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Homocysteine (Hcy) is a sulfur-containing α-amino acid that
differs by one methylene (CH2) subunit from homologous
cysteine (Cys). Elevated levels of Hcy are diagnostic markers of
cardiovascular disease and other medical conditions. We
present a new CuII-salicylidene glycinato complex 1 for the
selective fluorometric detection of Hcy in water. In the presence
of this analyte, the non-fluorescent copper-complex demetal-
lates and disassembles into its building blocks. This process
liberates a 3-chloro-5-sulfosalicylaldehyde signaling unit and is

accompanied by a 51-fold turn-on fluorescence at 485 nm (λex =

350 nm). Out of twenty proteinogenic amino acids, only
histidine (12-fold turn-on fluorescence) and Cys (8-fold turn-on
fluorescence) trigger some disassembly of probe 1. In compar-
ison with important pioneering work on the detection of
biothiols, this study strikingly demonstrates that structural
modifications of chelate core structures steer substrate selectiv-
ity of metal-based probes. Importantly, probe 1 has proven
suitable for the detection of Hcy in artificial urine.

Introduction

Homocysteine (Hcy) is a biologically important sulfur-containing
non-proteinogenic α-amino acid (Figure 1C).[1] It is enzymatically
metabolized into the two proteinogenic amino acids cysteine
and methionine (Figure 1C) and represents an intermediate in
the recycling of S-adenosylmethionine (SAM).[2] Elevated levels
of Hcy are (i) considered as diagnostic markers of cardiovascular
disease,[3] acute ischemic stroke,[4] Alzheimer’s disease,[5] and
other diseases.[6] These anomalies are often caused by a lack of
certain vitamin B (i. e., B12, B9 or B6) or a malfunctioning of the
corresponding vitamin metabolism.[7]

For these reasons, determinations of Hcy are of importance
in routine clinical diagnosis. In medicinal laboratories, Hcy is
usually detected with chromatographic and mass spectrometric
methods or enzymatic assays.[9] Chemical probes for biothiols
represent potential cost-effective alternatives and numerous
studies have reported fluorescent chemosensors, chemodosim-
eters, indicator-displacement assay and disassembly probes.[10]

Despite remarkable progress in this area, discrimination
between Hcy and Cys still represents a major challenge.[10c,11]

In the context of the detection of biothiols, the develop-
ment of CuII-dye complexes has gained considerable attention.
In this approach, the paramagnetic metal ion (3d9) quenches

the fluorescence of the dye by electron transfer into the metal‘s
partially filled d-orbitals. Demetallation of the CuII-dye ensemble
by the biothiol restores the fluorometric response of the
dye.[8,12] Pioneering examples include a CuII-iminocoumarin
complex for the detection of cysteine (Cys) and Hcy by Kim and
coworkers[8] (Figure 1A) as well as a CuII-iminofluorescein
complex for the detection of biothiols by Chen and co-
workers.[12a] In these two examples, decomplexation of the CuII-
complexes with the analyte is accompanied by subsequent
hydrolysis of the metal-free imine ligands (i. e., disassembly)
that liberates strongly fluorescent signaling units. Despite
enormous recent progress in the detection of biothiols,
including a CuII-pyrene complex for two-photon sensing,[12b]

further improvements of selectivity, sensitivity, robustness and
water solubility are still desired.

This contribution is motivated by pioneering and recent
work with CuII-dye complexes[8,12a,13] and encouraged by our
own original studies with FeIII- and ZnII-salen complexes for
(poly)oxophosphate detection.[14] Herein, we report on a CuII-
salicylidene glycinato complex for the fluorometric detection of
Hcy over 20 proteinogenic amino acids, including Cys, following
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Figure 1. A: Pioneering fluorometric CuII-iminocoumarin complex for detect-
ing biothiols.[8] B: CuII-salicylidene glycinato complex 1 for the selective
detection of Hcy. The chelate core structures of the tridentate ligands in A
and B are shown in bold. C: Sulfur-containing non-proteinogenic amino acid
(Hcy: homocysteine) and proteinogenic amino acids (Cys: cysteine, Met:
methionine).
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a disassembly approach (DA)[15] (Scheme 1). The application for
detecting Hcy in artificial urine is demonstrated.

Results and Discussion

Our reagent, a CuII-salicylidene glycinato complex is composed
of a central CuII-ion surrounded by a tridentate Schiff base
ligand and an aqua ligand (Figure 1B). The Schiff base ligand
consists of glycine and a 3-chloro-5-sulfo salicylaldehyde signal-
ing unit (2; Scheme 1). The CuII ion stabilizes and protects the
imine functionality against hydrolysis in water (“disassembly”)
and quenches the intrinsic fluorescence of the signaling unit

2.[20] Probe 1 was synthesized in a one-pot step procedure with
signaling unit 2, glycine and CuCl2 · 2H2O in EtOH (Scheme 1
yield: 62%).

Complex formation of the CuII-salicylidene glycinato com-
plex 1 was accompanied by a blue shift of the absorption
maximum of the signalling unit 2 to 358 nm (Figure 2 left,
Figure S1) and its strong emission at 485 nm (λex =350 nm) was
quenched in copper-containing 1 due to ligand-to-metal charge
transfer (Figure 2 right, Figure S2). The high-resolution mass
spectrum of 1 displays the signal of a [M] � ion at m/z 352.8831
(m/zcalc 352.8828) in agreement with the molecular formula of 1
(C9H5ClCuNO6S

� ) (Figure S3). Additional structural proof was
obtained from crystal structure analysis (Figure 3, Table S1)
depicting a square-planar copper complex with the tridentate
salicylidene glycinato-, and an additional aqua ligand.

Addition of Hcy (100 μm, 5 equiv) to probe 1 (20 μm) led to
a redshift of 23 nm to 381 nm in the absorption spectrum
(Figure 2, left). This colorimetric change was accompanied by a
strong 51-fold enhanced fluorescence emission at 485 nm (λex =

350 nm) (Figure 2, right). These two characteristic spectrophoto-
metric changes indicate the disassembly of 1 into its subunits
and hence, the liberation of the signaling unit 2 in the presence
of Hcy (Scheme 1). These observations are supported by
1H NMR studies. Whereas the spectrum of paramagnetic 1
(101 mm) did not show any signals in the region between 6 and
12 ppm in D2O (Figure 4, line 1), additions of Hcy (1 equiv.;
Figure 4, line 2) triggered demetallation of complex 1 and
liberation of signaling unit 2 as indicated by the emergence of
characteristic protons of the aldehyde and the aromatic
moieties of the signaling unit 2 at 9.90 and 8.07 ppm,
respectively. From these studies, we did not obtain any
evidence for the intermediate formation of the copper-free
salicylidene glycine ligand suggesting that the ligand hydrol-
yses rapidly upon demetallation in deuterated H2O.

Scheme 1. Synthesis and reactivity of probe 1. a) Glycine, CuCl2 · 2H2O

Figure 2. Left: UV-Vis spectra of 1 (20 μM) in H2O (pH 7.4, [HEPES]=100 mm)
in the absence and presence of Hcy (100 μM) after 30 min incubation. Right:
Corresponding fluorescence spectra (λex =350 nm).

Figure 3. X-ray crystal structure of the CuII-salicylidene glycine complex 1.
One out of two molecules in the asymmetric unit is shown. A guanidinium
moiety as shown in the figure was used to crystallize complex
1 · (CH6N3) · (H2O)2. Ellipsoids are drawn at 50% probability. Colour code:
carbon grey, hydrogen white, nitrogen blue, oxygen red, sulfur yellow,
chlorine bright green, copper dark green.

Figure 4. Line 1 (bottom): 1H NMR spectrum of 1 (101 mm) in D2O.* Line 2
(middle): 1H NMR spectrum of 1 (72 mm) in the presence of Hcy (72 mm)
after 30 min incubation. Line 3 (top): 1H NMR spectrum of 2 (53 mm) in D2O.
*The 1H NMR spectrum of 1 does not show any signal in this region due to
the paramagnetism of the CuII-complex.
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The selectivity of probe 1 towards Hcy was tested with 20
proteinogenic amino acids (AAs) including the sulfur-containing
biothiols Cys and Met with emission spectroscopy (Figure 5).

Remarkably, eighteen out of 20 proteinogenic AA (5 equiv.)
did not show a significant[17] fluorometric response (Figure 5). In
addition to the 51-fold enhanced fluorescence emission at
485 nm of 1 in the presence of non-proteinogenic Hcy (5 equiv),
only His and Cys (5 equiv. each) led to a 12-, and 8-fold
enhancement of fluorescence, respectively. These data translate
to a 4-, and 6-fold selectivity of Hcy over His and Cys,
respectively. Both of these interferents contain an additional N-
or S- donor moiety in the side chain suggesting that these
functionalities are required for triggering the disassembly
reaction of 1. Overall, the selectivity of 1 is remarkable taking
into account that the structurally related tridentate CuII-
iminocoumarin complex (Figure 1A) does not discriminate
between Hcy and Cys. The doubly negatively charged chelate
core structure of 1 (Figure 1B) is composed of a phenolate,
imine and carboxylate subunit and differs in (i) charge, (ii)
composition and (iii) donor group with the single negatively
charged tridentate ONO chelate core (i. e., lactone carbonyl-O,
imine-N, phenolate-O) of the iminocoumarin complex (Fig-
ure 1A). The presence of a hard carboxyl functionality instead of
a carbonyl-oxygen imparts additional stability for the hard CuII-
ion and results in a neutral complex-core structure in 1 in
contrast to the positively charged core of the CuII-iminocoumar-
in complex (Figure 1A vs 1B). This difference makes demetalla-
tion of probe 1 more difficult than of the CuII-iminocoumarin
complex. We suspect that the thermodynamically favored
formation of copper-Hcy complexes or precipitates is the major
driving force for the observed selectivity for Hcy over Cys in the
disassembly process of 1. In fact, Hcy has a higher copper(II)
stability constant (CuII(Hcy); log β=11.92(1))[18] than all protei-
nogenic amino acids including Cys.[19] At present, we were not
able to isolate or identify copper-containing reaction products
and, hence, a redox-triggered disassembly process between

copper(II) and biothiols to copper(I) and disulfides cannot be
excluded.[18,20]

Apart from His and Cys, none of the other 18 proteinogenic
AA (5 equiv) showed any significant interference with Hcy in a
competition assay (Figure S4).

Importantly, with non-fluorescent copper-complex 1, detec-
tion of Hcy in artificial urine is possible (Figure 6B). Upon
additions of increasing concentrations of Hcy (0–500 μm) to 1
(20 μm) dissolved in artificial urine, fluorescence emission at
485 nm (λex =350 nm) turns on with a linear range up to
100 μm and a limit of detection (LOD) as low as 1.77 μm

(Figure 6).
Despite the strong performance of copper complex 1 in the

selective detection of Hcy over 20 proteinogenic AA and its
application for detecting Hcy in urine, probe 1 is susceptible for
disassembly in the presence of sulfur-containing glutathione
(46-fold fluorescence enhancement) and hydrogen sulfide (31-
fold fluorescence enhancement) (Figure S5). Although these
two biomolecules are usually not encountered in urine, these
interferences limit potential applications of 1 for detecting Hcy
in living cells.

Conclusion

In this publication we report on a square planar CuII-salicylidene
glycinato complex 1 for the selective detection of Hcy over 20
proteinogenic AA. In a proof-of-principle study, probe 1 was
successfully applied for the fluorometric detection of Hcy in
artificial urine with a LOD of 1.77 μm. The sulfur-containing
non-proteinogenic Hcy demetallates probe 1 that subsequently
hydrolyses (i. e., disassembly) into its molecular subunits. The
liberation of the 3-chloro-5-sulfosalicylaldehyde signaling unit
leads to a 51-fold enhanced fluorescence emission. Little
interference is observed from most proteinogenic AA and most
remarkably, probe 1 shows a 6-fold discrimination of Hcy over
homologous Cys. In comparison with important earlier work on
less selective CuII-based probes for biothiols, this study demon-
strates strikingly that modification of the chelate core structure
steers selectivity. We speculate that this effect is not limited to
the discrimination of Hcy over homologous Cys with probe 1

Figure 5. Normalized changes in fluorescence intensity of 1 (20 μm,
λex =350 nm) at 485 nm in the absence and presence of Hcy (100 μm) and
20 common amino acids (100 μM) in H2O at pH 7.4 ([HEPES]=100 mm). (1:
Probe 1, Hcy: Homocysteine, H: His/Histidine, C: Cys/Cysteine, G: Gly/Glycine,
Y: Tyr/Tyrosine, A: Ala/Alanine, Other: Other 15 proteinogenic amino
acids).[16]

Figure 6. A. Calibration curve ([1]=20 μm, [Hcy]=0–500 μm; LOD=1.77 μm,
R2 =0.9726) in artificial urine at pH 6.2. B. Left: Artificial urine containing 1
(20 μm) in the absence of Hcy. Right: Detection of Hcy (20 μm) with 1
(20 μm) in artificial urine using a laboratory UV lamp after 30 min incubation
time.
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and suggest future optimizations of chelate core structures in
other metal-based probes for improved sensing performance. In
contrast to proteinogenic AA, discrimination between Hcy and
hydrogen sulfide (31-fold turn-on fluorescence) or glutathione
(46-fold turn-on fluorescence) is not possible with probe 1. This
drawback limits applications of the copper-complex for detect-
ing endogenous Hcy in biological samples and has to be
considered in future probe design.

Supporting Information
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