir S, Eliasson B, Zethelius B, Cederholm J, Ndr. The triglycerides-to-HDL-cholesterol ratio and cardiovascular disease risk in obese patients with type 2 diabetes: an observational study from the Swedish National diabetes register (NDR). Diabetes Res Clin Pract. 2014;106(1):136–44.

- Kosmas CE, Rodriguez Polanco S, Bousvarou MD, Papakonstantinou EJ, Pena Genao E, Guzman E, Kostara CE. The Triglyceride/High-Density lipoprotein cholesterol (TG/HDL-C) ratio as a risk marker for metabolic syndrome and cardiovascular disease. Diagnostics (Basel) 2023, 13(5).
- 18. Wang B, Hua J, Ma L. Triglyceride to High-Density lipoprotein ratio can predict coronary artery calcification. Pak J Med Sci. 2022;38(3Part–1):624–31.
- McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, Burri H, Butler J, Celutkiene J, Chioncel O, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.
- Ma YC, Zuo L, Chen JH, Luo Q, Yu XQ, Li Y, Xu JS, Huang SM, Wang LN, Huang W, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol. 2006;17(10):2937–44.
- 21. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.
- Semenkovich CF. Insulin resistance and atherosclerosis. J Clin Invest. 2006;116(7):1813–22.
- 23. Gastaldelli A. Measuring and estimating insulin resistance in clinical and research settings. Obes (Silver Spring). 2022;30(8):1549–63.
- Rudvik A, Mansson M. Evaluation of surrogate measures of insulin sensitivity correlation with gold standard is not enough. BMC Med Res Methodol. 2018;18(1):64.
- Guerrero-Romero F, Simental-Mendia LE, Gonzalez-Ortiz M, Martinez-Abundis E, Ramos-Zavala MG, Hernandez-Gonzalez SO, Jacques-Camarena O, Rodriguez-Moran M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347–51.
- Fiorentino TV, Marini MA, Succurro E, Andreozzi F, Sesti G. Relationships of surrogate indexes of insulin resistance with insulin sensitivity assessed by euglycemic hyperinsulinemic clamp and subclinical vascular damage. BMJ Open Diabetes Res Care. 2019;7(1):e000911.
- Er LK, Wu S, Chou HH, Hsu LA, Teng MS, Sun YC, Ko YL. Triglyceride Glucose-Body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS ONE. 2016;11(3):e0149731.
- 28. McLaughlin T, Reaven G, Abbasi F, Lamendola C, Saad M, Waters D, Simon J, Krauss RM. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am J Cardiol. 2005;96(3):399–404.
- Baneu P, Vacarescu C, Dragan SR, Cirin L, Lazar-Hocher AI, Cozgarea A, Faur-Grigori AA, Crisan S, Gaita D, Luca CT et al. The triglyceride/hdl ratio as a surrogate biomarker for insulin resistance. Biomedicines 2024, 12(7).
- Alifu J, Xiang L, Zhang W, Qi P, Chen H, Liu L, Yin G, Mohammed AQ, Lv X, Shi T, et al. Association between the atherogenic index of plasma and adverse long-term prognosis in patients diagnosed with chronic coronary syndrome. Cardiovasc Diabetol. 2023;22(1):255.
- 31. Suleymanoglu M, Rencuzogullari I, Karabag Y, Cagdas M, Yesin M, Gumusdag A, Cap M, Gok M, Yildiz I. The relationship between atherogenic index of plasma and no-reflow in patients with acute ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention. Int J Cardiovasc Imaging. 2020;36(5):789–96.
- Liu Z, Zhang L, Wang L, Li K, Fan F, Jia J, Li J, Zhang Y. The predictive value of cumulative atherogenic index of plasma (AIP) for cardiovascular outcomes: a prospective community-based cohort study. Cardiovasc Diabetol. 2024;23(1):264.
- Koska J, Hu Y, Furtado J, Billheimer D, Nedelkov D, Allison M, Budoff MJ, McClelland RL, Reaven P. Association of apolipoproteins C-I and C-II truncations with coronary heart disease and progression of coronary artery calcium: Multi-Ethnic study of atherosclerosis. Atherosclerosis. 2023;380:117214.
- 34. Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, Jessup M, Kosiborod M, Pritchett AM, Ramasubbu K, et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: A scientific statement from the American heart association. Circulation. 2016;134(23):e535–78.
- 35. Braunwald E. Heart failure. JACC Heart Fail. 2013;1(1):1-20.
- Sharma A, Razaghizad A, Ferreira JP, Machu JL, Bozec E, Girerd N, Rossignol P, Zannad F. Metabolic syndrome and the risk of preclinical heart failure: insights after 17 years of Follow-Up from the STANISLAS cohort. Cardiology. 2022;147(3):281–7.
- Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998:15(7):539–53.

- Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13.
- Kenchaiah S, Pocock SJ, Wang D, Finn PV, Zornoff LA, Skali H, Pfeffer MA, Yusuf S, Swedberg K, Michelson EL, et al. Body mass index and prognosis in patients with chronic heart failure: insights from the Candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Circulation. 2007;116(6):627–36.
- Wang Y, Zhou J, Qi W, Zhang N, Tse G, Li G, Wu S, Liu T. Visit-to-Visit variability in fasting blood glucose predicts the New-Onset heart failure: results from two large Chinese cohorts. Curr Probl Cardiol. 2023;48(9):101842.
- 41. Lewis EF, Solomon SD, Jablonski KA, Rice MM, Clemenza F, Hsia J, Maggioni AP, Zabalgoitia M, Huynh T, Cuddy TE, et al. Predictors of heart failure in patients with stable coronary artery disease: a PEACE study. Circ Heart Fail. 2009;2(3):209–16.
- 42. Arnold JM, Yusuf S, Young J, Mathew J, Johnstone D, Avezum A, Lonn E, Pogue J, Bosch J, Investigators H. Prevention of heart failure in patients in the heart outcomes prevention evaluation (HOPE) study. Circulation. 2003;107(9):1284–90.
- 43. Zhou Z, Liu Q, Zheng M, Zuo Z, Zhang G, Shi R, Wu T. Comparative study on the predictive value of TG/HDL-C, TyG and TyG-BMI indices for 5-year mortality in critically ill patients with chronic heart failure: a retrospective study. Cardiovasc Diabetol. 2024;23(1):213.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.