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Abstract: The vitelline layer (VL) of a sea urchin egg is an intricate meshwork of glycoproteins that
intimately ensheathes the plasma membrane. During fertilization, the VL plays important roles.
Firstly, the receptors for sperm reside on the VL. Secondly, following cortical granule exocytosis,
the VL is elevated and transformed into the fertilization envelope (FE), owing to the assembly and
crosslinking of the extruded materials. As these two crucial stages involve the VL, its alteration
was expected to affect the fertilization process. In the present study, we addressed this question by
mildly treating the eggs with a reducing agent, dithiothreitol (DTT). A brief pretreatment with DTT
resulted in partial disruption of the VL, as judged by electron microscopy and by a novel fluorescent
polyamine probe that selectively labelled the VL. The DTT-pretreated eggs did not elevate the FE
but were mostly monospermic at fertilization. These eggs also manifested certain anomalies at
fertilization: (i) compromised Ca2+ signaling, (ii) blocked translocation of cortical actin filaments,
and (iii) impaired cleavage. Some of these phenotypic changes were reversed by restoring the DTT-
exposed eggs in normal seawater prior to fertilization. Our findings suggest that the FE is not the
decisive factor preventing polyspermy and that the integrity of the VL is nonetheless crucial to the
egg’s fertilization response.

Keywords: vitelline layer; fertilization; sea urchin eggs; plasticity; Ca2+ signaling; actin; DTT; TCEP;
BPA-C8-Cy3; electron microscopy

1. Introduction

For a cell like the sea urchin egg, the presence of a well-developed extracellular
matrix is of particular importance. The extracellular matrix not only protects the cell
by covering its surface but also plays multiple roles in cell−cell communication. For
example, sperm-activating peptides released from the jelly coat of sea urchin eggs serve as
a chemoattractant for the sperm [1–3]. On the other hand, the vitelline layer (VL) of a sea
urchin egg, which intimately covers the plasma membrane, has long been recognized as
the primary subcellular site of sperm attachment during fertilization [4–6]. Indeed, bindin,
a protein isolated from the acrosomal process of sea urchin sperm, was shown to mediate
species-specific attachment to the egg’s VL, and the egg’s receptor for sperm or bindin has
also been isolated from the VL [7–14]. Nevertheless, it is also true that the VL has often
been removed or circumvented in order to facilitate the experimental procedure [15,16]. It
has been generally assumed that such a practice does not affect the fertilization process
and embryonic development, while its effect on the cytological and biochemical changes
characterizing egg activation has not been addressed sufficiently.
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The fertilization process comprises a series of sequential events such as sperm chemo-
taxis and activation, sperm adhesion and fusion with the oolemma, egg penetration, and
finally the fusion of the male and female pronuclei [11,17,18]. One of the hallmarks of
fertilization in virtually all animal species is the increase of Ca2+ inside the eggs [19–23].
In sea urchin, a fertilized egg exhibits two modes of Ca2+ increase: immediate Ca2+ influx
and slow propagation of a Ca2+ wave (see below) [20,24]. In parallel to this, some cortical
actin filaments translocate to the inner cytoplasm, while others elongate the microvilli
in the perivitelline space [25–29]. These progressive changes of the Ca2+ signals and the
reorganization of the cortical actin cytoskeleton are believed to play diverse roles in egg
activation and in early development [30–33].

The mobilization of intracellular Ca2+ and actin filaments at fertilization should be
under tight control because their deregulation is often accompanied by developmental
problems [18,27,28,30,34]. The present study is on the extension of a series of our pre-
vious studies on egg quality and the roles of the cortical actin cytoskeleton in fertiliza-
tion [18,27–33]. This time, we focused on the effect of reducing agents. As aforementioned,
DTT has been utilized to “safely” remove the extracellular matrix, such as the egg VL,
which has facilitated a number of experiments. However, DTT may affect a host of proteins
involved in fertilization and egg activation. Indeed, the sea urchin egg’s receptor itself
for sperm binding at the VL is a multisubunit complex linked by disulfide bonds [35,36]
that are sensitive to DTT. Furthermore, in view of the fact that the extracellular matrix
is an important part of the cell surface that constantly receives chemical and mechanical
signals from the external space [37,38], it is conceivable that even a modest alteration of the
structure may influence the aforementioned biological processes related to fertilization and
egg activation.

In this context, our specific question here is whether and how the reducing condition
involving DTT, which is mild enough not to remove the VL of the eggs, would affect the cell
physiology of sea urchin eggs. It was found that treatment of sea urchin eggs (Lytechinus
pictus) with DTT results in the removal of VL in a time- and pH-dependent manner, without
affecting the fertilization response and embryo development [15]. In that study, 10 mM
DTT (7–10 min) was effective at removing the VL only above a certain pH, such as 9.2.
In our experiment, the NSW containing 10 mM DTT exhibited pH 7.57, which is within
the range that would not effect the removal of the VL within 10 min. After examining
how the incubation condition (NSW with 10 mM DTT, 10 min) alters the VL and other
ultrastructures of Paracentrotus lividus eggs through the use of electron microscopy, we
assessed the effect of the same reducing conditions on the cytoskeletal properties of the
eggs, as well as on its physiological responses to fertilizing sperm. In addition, we tested
whether the physiological effect of DTT could be reversed by restoring DTT-exposed eggs
in the normal seawater prior to fertilization.

2. Materials and Methods
2.1. Gametes Collection, Fertilization Procedure, and Embryos Observation

Sea urchins (Paracentrotus lividus) were collected from October to May in the Gulf
of Naples and were maintained at 16 ◦C in circulating seawater. Spawning was induced
by intracoelomic injection of 0.5 M KCl, and the resulting eggs were collected in natural
seawater (NSW) filtered with a Millipore membrane of 0.2 µm pore size (Nalgene vacuum
filtration system, Thermo Fisher Scientific, Rochester, NY, USA). For fertilization, dry sperm
collected by pipetting on the male animal’s body were kept at 4 ◦C and diluted in NSW
only a few minutes before fertilization. The final sperm concentration for egg insemination
was 1.84 × 106 cells/mL. The subsequent embryonic development was observed with
a Leica DMI6000 B inverted microscope. By default, the number of zygotes examined
for each experiment was 100, and three independent experiments were conducted with
different batches.



Cells 2021, 10, 3573 3 of 21

2.2. Visualization of the Egg-Incorporated Sperm

P. lividus sperm were prepared afresh and stained with 5 µM Hoechst-33342 (Sigma-
Aldrich, St. Louis, MO, USA) for 30 s prior to fertilization. Diluted sperm (10 µL) were
added to the media containing the eggs (1 mL). The number of egg-integrated sperm
was counted 5 min after insemination by epifluorescence microscopy with a cooled CCD
(charge-coupled device) camera (MicroMax, Princeton Instruments, Inc., Trenton, NJ,
USA) mounted on a Zeiss Axiovert 200 inverted microscope (Carl Zeiss AG, Oberkochen,
Germany) with a Plan-Neofluar 40×/0.75 objective and a UV laser. The Hoechst-33342
solution used in this condition was able to visualize both male and female pronuclei in the
zygote when viewed in a Leica TCS SP8X confocal laser scanning microscope equipped
with a Diode 405 laser and hybrid detectors (Leica Microsystem, Wetzlar, Germany). The
number of fertilized eggs being examined (n) and the number of the independently repeated
experiments (N) for each condition are specified in Tables 1 and 2.

Table 1. Frequency of polyspermy (%) in P. lividus pretreated with various conditions.

Frequency (%) NSW 10mM DTT DTT/WASH 0.5mM TCEP TCEP/WASH

Mean 4 11 60 *,# 0 0
SD 4.18 21.9 35.9 0 0
N 5 5 5 1 1

Note: Each trial in a given condition comprises 20 eggs. * p < 0.01 in Tukey test in comparison with NSW. # p < 0.05, with DTT.

Table 2. Number of egg-incorporated sperm inside the P. lividus eggs fertilized in various treatments.

Sperm Per Egg NSW 10mM DTT DTT/WASH 0.5mM TCEP TCEP/WASH

Mean 1.04 1.13 2.38 * 1 1
SD 0.2 0.42 1.62 0 0
n 100 100 100 20 20

Note: * p < 0.00001 in U-test in comparison with the control (fertilization in natural seawater, NSW).

2.3. Scanning Electron Microscopy (SEM)

P. lividus eggs from three animals were fixed directly in NSW containing 0.5% glu-
taraldehyde (pH 8.1) for 1 h at room temperature, and post-fixed with 1% osmium tetroxide
for an additional hour. The specimens obtained before and after fertilization (at different
time points) were dehydrated in increasing concentrations of ethanol and were subjected
to critical point drying (LEICA EM CP300). The samples were then coated with a thin
layer of gold using a LEICA ACE200 sputter coater, and at least five different eggs for
each condition were observed with a JEOL 6700F scanning electron microscope (Akishima,
Tokyo, Japan).

2.4. Transmission Electron Microscopy (TEM)

Eggs from three animals were fixed before and at different time points after fertiliza-
tion, directly in NSW containing 0.5% glutaraldehyde (pH 8.1) for 1 h at room temperature,
and were post-fixed with 1% osmium tetroxide and 0.8% K3Fe(CN)6 for another hour at
4 ◦C. After washing in NSW for 10 min twice, the samples were rinsed in distilled water
for 10 min twice and subsequently treated with 0.15% tannic acid for 1 min at room temper-
ature. After extensive rinsing in distilled water (three times, 10 min each), the specimens
were dehydrated in increasing concentrations of ethanol followed by propylene oxide for
embedding in Epon 812. Ultrathin sections (70 nm) were stained with UAR-EMS (Uranyl
Acetate Replacement Stain, Electron Microscope Sciences, Hatfield, PA, USA) for 30 min,
and with 0.3% lead citrate for 30 s. Then, at least five different eggs for each condition were
observed with a transmission electron microscope (Zeiss LEO 912 AB).
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2.5. Chemicals and Reagents

DL-Dithiothreitol (DTT) (Sigma-Aldrich, St. Louis, MO, USA) and Tris-(2-carboxyethyl)phosphine
hydrochloride (TCEP) (ThermoFisher, Waltham, MA, USA) were dissolved in distilled water (DW)
and used for bath incubation at the concentrations specified in the text. Hoechst-33342 and all other
unspecified materials were purchased from Sigma Aldrich. BPA-C8-Cy3 was synthesized
by following the procedure specified in the Supplementary Material File S1.

2.6. Microinjection, Ca2+ Imaging, and Confocal Microscopy

Intact eggs were microinjected using an air pressure transjector (Eppendorf FemtoJet,
Hamburg, Germany), as previously described [39]. To monitor changes in the intracellular
Ca2+ levels at fertilization, 500 µM Calcium Green 488 conjugated with 10 kDa dextran
was mixed with 35 µM Rhodamine Red (Molecular Probes, Eugene, OR, USA) in the
injection buffer (10 mM Hepes, 0.1 M potassium aspartate, pH 7.0) and microinjected into
the eggs before insemination. The fluorescence signals of the cytosolic Ca2+ increases were
captured with a cooled CCD camera (Micro-Max, Princeton Instruments) mounted on
a Zeiss Axiovert 200 microscope with a Plan-Neofluar 40×/0.75 objective at about 3 s
intervals, and the data were analyzed with MetaMorph (Universal Imaging Corporation,
Molecular Devices, LLC, San Jose, CA, USA). Following the formula Frel = [F − F0]/F0,
where F represents the average fluorescence level of the entire egg and F0 the baseline
fluorescence, the overall Ca2+ signals were quantified for each moment and Frel was
expressed as RFU (relative fluorescence unit) for plotting the Ca2+ trajectories. Applying
the formula Finst = [Ft − F(t−1)]/F(t−1), the instantaneous increments of the Ca2+ level was
analyzed to locate the specific area of momentary Ca2+ increase. The values of Ca2+ signals
were obtained from four independent experiments (N), and the number of the eggs (n)
being analyzed for each condition is specified in the Results.

To visualize F-actin in living eggs, 10 µM (pipette concentration in methanol) of
AlexaFluor568-phalloidin (Molecular Probes) was microinjected into the eggs in three
independent experiments utilizing as many female animals. To visualize the plasma
membrane and the extracellular layers, eggs from two different females were incubated
with 5 µM FM 1-43 (ThermoFisher Scientific) or 50 µM of a branched fluorescent polyamine
(BPA-C8-Cy3) for 10 min in two independent experiments. Both probes were dissolved in
distilled water. The eggs treated with the fluorescent probes were observed with a Leica
TCS SP8X confocal laser scanning microscope equipped with a white light laser and hybrid
detectors (Leica Microsystem, Wetzlar, Germany). The number of eggs examined for each
condition is specified in the Results.

2.7. Statistical Analysis

The numerical MetaMorph data were compiled and analyzed with Excel (Microsoft
Office 2010) and reported as mean ± standard deviation (SD in all cases in this manuscript.
Oneway ANOVA and U-test were performed through Prism 8.0 (GraphPad Software), and
p < 0.05 was considered to be statistically significant. For ANOVA results showing p < 0.05,
statistical significance of the difference between the two groups was assessed by Tukey’s
post hoc tests. The two groups of data showing significant differences from each other
were marked with brackets and symbols indicating the p values. The pairwise comparison
that produced insignificant p values (>0.05) were not mentioned for the sake of simplicity
in the description.

2.8. Ethics Statement

Sea urchins P. lividus used for the present study were collected according to the Italian
legislation (DPR 1639/68, 19 September 1980 and confirmed on 1 October 2000). All
the experimental procedures were carried out in accordance with the guidelines of the
European Union (Directive 609/86).
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3. Results
3.1. DTT Induces Ultrastructural Changes on the Surface of Unfertilized Sea Urchin Eggs

As shown in Figure 1, the pretreatment of unfertilized P. lividus eggs had subtle but
evident effects on the egg surface. Although the topography of the egg surface, which is
characterized by the presence of a myriad of microvilli, was not drastically changed by
DTT treatment, the individual microvilli became more irregular in shape and occasionally
thicker (Figure 1B). In addition, the SEM and TEM images revealed the formation of
numerous blebs as big as 0.5 µm on the surface of the eggs treated with DTT (Figure 1B,D
arrows), which is in line with earlier findings with S. purpuratus eggs treated in the same
condition [40]. These blebs were previously interpreted as expelled cortical granules [40].
More importantly, the enlarged view of the TEM images revealed that the continuous
contour of the VL, which was evident in the control eggs, was intermittently interrupted
or fuzzy in the eggs treated with 10 mM DTT for 10 min (Figure 1E,F). Thus, it appears
that the given condition of the egg preincubation with DTT did not remove the VL but
modified it, and eventually induced additional changes in the ultrastructure of the cell
surface, such as the microvilli.
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Figure 1. Ultrastructure of unfertilized sea urchin eggs at the surface after brief treatment with
dithiothreitol. P. lividus eggs were exposed to 10 mM dithiothreitol (DTT) in seawater for 10 min and
were subjected to analyses by electron microscopy, following the procedures described in Materials
and Methods. (A,B) Images obtained by SEM. (C,D) Images obtained by TEM. Note that, after the
DTT treatment, the shape of the individual microvilli (MV) became irregular and slightly thicker,
and that numerous blebs were formed on the egg surface (yellow and red arrows in B,D,F). (E,F) For
closer examination, the areas of the TEM images marked by brackets in panels (C,D) are enlarged.
Scale bars, 1 µm. CG—cortical granules; MV—microvilli; M—mitochondria; Y—yolk granules;
VL—vitelline layer.
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3.2. Effect of DTT Pretreatment of the Eggs on the Fertilization Process

Given that the DTT pretreatment partially disrupts the VL and modifies the microvilli,
we examined how the same treatment would influence the fertilization process. To this
end, P. lividus eggs preincubated in NSW for 10 min in the presence or absence (control) of
10 mM DTT were fertilized and fixed at certain intervals and were subjected to SEM and
TEM analyses (Figure 2). By 25 s after insemination, it was already evident that the VL of
the control egg had started to be elevated around the area where the fertilizing sperm was
fused with the oolemma (Figure 2A). This change, induced by partially elevated nascent
FE, created a dimple-like surface ([41,42], see Supplemental Video S1).

The detachment of the VL from the plasma membrane and the subsequent elevation of
the VL to form the FE is a wave-like process resulting from the coordinated exocytosis of the
cortical granules from the underlying egg cortex. By 1 min, the entire surface of the control
egg was covered with FE (Figure 2B). On the other hand, fertilization in the eggs pretreated
with 10 mM DTT appeared to proceed with some notable anomaly. By 25 s, the sperm
was attached to the microvilli of the egg, but the initial elevation of the FE did not take
place (Figure 2D). Although a more prominent fertilization cone was formed in the eggs
fertilized in the presence of DTT, the eggs were covered with the thin and patchy looking
vitelline layer (VL) (Figure 2E, also see the enlarged image in Figure S1). In agreement with
this finding, the TEM image of the control egg obtained 1 min after fertilization exhibited a
thick layer of FE (Figure 2C, arrow), which was absent in the eggs fertilized 10 min after
the preincubation in 10 mM DTT (Figure 2F, see Supplemental Video S2). Judging from the
discontinuous appearance of the VL (Figure 1F), the failure of VL to elevate and form FE in
the DTT-pretreated eggs is thought to be related to loss of the integrity of the VL due to the
breakage of the disulfide bonds in and among the molecules in the VL. In the latter case,
the extruded contents of the cortical granules failed to accumulate in the perivitelline space
as they were eventually lost to the media through the loose holes on the VL [7].
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Figure 2. Ultrastructure of the egg surface immediately after fertilization. P. lividus eggs were fertilized and fixed for SEM
(A,B,D,E) and TEM (C,F) analyses. (A–C) Control eggs fertilized in NSW. (D–F) Eggs preincubated (10 min) and fertilized
in seawater containing 10 mM DTT. Images in (A,D) were captured by fixing the eggs 25 s after insemination. The images in
all the other panels show the ultrastructure of the egg surface 1 min after insemination. Note that, in panel (E), most parts of
a fertilizing sperm were not internalized yet, but were surrounded by the egg protrusion through the ruptured fertilization
envelope (red arrow). Scale bars: panels (B,E), 10 µm; all other panels, 1 µm. FE, fertilization envelope.
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3.3. Effect of DTT Pretreatment of the Eggs on the Later Stage of Fertilization

A fertilized sea urchin egg undergoes drastic reorganization at the cortex as the
contents of the cortical granules are being extruded to the perivitelline space by exocytosis.
Microvilli and the subplasmalemmal actin network are also rapidly reorganized at this
time [26,43,44]. To test whether and how DTT affects the pattern of cortical rearrangement
after fertilization, we preincubated P. lividus eggs in the presence or absence of 10 mM DTT
prior to fertilization, and the resulting zygotes were fixed for SEM and TEM analyses 5 min
after insemination (Figure 3). The whole-cell view of the SEM image showed that the entire
surface of the egg fertilized in NSW was covered with a thick layer of FE (Figure 3A,C).
By contrast, the eggs preincubated and fertilized in 10 mM DTT seawater did not form
the normal FE (Figure 3B). Instead, numerous holes were observed on the surface, and
the VL was barely elevated, so that the underlying microvilli were clearly visible within
the holes (Figure 3D, arrows) and through the thin veiling VL. By 5 min, exocytosis of
cortical granules and their extruded contents were heavily deposited to form the hyaline
layer underneath the FE (Figure 3E). The exocytosis of the cortical granules was thought
to be exhaustive by this time, as judged by their absence in the subplasmalemmal region.
Indeed, the depth of the newly formed perivitelline space seen in the light microscopy was
so immense that it often collapsed during the procedure of fixation, which was applied
5 min after insemination (Figure 3E). Similarly, most cortical granules also underwent
exocytosis in the eggs pretreated and fertilized in the presence of 10 mM DTT, but the VL
did not swell. There was only a faint remnant of elevated VL (Figure 3F, arrow). Notably,
however, these eggs exhibited extensive elongation of the microvilli that stretched out to
the VL (Figure 3F).

3.4. DTT Pretreatment of the Eggs Alters the Ca2+ Response at Fertilization

The physiological consequence of the DTT pretreatment was assessed by examining
the eggs’ Ca2+ response at fertilization. In the normal condition, fertilized sea urchin eggs
displayed two modes of intracellular Ca2+ response (Figure 4A,B): (i) the synchronized
Ca2+ increase near the plasma membrane of the entire egg surface (cortical flash (CF), and
(ii) the Ca2+ wave that locally originates at the sperm-interaction site and propagates to
the antipode. The rapid CF taking place immediately after the fertilizing sperm makes
meaningful contact with the egg due to the Ca2+ influx into the egg through the voltage-
gated calcium channels that can be modulated by the surrounding subcellular structures
such as the microvilli [45–47]. On the other hand, the Ca2+ wave depends on the synthesis
of Ca2+ mobilizing second messengers [20,22,24] and on the structural modification of
cortical granules and vesicles [47,48].

The three groups of eggs (control, DTT, and WASH) responded to insemination with
Ca2+ signals without showing any significant difference in latency: around 40 s after
insemination in the given conditions. This observation suggests that the sperm receptivity
in this regard was not changed much by the treatment with DTT. However, as expected
from the modification of the egg surface, the amplitude of CF in the eggs preincubated
and fertilized in 10 mM DTT seawater was significantly lower than that of the control
eggs (Figure 4C,D). Similarly, the average peak amplitude of the Ca2+ wave in the eggs
pretreated with DTT was significantly lower (0.55 ± 0.15 RFU, n = 24) in comparison with
the control eggs (0.74 ± 0.15 RFU, n = 23, p < 0.01). In addition, the Ca2+ waves propagated
more slowly in the eggs pretreated with 10 mM DTT, as judged by the time spans from the
first appearance of the localized Ca2+ signal at the sperm interaction site to the moment of
wave’s arrival at the antipode (Figure 4E, traverse time). While the average traverse time
in the control eggs was 22.3 ± 3.0 s (n = 23), the corresponding value in the eggs pretreated
with 10 mM DTT was 26.0 ± 2.8 s (n = 24, p < 0.01). Curiously, when the DTT-pretreated
eggs were fertilized after being rinsed and restored in normal seawater, some of the Ca2+

signaling patterns altered by DTT were significantly reversed to assimilate those in the
control eggs. Such a trend was found in the CF (Figure 4C), whose average amplitude in
the eggs restored in NSW (WASH, 0.06 ± 0.05 RFU, n = 15) was comparable to the control
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(0.07 ± 0.03 RFU, n = 23), but significantly higher than the values in the eggs pretreated
and fertilized in 10 mM DTT (0.23 ± 0.02 RFU, n = 19, p < 0.01). A similar reversal of the
DTT-induced alteration in Ca2+ signaling pattern was also found in terms of the traverse
time, which was shortened again (Figure 4E, WASH, 21.9 ± 3.7 s, n = 21, p < 0.01), but not
in respect to the peak amplitude of the Ca2+ wave (Figure 4D, WASH, 0.53 ± 0.12 RFU,
n = 21).
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Figure 3. Ultrastructure of the egg surface at a later stage of fertilization. P. lividus eggs were
fertilized and fixed 5 min later for SEM and TEM analyses. (A,C,E) Control eggs fertilized in NSW.
(B,D,F) Eggs preincubated (10 min) and fertilized in seawater containing 10 mM DTT. Panels (A−D)
show SEM images, while panels (E,F) represent results of TEM. Red arrows in panels (D,F) indicate
the ruptured fertilization envelope. A blue arrowhead in panel F indicates the over-elongated
microvilli. Scale bars: panels (A,B), 10 µm; all other panels, 1 µm. FE, fertilization envelope (arrows);
HL, hyaline layer.
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Figure 4. DTT pretreatment of the eggs alters the Ca2+ response at fertilization. P. lividus eggs were
microinjected with calcium dye and preincubated in seawater with 10 mM DTT (10 min) prior to
fertilization. As a control (CTL), eggs from the same batch were prepared in parallel and fertilized
in NSW. For comparison, some eggs preincubated in the presence of 10 mM DTT were restored in
normal seawater and fertilized (WASH). (A) Instantaneous increment of Ca2+ signals inside a control
egg visualized in pseudocolour. The time point immediately before the first detectable Ca2+ signal
was set as t = 0. The arrow indicates cortical flash (CF), and the arrowhead pinpoints the sperm
interaction site on the egg where the Ca2+ wave is initiated. (B) Changes of the Ca2+ signals: green
curves (CTL), brown curves (eggs fertilized in 10 mM DTT), and curves in pale blue (eggs fertilized
after restoration in NSW, 10 min). The vertical arrow indicates the CF. Out of four independent
experiments conducted, the result of one representative experiment was plotted for Ca2+ trajectories.
Histograms in panels C−F represent comparisons of the egg groups with respect to the CF amplitude
(C), the peak amplitude of the Ca2+ wave (D), the duration of the Ca2+ wave traversing the egg from
the sperm interaction site to the antipode (E), and the time interval between the CF and the initiation
of the Ca2+ wave (F). * Tukey’s post hoc test, p < 0.01. RFU, relative fluorescence unit.
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Another noteworthy observation is about the time interval between the CF and the
first detectable Ca2+ signal at the site of sperm interaction, which is referred to as the
“latent period” in this work (Figure 4F). This is the period when the fertilized egg already
transmitting the intracellular signals such as membrane depolarization and Ca2+ influx
prepares itself for the generation of the Ca2+ wave [24,31,47,49]. Despite the notable
structural changes on the egg surface, the latent period of the Ca2+ response in the eggs
preincubated and fertilized in seawater containing 10 mM DTT (6.1 ± 1.4 s, n = 19) was
not much different from that of the control eggs (6.7 ± 1.5 s, n = 23). When the DTT-
preincubated eggs were rinsed and restored in NSW before fertilization, however, the
latent period for the Ca2+ response in these eggs was nearly doubled (11.3 ± 7.6 s, n = 15,
p < 0.01) in comparison with both CTL and DTT. These results suggest that the alteration
of the Ca2+-release systems induced by DTT pretreatment is reversed to some extent by the
restoration of the eggs in NSW, but the recovery path may not be the same as the path of
modification induced by DTT. In other words, the eggs in the group WASH are in another
physical state and show a distinct response to the fertilizing sperm.

3.5. Effect of DTT Pretreatment of the Eggs on Monospermic Fertilization

As the DTT pretreatment significantly altered the topography of the egg surface, it was
conceivable that such structural changes may induce polyspermy at fertilization. Indeed,
the porous and patchy appearance of the egg’s VL at fertilization and its failure to form a
strong FE all raised the possibility of supernumerary sperm entry. However, the results
pooled from five different batches of P. lividus suggested that this is not the case. When
the eggs were preincubated and fertilized in seawater containing 10 mM DTT, most eggs
were still monospermic. The frequency of polyspermic fertilization was not significantly
increased in comparison with the control eggs fertilized in NSW (Table 1). Furthermore,
the number of egg-incorporated sperm had only a marginal increase in comparison with
the control eggs, which was not statistically significant (Table 2). However, when the
DTT-pretreated eggs were restored and then fertilized, the frequency of polyspermy went
up to 60% (Table 1), and the number of egg-incorporated sperm at fertilization was greatly
increased (2.38 sperm per egg, Table 2). This result was not the effect of prolonged incuba-
tion or agitation of the eggs, because in another control experiment, the eggs continuously
exposed to 10 mM DTT, following the same protocol (i.e., 10 min incubation, media change,
and another incubation for 10 min) exhibited mostly monospermic fertilization. The
polyspermy rate in these eggs was merely 5%, which was virtually the same as that of the
eggs fertilized in NSW.

The observation that polyspermy is induced in the DTT-pretreated eggs after the
restoration in NSW may also be related to the fact that DTT can traverse the cell membrane
and spread inside the cell. Indeed, a similar experiment with another reducing agent, TCEP,
which does not penetrate the cell membrane [50–52], did not induce polyspermy in its
presence. The eggs restored and fertilized in normal seawater after being preincubated
with TCEP were also all monospermic at fertilization (Table 2). Hence, the cause of the
polyspermy in these eggs might be attributable to some internal factors. One explana-
tion could be the possibility that an abrupt shift of the pH of the external media (from
pH 7.57 of DTT seawater to pH 8.1 of NSW) and the accompanying changes in microvillar
morphology (elongation) due to the cytoplasmic alkalinization might have contributed to
polyspermy [53], in a sense that elongated microvilli could increase the capacity of the egg
to fuse with sperm [54].

3.6. F-Actin Mobilization during Egg Activation Is Inhibited by DTT

In a series of previous studies on starfish and sea urchin eggs, we demonstrated
that polyspermy is closely linked to an anomaly in the actin cytoskeleton of the egg
cortex. Indeed, when the actin cytoskeleton was artificially altered through the use of
actin-targeting toxins and chemicals, an actin-binding protein cofilin, anti-depactin anti-
body, nicotine, or even by “ageing”, the eggs showed a strong tendency of polyspermic
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fertilization [27,29,39,55–58]. At variance with these experimental conditions that caused
cytoskeletal alterations, the pretreatment of P. lividus eggs with DTT or TCEP in our ex-
perimental condition did not induce discernable changes in the structure of the cortical
actin cytoskeleton (data not shown). This may be one of the reasons why the DTT- and
TCEP-pretreated eggs were not prominently polyspermic (Tables 1 and 2). Nonetheless,
it is possible that the concerted rearrangement of the actin cytoskeleton taking place in
the fertilized eggs during egg activation [25,28,29] may not be influenced by the DTT
pretreatment. In other words, the reducing agent may not have a profound effect on the
actin filaments inside a quiescent egg, but it may still affect the mobilization kinetics in
post-fertilization eggs. We tested this idea by microinjecting the eggs with a fluorescent
F-actin probe (AlexaFluor 568-Phalloidin) before the DTT and TCEP pretreatment and
fertilization (Figure 5).

In the control eggs fertilized in NSW, the subplasmalemmal F-actin started to take an
orderly form and left the area to move toward the inner cytoplasm (n = 15). This was more
evident when the locations of the thick ring-shaped F-actin clusters were compared with the
border of the egg surface in the egg images 30 min after fertilization. In the control egg, by
then, there was at least 10–15 µm distance between the F-actin clusters and the boundary of
the egg surface (marked by dotted curve, Figure 5). Hence, the actin filaments underneath
the plasma membrane were evacuated from the subplasmalemmal zone. However, this
characteristically concerted centripetal migration of the cortical actin filaments was mostly
blocked in the eggs preincubated and fertilized in 10 mM DTT (n = 12), as the ring-shaped
F-actin clusters had a strong tendency to remain in the vicinity of the plasma membrane
from 5 min and on. At 30 min, they were still very close to the plasma membrane (Figure 5,
see the dotted curve for the DTT-pretreated eggs). This inhibitory effect of DTT on the
inward movement of the cortical actin filaments may be attributed to its reducing power
inside the egg’s cytoplasm, but not on the external surface of the egg. A similar reducing
agent unable to permeate the cell membrane, TCEP, did not have such an effect. In these
eggs (n = 8), the ring-shaped F-actin clusters were relocated toward the inner cytoplasm
just like in the control eggs (Figure 5, dotted curve). The lack of the inhibitory effect on
F-actin mobilization displayed by TCEP is not a matter of the low efficacy of the agent.
When added to the media, 0.5 mM TCEP blocked the formation of the FE as effectively as
the 10 mM DTT did (Figure 5, see the egg images in the light transmission view). These
results suggest that the orderly migration of the egg’s cortical actin filaments following
fertilization is sensitive to the redox status of the cytoplasm.

3.7. Effect of DTT Pretreatment on the Late Events of Fertilization

In the eggs preincubated and fertilized in 10 mM DTT seawater, the anomaly of the
actin cytoskeleton was also observed in the fertilization cone, the F-actin-based cytoskeletal
apparatus specializing in the capture and engulfing of the fertilizing sperm. On the confocal
plane where the fertilization cone was located, the control eggs fertilized in NSW (n = 15)
after microinjection of AlexaFlour 568-Phalloidin displayed an array of thick actin fibers
oriented perpendicular to the plasma membrane (Figure 6A). In the eggs preincubated and
fertilized in the presence of 10 mM DTT (n = 12), however, the morphological symmetry
of the fertilization cone was lost, and the aggregation of the thick actin fibers was visibly
exaggerated amid other thick actin fibers in the inner cytoplasm, which were similar to the
stress fibers (Figure 6B, arrowhead). On the other hand, in the eggs preincubated with DTT
but washed (n = 12) and restored in NSW prior to fertilization, there were often multiple
fertilization cones (Figure 6C).
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fertilization. For comparison, some of the control eggs were exposed to another type of reducing 
agent that does not penetrate cell membrane, tris(2-carboxyethyl)phosphine (TCEP). The changes 
of the actin cytoskeleton following fertilization were monitored by confocal microscopy at intervals. 
The moment of insemination was set as t = 0. The white dotted curves drawn on the images at 30 
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Figure 5. F-actin mobilization during egg activation is inhibited by DTT, the membrane-permeant
reducing agent. P. lividus eggs were microinjected with F-actin dye, AlexaFluor 568-phalloidin, and
preincubated in seawater in the presence or absence (control) of 10 mM DTT for 10 min prior to
fertilization. For comparison, some of the control eggs were exposed to another type of reducing
agent that does not penetrate cell membrane, tris(2-carboxyethyl)phosphine (TCEP). The changes of
the actin cytoskeleton following fertilization were monitored by confocal microscopy at intervals.
The moment of insemination was set as t = 0. The white dotted curves drawn on the images at 30 min
delineate the borders of the egg surface. To visualize the fertilization envelope, the same AlexaFluor
568-phalloidin eggs were shown in the bright field view 40 min after insemination. These images are
representative of at least two independent experiments. Scale bar, 10 µm.
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Figure 6. Effect of DTT pretreatment on the late events of fertilization. (A–C) P. lividus eggs were
microinjected with F-actin dye, AlexaFluor 568-phalloidin, and preincubated in seawater in the
presence or absence (control) of 10 mM DTT for 10 min prior to fertilization. After 10 min, the actin
cytoskeleton of the fertilized eggs was visualized by confocal microscopy. The fertilization cones are
marked by arrowheads. (D–I) Eggs pretreated in the same conditions as above (but without F-actin
dyes) were fertilized and incubated in the presence of FM 1-43 (D–F) or BPA-C8-Cy3 (G–I). White
arrows indicate the fertilization envelope and its remnants. (J–L) Hoechst 33,342 introduced with
sperm visualized the male and female pronuclei of the zygotes in the given conditions, as indicated
by pale blue and pink arrows, respectively. The black arrow indicates the fertilization envelope.
These images are representative of at least two independent experiments. Scale bar, 10 µm.

Although the vitelline layer was partially disrupted and certain aspects of the dynamic
property of the egg’s cortical actin cytoskeleton were altered by DTT (e.g., centripetal
migration of actin filaments), the endocytotic activity at the plasma membrane that retrieves
the membranes following cortical granule exocytosis [59,60] appeared to be normal. When
the eggs were stained in the media by adding the fluorescent membrane probe FM 1–43
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that sticks to the outer leaflet of the plasma membrane [61,62], numerous internalized
vesicles appeared in the inner cytoplasm of the eggs 10 min after fertilization (Figure 6D,
n = 7). Evidently, the eggs preincubated and fertilized in the presence of 10 mM DTT (n = 7)
also displayed virtually the same results (Figure 6E), and DTT washing and restoration in
NSW (n = 7) did not make much difference to the membrane retrieval after fertilization.
Nonetheless, it is noteworthy that, in these DTT-preincubated eggs restored in NSW before
fertilization, there was some modest formation of FE (Figure 6F, arrow). This result was also
corroborated by another fluorescent probe that is derivative of synthetic polyamine [63],
which is thought to have a tendency to bind to negatively charged macromolecular surfaces
such as the plasma membrane and actin filament meshwork [64,65]. Applied in the
media around echinoderm eggs, this fluorescent probe appears to stain predominantly
the jelly coat of starfish oocytes (Santella et al. unpublished data). For P. lividus eggs at
fertilization, this novel probe BPA-C8-Cy3 exhibited intense fluorescent labelling of the
VL, FE, and subplasmalemmal regions, as well as the membraneous structures within the
cytoplasm and the perivitelline space (Figure 6G, n = 10). In the DTT-preincubated eggs
that were restored in NSW before fertilization (n = 10), modest but evident formation of
the FE was detected, as with FM 1-43 (Figure 6I, arrow). Hence, these results suggest that
certain aspects of cellular changes induced by DTT can be reversed to some extent, but
not completely.

Importantly, we noted that BPA-C8-Cy3 produced evidently thinner and occasionally
interrupted labelling at the junction of the plasma membrane and the VL in the eggs
pretreated and fertilized in the seawater containing 10 mM DTT (n = 10, compare Figure 6H
with Figure 6G,I). Again, after washing and restoration in NSW, the fluorescent labelling at
the VL and plasma membrane came back to the appearance of the control eggs (Figure 6I).
By contrast, such reversed variations in the level of fluorescence were not observed in
the eggs labelled with the membrane-specific probe FM 1-43 (Figure 6D–F). Subtle as it
might look, this was the striking difference between FM 1-43 and BPA-C8-Cy3. These
observations in comparison with FM 1-43 are compatible with the idea that BPA-C8-Cy3
selectively visualizes the VL, which was occasionally interrupted in the eggs pretreated
with DTT.

We then tested whether or not DTT pretreatment of the eggs affected the migration of
male and female pronuclei. Following the experimental procedure described in Materials
and Methods, the male and female pronuclei were fluorescently labelled in the zygote
(Figure 6J). The densely labelled male pronucleus appeared more compact than the female
pronucleus, and the distance between the two pronuclei was not much different in the
zygotes obtained from DTT-preincubated eggs either with or without restoration in NSW
(Figure 6K,L). Thus, taken together with the results in Figure 5, these observations suggest
that exposure of the eggs to DTT in the condition that blocks the centripetal movement of
the subplammalemmal actin filaments actually has little effect on pronuclei movement, the
process that has been reported to be mainly dependent on the transport system, largely
based on microtubules [66,67].

3.8. Effect of DTT Pretreatment of the Eggs on Early Embryonic Development

The eggs restored in NSW after being preincubated in DTT exhibited a certain degree
of plasticity in terms of Ca2+ signaling, F-actin mobilization, and FE formation during
fertilization, albeit a high frequency of polyspermy. To explore this issue a step further, we
examined the early phase development of those embryos derived from the monospermic
zygotes obtained from each experimental condition. By 2 h and 30 min, the control eggs
fertilized in NSW were well into the 8-cell stage. The cleavage also appeared quite syn-
chronous (Figure 7A). In contrast, when the eggs were preincubated and fertilized in the
presence of 10 mM DTT, the majority of embryos were at the two-cell stage, suggesting
that the cleavages of the zygote had been significantly delayed. Indeed, in some cases,
it appeared that the individual daughter cells had difficulties completing cytokinesis, as
judged by the partially formed cleavage furrow (Figure 7C, arrow). By 6 h post-fertilization,
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the control embryos were at the early blastula stage (Figure 7B), but the embryos deriving
from the eggs fertilized in the presence of DTT were still at the four-cell stage with some
cleavage anomaly (Figure 7D). This problem of cytokinesis seemed to be overcome when
the DTT-preincubated eggs were restored and fertilized in NSW. However, 2.5 h after in-
semination, the embryos were mainly at the four-cell stage (Figure 7E), a clear sign of delay
in comparison with the control embryos. Six hours after insemination, the embryos derived
from the eggs restored and fertilized in NSW showed varying blastomere sizes, abnormal
cleavage, and their leaking from the ruptured evanescent FE (Figure 7F, red arrow).
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Figure 7. DTT pretreatment of the eggs induces anomalies during early development. (A–D) P. lividus eggs were incubated
in the presence or absence (control) of 10 mM DTT for 10 min and fertilized. (E–F) Some of the DTT-pretreated eggs
were rinsed and restored in NSW (10 min) and fertilized (WASH). The cleavage and development of the embryos in each
condition were monitored by light microscopy. Arrowheads indicate the FE. Note that the FE covering the control embryo
is still intact at 6 h (B), where it is totally absent in the embryos fertilized in the presence of DTT. The FE is evident again in
the embryos derived from the eggs restored in NSW prior to fertilization (F). Red arrows indicate signs of leakage in the
embryo from the ruptured FE. Scale bar, 10 µm. FE, fertilization envelope. The number of fertilized eggs examined for each
set of experiments was 100. Representative results from one of the three independent experiments are shown.
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4. Discussion

As a part of the extracellular matrix, the VL is thought to play important roles during
fertilization and early embryonic development. In this study, we induced partial disruption
of the VL in P. lividus eggs through the use of reducing agents that cleave intra- and inter-
molecular disulfide bonds. The experimental condition (10 mM DTT, 10 min) of the egg
pretreatment was mild enough not to cause total removal of the VL, as judged by the
images in the TEM and SEM analyses, but introduced subtle ultrastructural changes on the
egg surface. The VL was evidently interrupted (Figure 1) and failed to transform into FE at
fertilization (Figure 2). This is presumably because the VL was not physically sealed up
due to the patchy structure induced by DTT, and thereby the osmotic pressure failed to
build up in the perivitelline space, while proteins and other materials extruded from the
cortical granules were eventually lost to the external medium [7,41,68].

The lack of VL integrity is likely to have altered the mechanical property of the
egg surface because the plasma membrane is intimately ensheathed by the VL. Further-
more, the structure of the microvilli underlying the VL and the plasma membrane was
appreciably modified in the eggs pretreated with 10 mM DTT. Another indication of
cytoskeletal changes in the outer cytoplasmic region of the eggs fertilized in seawater
containing DTT was the lack of cytoplasmic contractility [69], which prevented the for-
mation of the dimple-like structure where the sperm fused with the oolemma (Figure 2A,
Supplemental Videos S1 and S2) [42,70]. Moreover, the appearance of an extraordinarily
enhanced fertilization cone in these eggs (Figure S1), together with the delayed sperm
incorporation (Figure 2E), underline the alteration of the F-actin dynamics necessary to
engulf the sperm [71].

The plasticity of P. lividus eggs was also manifested when the DTT-pretreated eggs
were restored in NSW. While the eggs fertilized in the presence of DTT exhibited some
anomalies (e.g., repressed Ca2+ response and failed FE elevation), the eggs pretreated
with DTT but restored in NSW experienced less alterations in sperm-induced Ca2+ signals
in terms of CF and traverse time. Likewise, the reversal of the altered Ca2+ response at
fertilization was also observed in P. lividus eggs that were restored in NSW after being
exposed to low salinity and other conditions [72,73], as well as in Arbacia lixula eggs that
were incubated in hypertonic salinity and then inseminated in NSW [74]. In the eggs
restored in NSW after DTT pretreatment, however, the physicochemical and structural
changes of the cortex were accompanied by polyspermy at fertilization, as well as some
anomaly in embryonic development (Figure 7). The centripetal translocation of the sub-
plasmalemmal actin filaments during egg activation has been observed in both sea urchin
and starfish [25,28,29,58]. It is conceivable that this orderly translocation of the actin fila-
ments may contribute to cytoplasmic sorting and reorganization of the egg organelles in
preparation for the subsequent cleavage. The eggs fertilized in the presence of DTT failed
to exhibit the centripetal translocation of F-actin, and these eggs had significant delay and
problems in the cleavages. Beyond this, the precise role and physiological significance
of the translocation of F-actin in activated eggs are still largely unknown. Nevertheless,
the results of our study using the eggs microinjected with AlexaFluor568-phalloidin and
exposed to the two different reducing agents suggested that this translocation of cortical
actin filaments may be sensitive to the cytoplasmic redox state of the eggs, as judged by
its inhibition by DTT, the membrane-permeant reducing agent. In support of this idea,
TCEP, which is unable to penetrate the cell membrane, had no such inhibitory effect on
the reshuffling of cortical actin filaments (Figure 5). Nevertheless, further investigation
is needed to understand to what extent the redox state of the egg cytoplasm is affected
by the given conditions of DTT treatment and to identify the major targets of DTT that
are accountable for our observations. Indeed, the importance of exquisite control of the
redox state in oocytes and embryonic cells is increasingly being appreciated [75]. On
the other hand, our observation of the apparently normal migration of female and male
pronuclei in the eggs pretreated and fertilized in seawater containing DTT (Figure 5C)
suggests that it is not likely that the centripetal movement of the cortical actin filaments
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makes a significant contribution to the transportation of the egg-engulfed sperm. While the
molecular mechanism through which DTT inhibits the translocation of the cortical actin
filaments is not known, it has been shown that myosin can form disulfide bonds within its
regulatory light chain [76]. Thus, it is tempting to speculate that a DTT-induced shift of the
myosin pool to its reduced form might have interfered with the translocation of the cortical
actin filaments. In support of this idea, the inner cytoplasm of the eggs fertilized in the
presence of DTT showed a conspicuous occurrence of stress fibers during egg activation,
which might be a sign of deregulated actin-myosin interaction (Figure 6B). Alternatively, it
is noteworthy that actin itself can exist as a dimer linked by disulfide bonds in vitro [77–79].
If such a transitory dimerization of actin molecules utilizing cysteine residues takes place
inside the eggs and contributes to the centripetal translocation of microfilaments, it cannot
be ruled out that actin itself might be the direct target of DTT.

The findings in this study raise a few more significant points on the cell biology of
oocytes and eggs. In conventional practice, to follow the cell surface events at fertilization,
eggs were often attached to polylysine-coated plates [80] or deprived of their jelly coat
and VL [15]. These so-called “denuded eggs” may better adhere to the solid substrate
such as slide glass, and were relatively immobilized during egg activation because of the
lack of the FE elevation. This feature was advantageous for morphological analysis and
other experiments. As the veil of VL was removed, it was relatively easier to disclose
the sperm’s interaction with the microvilli in SEM. The ultrastructural images obtained
with such methods were strikingly similar to the ones that we obtained with the DTT
pretreatment [81]. However, it should be underscored that this is not a natural view and
may be quite deviant from reality [82]. Instead, the control eggs visualized with SEM
in our study were in their natural state, freely suspended in NSW until they were fixed
for morphological analyses. As the DTT-pretreated eggs varied from the ones in natural
conditions, as shown here in the analyses of their cell physiology, it bears emphasis that
the experimental results obtained from those denuded or modified eggs may deviate
from what really happens in natural conditions. This small but important methodological
difference should be recognized. Secondly, we note that the significant alteration in the
structure of the VL and the defective formation of the FE did not lead to polyspermy in the
eggs pretreated with DTT. Combined with the previous findings [29,33,39], this observation
again suggests that the FE may not be the decisive factor in preventing polyspermy in
echinoderm eggs. Our result is also compatible with the idea that, if preferential binding
and penetration sites exist on the VL, such receptors are not sensitive to DTT treatment
by allowing the incorporation of the first sperm arriving at the egg surface. Finally, with
the evidence of selective labelling at the VL and plasma membrane junction, we suggest
that BPA-C8-Cy3 could be used as a convenient fluorescent probe in visualizing the VL of
the egg.

5. Conclusions

Quiescent it may seem, a sea urchin egg is at the tight equilibrium for maintaining the
homeostasis of intracellular Ca2+, pH, and redox state. Here, when the reducing agent DTT
was added to the incubation media, the sea urchin egg displayed altered Ca2+ responses
and F-actin translocation at fertilization. While the eggs fertilized in this condition were
mostly monospermic, their development was severely impaired if DTT was still present in
the media. When DTT was removed prior to fertilization, the eggs were overly polyspermic.
All of these changes took place while the alteration of the VL was rather moderate; that
is, the VL was not completely removed. In view of the fact that TCEP, another reducing
agent but membrane-impermeant, did not interfere with the translocation of actin filaments
following fertilization, the intracellular redox state is thought to be an important parameter
that contributes to egg activation. Compared with the well characterized intracellular Ca2+

signaling in fertilized eggs, the roles played by intracellular pH and the redox state have
been far less explored, but deserve more intense studies in the future.
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