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Autoimmune encephalitis (AE) is a severe inflammatory disease of the brain. Patients

with AE demonstrate amnesia, seizures, and psychosis. Recent studies have identified

numerous associated autoantibodies (e.g., against NMDA receptors (NMDARs),

LGI1, etc.) involved in the pathogenesis of AE, and the levels of diagnosis and

treatment are thus improved dramatically. However, there are drawbacks of clinical

diagnosis and treatment based solely on antibody levels, and thus the application of

additional biomarkers is urgently needed. Considering the important role of immune

mechanisms in AE development, we summarize the relevant research progress in

identifying cerebrospinal fluid (CSF) biomarkers with a focus on cytokines/chemokines,

demyelination, and nerve damage.

Keywords: Autoimmune encephalitis (AE), biomarker, cerebrospinal fluid, cytokines/chemokines, demyelination,

nerve damage

INTRODUCTION

Autoimmune encephalitis (AE) refers to a type of encephalitis caused by an autoimmune
inflammatory response, which is characterized by abnormalmental behavior, epilepsy, andmemory
impairment. Different antibodies may have different clinical manifestations. Early diagnosis of AE
is difficult due to atypical clinical symptoms and inconclusive laboratory examination results. So
far, AE patients suffer from limited treatment methods and long-lasting treatment cycle, and those
who are severely affected also faced with higher treatment cost andmortality. Theymay also sustain
relapse that seriously affects the life quality and causes huge social burden.

As the most prevalent classification method, Graus et al. (1) sorted AE based on antibodies
against neuronal cell-surface or synaptic proteins. These antibodies are known as antibodies
against intracellular antigens, antibodies against synaptic receptors, antibodies against ion channels,
and other cell-surface proteins, respectively. Since the discovery of anti-N-methyl-D-aspartate
receptor (NMDAR) encephalitis in 2007, many autoimmune antibodies related to AE have been
discovered, leading to a sharp increase in the detection rate compared to that of infectious
encephalitis (2–4). The relevant autoantibodies are mainly directed against NMDAR, leucine-
rich glioma-inactivated 1 (LGI1), γ-aminobutyric acid A / B receptors (GABAA/B), contact in-
associated protein 2 (CASPR2), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR), dipeptidyl-peptidase-like protein-6 (DPPX), and voltage-gated potassium channel
(VGKC). Among them, anti-NMDAR encephalitis is the most common and easily recognized form
of AE (5–12). How these pathological autoantibodies enter the brain to cause neuropathology
and affect neural circuits remains unclear (13). Studies show that viral infection, tumors, and
other factors can result in AE (14). Molecular stimulation or induction of antigen release is the
most important pathogenesis, leading to the production of autoantibodies. Once these antibodies
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recognize neuronal receptors or synaptic proteins as foreign
epitopes, the antibody-mediated AE is triggered (13, 15, 16).
Changes in CD4+ and CD8+ T-cells in peripheral blood and
CSF has also been reported using flow cytometry, especially in
autoimmune limbic encephalitis (17–20). The diagnosis of AE is
difficult during the early stages due to the varied symptoms and
atypical results in routine cerebrospinal fluid (CSF) examination
(21, 22). Currently, the diagnosis of AE depends on positive
antibody detection; however, the absence of antibodies does not
exclude the possibility of disease, and the measurement of the
antibody level is also difficult to achieve. It is unrealistic to use the
antibody detection as a necessary condition for early diagnosis
(23, 24). Moreover, since live cells are not conventionally
available, antibodies are generally investigated with fixed cells
during routine clinical practice, which makes it easy to obtain
false results. The antibody levels cannot predict disease prognosis
and recurrence as well (1, 5, 25–27). Therefore, it is critical to
discover novel inflammatory CNS biomarkers, especially CSF-
specific markers, for clinical applications (Figure 1).

Recent studies have confirmed that both humoral and
cellular immunity are involved in the pathogenesis of AE
(9, 28–35). In addition to the production of antibodies that
can target corresponding nerve cells, neuroimmune-regulatory
mechanisms also play an important role in disease progression.
B and T lymphocytes are the core of humoral and cellular
immunity, respectively, and their differentiation, development,
and migration largely depend on cytokines and chemokines.
Besides, immune-related demyelination of the nervous system,
nerve cell damage, and genetic susceptibility are closely related
to the occurrence of autoimmune diseases. This review provides

FIGURE 1 | The pathological effect caused by blood-brain barrier damage. The blood-brain barrier damage during AE progress is caused by Th17 cell activation, this

leads to antibodies and lymphocytes entering the brain and cerebra-spinal fluid. Traditional methods for AE diagnosis are using CFS to detect relevant positive Ab,

while novel approach to diagnose AE are using potential biomarkers, including cytokines/chemokines and molecules like MOG, AQP4 and S100 protein that

expressed on nerve cells.

a brief summary of this research in identifying autoimmune
CSF markers and related treatments based on the factors
mentioned earlier.

CYTOKINES/CHEMOKINES

Cytokines are associated with the pathogenesis of a variety
of autoimmune diseases (36, 37). They are important
immunoregulatory factors that participate in both humoral
immune responses such as B cell recruitment and differentiation,
plasma cell maturation, and antibody secretion, and in cellular
immune responses such as T cell differentiation and cytotoxic
cell function. Chemokines are small cytokines or signal proteins
secreted by various types of cells, which induce directional
chemotaxis of nearby immune cells. When the body defends
and clears invading pathogens, chemokines direct immune
cells toward the sites of infection. Cytokines/chemokines exert
multiple effects on many inflammatory cells (Figure 2A), and
most of them possess unique characteristics and are elevated
in many neuroinflammatory diseases of the CNS, indicating
that they may be potential biomarkers (36). They are also
important in disrupting the normal blood-brain barrier (BBB)
and the subsequent B cell infiltration (13, 38–40). Studies
have shown that cytokines and chemokines can be used as
biomarkers for the diagnosis of autoimmune diseases and the
detection of intrathecal inflammation. As quantifiable indicators,
cytokines have the potential to be used as novel biomarkers for
the evaluation of AE (41), with the cytokine profile differing
depending on the antibody subtype (30). Interleukin-6 (IL-
6), IL-17A, C-X-C motif chemokine ligand 10 (CXCL10), and
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FIGURE 2 | Associated cells involved in AE pathological processes. (A) Under the action of different cytokines, naive T cells differentiate into different Th cells. As a

joint result of IL-6, STAT3, IL-17, TGF-β, naive T cells differentiate into Th 17 cells. The subsequent production of IL-17, IL-21, IL-22 by Th 17 cells triggers the immune

response and impairs the blood brain barrier. In addition, IL-17A triggers a positive feedback loop of IL-6 signaling, leading to IL-17A/IL-6 co-activation. IL-12

activation can induce Th 1 cell differentiation. Furthermore, Th 1 cells secrete cytokines, such as TNF-α and IFN-γ, resulting in different outcomes. (B,C) As

chemokines, CXCL13 and CXCL10 induce directional chemotaxis of B cells and T cells, respectively, towards the target sites. (D) The production of YK-40 by

microglia contributes to the early diagnosis.

CXCL13 in CSF have been reported to be useful for inflammation
detection during the acute phase of AE while IL-15 or chitinase-
3-like 1 (CHI3L1) may exhibit chronic disease activity (42).
Clinical analyses of chemokine and cytokine levels would help to
better understand the immune process of this disease.

Factors That Promote the Differentiation
and Development of Th17: IL-6,
Transforming Growth Factor-β, and Signal
Transducer and Activator of Transcription 3
(STAT3)
Impairments in cytokine/chemokine regulation are associated
with the occurrence of AE. A large amount of cytokines and
chemokines participate in the chemotaxis, differentiation, and
development of Th17 cells, which have great significance in
the occurrence and progression of a variety of autoimmune
diseases (43, 44). Activation of excessive Th17 cells can lead
to inflammation and demyelinating diseases of the CNS (45–
47). As an inflammatory Th subset, Th17 cells involve in
intrathecal synthesis and B cell activation. A previous study has

demonstrated Th17 cell accumulation in the CNS of AE patients
by comparing the CSF of 60 randomly selected anti-NMDAR
encephalitis patients to patients with non-inflammatory diseases
as negative control using Fluorescence Activating Cell Sorter
(FACS) analysis (28). Animal experiments have shown that Th17
cells can degrade the BBB, allowing lymphocytes, antibodies,
and other substances to enter the CNS. The RORγt−/− Th17
deficient mouse model also manifested reduced regulatory T
cell numbers and attenuated microglial activation during post
infectious basal ganglia encephalitis (BGE), a subset of AE
syndromes (13). These findings highlight the key role of Th17
cells during AE activation. Cytokines/chemokines such as IL-6,
IL-17 and TGF-β as well as STAT3 are the main factors that can
promote the differentiation of CD4+ T cells to Th17 cells (28,
30, 43, 48, 49). IL-6 is a pleiotropic cytokine of great concern in
regulating the immune system. As a powerful pro-inflammatory
cytokine, it is vital for hosting resistance to pathogens and acute
stress. Moreover, IL-6 counts a great deal in the auto antibody
production and T cell activation. Therefore, it heavily participates
in the inflammatory cascade involving T and B cell (49, 50).
STAT3 acts as a carrier during interactions between cytokines
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and their receptors, which is mainly responsible for maintaining
cellular signal transduction. It has been shown to be an important
regulator of many anti-apoptotic genes. TGF-β can be produced
by a variety of cells to regulate cell growth and differentiation.

Studies have reported that the pro-inflammatory cytokine IL-6
is elevated in the CSF of patients with anti-NMDAR encephalitis
(30, 37, 51), but this increase is not remarkable in patients
with anti-LGI1 encephalitis (30). IL-6 can attenuate the effects
of NMDA-mediated excitatory postsynaptic currents (EPSCs),
which contribute to memory impairment of AE patients (52).
It can also strongly induce Th17 cell differentiation in vitro and
may act independently to promote Th17 development and cause
related autoimmunity in vivo (53). TGF-β and STAT3 activation
can induce Th17 cell differentiation and participate in immune
responses as well. These cytokine/chemokine-induced Th17 cell
changes and immune reactions contribute to the occurrence of
AE (28).

Cytokines Secreted by Th17cells: IL-17,
IL-21, and Tumor Necrosis Factor-α (TNF-α)
Th17 cells promote tissue inflammation by inducing the
production of pro-inflammatory cytokines, including IL-17, IL-
21, and TNF-α (28, 41, 43, 47, 54–56). As these factors are
all products of Th17-immunity which has been reported to
be activated in AE, it is likely that they can be candidate
AE biomarkers.

IL-17 secreted by Th17 is an early initiation factor of
the inflammatory response, considering effects via recruiting
granulocytes and macrophages (43, 57). Anti-NMDAR AE
patients are usually accompanied by the IL-17 increase in their
CSF and serum (30, 33, 44). IL-17 can disrupt the function of tight
junctions and promote the passage of inflammatory cells through
BBB. It can also promote the secretion of cytokines in a variety
of cells, which participate in cell differentiation and development
and cause inflammation (58–61). IL-17A may trigger a positive
feedback loop of IL-6 signaling through NF-κB and STAT3,
leading to the development of autoimmune diseases (62). Thus,
IL-17A/IL-6 co-activation in anti-NMDAR encephalitis may be a
key factor in the pathogenesis of the disease and the production
of intrathecal antibodies (30).

Autocrine regulation causes Th17 cells to secrete IL-21, and
this can in turn promote B cell proliferation and differentiate
into plasma cells. IL-21 downregulates the functions of FOXP3+
regulatory T cells to enhance autoimmunity (63–65). Jiang et al.
collected 32 AE patients, 5 patients with other autoimmune
neurological disease, and 10 patients with non-inflammatory
disease. A study has found a significantly increased IL-21 level
in AE patients compared to control groups and even the detected
levels of IL-21 in the CSF were in the low range of the assay (0–6
pg/ml). It is proposed that IL-21 may be a promising surrogate
biomarker for the diagnosis of AE (41).

TNF-α is increased in the CSF of patients with anti-
NMDAR encephalitis. It can reduce the integrity of the
BBB and can be used to diagnose and monitor intrathecal
inflammation. Recent studies have confirmed that the appearance
of cognitive impairment in patients with AE is associated

with TNF-α (51, 52, 66). A localized increase of TNF-α
in the hippocampal dentate gyrus activates astrocyte TNF
receptor type 1 (TNFR1), which then triggers astrocyte-neuron
signaling cascades, leading to sustained functional changes in
hippocampal excitatory synapses (66). This illustrates that during
pathological conditions including Alzheimer’s disease (AD),
TNF-α is harmful for memory function and synaptic plasticity,
and TNF-α inhibition can be used to effectively manage the
disease (67, 68).

Immune-Related Chemokines: CXCL10,
CXCL13, C-C Motif Ligand 19, CCL20, and
CCL22
Chemokines attracted immune cells to the sites of inflammation
and could be responsible for the initial pleocytosis (33).
This makes them important in exploring the function
of Th17 cells in patients with anti-NMDAR encephalitis
(28). CCL19, CCL20, CCL22, CXCL10, CXCL13, and
other chemokines are elevated in the CSF of patients with
anti-NMDAR encephalitis. Some of these chemokines can
increase in CFS cells and result in the early progression
of the disease (28). Therefore, chemokines may be
potential biomarkers for the diagnosis and monitoring of
intrathecal inflammation.

CXCL13 is the main determinant of B cell recruitment
during CSF neuro inflammation (Figure 2B) (69). The increased
concentration of CSF CXCL13 in patients with anti-NMDAR
encephalitis is associated with the synthesis of intrathecal anti-
NMDAR antibodies, and thus, it may be a possible biomarker
for evaluating the treatment response and prognosis (33, 70).
CXCL13 is also the key chemokine that recruits plasma cells;
the levels of CXCL13 in CSF are correlated with the abundance
of CSF plasma cells or plasmablasts (30, 71, 72). Notably,
elevated CXCL13 levels in CSF are specific to anti-NMDAR
encephalitis instead of anti-LGI1 encephalitis, which may be due
to the different IgG subtypes between the two diseases (30).
The persistence or secondary increase of CXCL13 is related
to the recurrence of the disease and the limited response
to treatment. Second-line treatment is recommended if the
CXCL13 level remains high after first-line immunotherapy
(70). Studies have suggested that CXCL13 and CXCL10 (a
chemokine for T cells) are both elevated in the early-stage
anti-NMDAR encephalitis (approximately 40 days), and they
are associated with the complexity and early progression of
the disease. As the disease develops (approximately half a
year), CXCL13 gradually decreases while CXCL10 remains
elevated (33), supporting the hypothesis that the B cells
take part in abnormal inflammatory activation in the early
stages of the disease whereas T cells participate in immune
regulation. The appearance of CD4+ T cells in the lesion
is induced by CXCL10 (Figure 2C). Therefore, some central
chemokines such as CXCL13 and CXCL10, may be latent
therapeutic targets for AE. Additionally, cytokines/chemokines
like migration inhibitory factor (MIF), CCL2, CCL20, and
CCL22 that act as monocytes/macrophages may continue to
increase in the CSF of patients with anti-NMDAR encephalitis
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for several months during the recovery period. For patients
with residual behavioral abnormalities, MIF and CCL2 have
been reported to persist for 256 days (72). Relative studies
also demonstrated that anti-NMDAR patients have a higher
concentration of CCL20 and CCL22 using the ELISA assay (28).
B cell activating factor (BAFF) is a pivotal indicator of B cell
activation and survival, but it has been reported that there is
no significant increase in BAFF in the CSF of anti-NMDAR
encephalitis patients. The specific role of certain chemokines
requires further study.

Other Factors Involved in Immunity:
Neopterin, CHI3L1, and Osteopontin (OPN)
Neopterin is a purine-like molecule released by monocytes
and macrophages, which is activated by γ-interferon. It is
a marker of cellular immune activation and can induce the
expression of pro-inflammatory NF-κB, intercellular adhesion
molecule-1, cytokines, and other inflammatory mediators (73–
75). Neopterin production is closely related to infection,
especially viral infection, and the increasing level of neopterin
can be seen in various inflammatory and autoimmune CNS
diseases. Researchers have found that neopterin is involved in B
lymphocyte proliferation, meanwhile, autoantibody production
by B lymphocytes and plasma cell infiltrates is found in the
CNS of AE patients. As AE is closely linked to autoimmunity
and inflammation, neopterin can be a novel biomarker for AE
(25, 76). It is noted that, as neopterin has a short half-life, it
can be used to monitor the inflammatory activity in patients
with acute inflammation or recurrent encephalitis. It is of great
importance as early diagnosis of AE depending on existing Ab
tests is not realistic.

CHI3L1 (YKL-40) is mainly expressed in microglia, especially
during acute and chronic inflammatory reactions (Figure 2D)
(77, 78), so, it is considered to be a probable marker of persistent
inflammation in many diseases (79–81). As mentioned above,
Il-6 participates in Th17-immunity, which is crucial for AE
development. IL-6 signaling can stimulate B cell proliferation and
up-regulate the expression of the inflammatory marker CHI3L1
(82). An increase in CHI3L1 levels in the brain and/or CSF is seen
in various immune-related diseases, especially neurological and
neurodegenerative disorders with inflammatory components like
multiple sclerosis (MS), AD, and stroke (83–85). Interestingly,
the CHI3L1 levels are elevated in the CSF of patients with anti-
NMDAR encephalitis and correlated with the clinical MRS score.
This suggests that CHI3L1 may be a biomarker for the prognosis
of anti-NMDAR encephalitis (51, 82).

OPN is a phosphorylated protein expressed in various
cells (86), which is vital in many pathophysiological processes
including inflammation and immune responses (87, 88). OPN
can induce B cell proliferation and antibody production, and it
is also crucial in Th17 cell differentiation. As mentioned earlier,
Th17 cells partake in intrathecal antibody synthesis and B cell
activation, hence contributing to anti-NMDAR encephalitis (89–
91). Therefore, OPN may also be used as a biomarker of anti-
NMDAR encephalitis (82).

NERVE DAMAGE AND GLIAL ACTIVITY
MARKERS

The occurrence of CNS diseases including AE may lead to nerve
damage. For example, by actively participating in AE progression,
inflammatory events can directly cause the damage of nerve
cells including neurons and oligodendrocytes (92, 93). Patients
with AE often present with leukoencephalopathy syndrome (94–
97), which occurs simultaneously or in succession (98). As
structural elements of neurons and glial cells, the neurofilament
light (Nfl), total tau protein (T-tau), and glial fibrillary acidic
protein (GFAP) imply neuronal and glial cell damage and death.
Their elevation has also been found in the CSF of patients with
AE (99–101). Therefore, these markers may indicate abnormal
intracranial damage in patients with AE and accordingly guide
clinical diagnosis and treatment.

S100 Protein
The S100 protein belongs to the calcium-binding protein family
and has two important members, the related homo-dimeric
proteins S100A and S100B. S100B is a CNS-specific protein,
mainly produced by astrocytes. It is a biochemical marker for
brain injury, and the S100B concentration is closely related to the
injury degree, treatment efficacy, and prognosis (102, 103). Many
factors such as TNF-α can stimulate the release of S100B (104).
Studies have manifested that the concentration of S100B in the
CSF of patients with anti-NMDAR encephalitis is significantly
higher than that in the control group. Additionally, there is
a strong correlation between the concentration of S100B in
CSF and the MRS score of the patient, suggesting that CSF
S100B is related to the prognosis of the disease (105). S100
protein is also detectable in the CSF of patients with anti-DPPX
encephalitis (106). Other studies have shown, however, that
the concentration of S100B is AE-independent (107). S100A6,
on the other hand, belongs to the S100A protein family and
can help B lymphocytes to pass through the BBB in AE
patients (108).

Progranulin (PGRN)
PGRN is a multifunctional immunomodulatory molecule which
is critical in autoimmune diseases such as systemic lupus
erythematosus and vasculitis (109). It has a double effect of
inflammation, which not only can promote inflammation by
regulating the IL-6 signaling pathway, but also can have an
anti-inflammatory effect by antagonizing the TNF-α signaling
pathway or regulating IL-10 and other signaling pathways (110–
112). PGRN can promote the differentiation of CD4+ T cells
into regulatory T cells (Tregs) and enhance their functions (111).
The level of PGRN is elevated in the CSF of patients with
anti-NMDAR encephalitis, indicating that the concentration
of PGRN in the CSF may be a prospective biomarker of
acute anti-NMDAR encephalitis. In patients with anti-LGI1
encephalitis, on the contrary, the PGRN in the CSF remains
normal. Although PGRN is also considered to be a biomarker
for certain tumors (such as lymphoma) as well, PGRN is not
increased in the serum or CSF of AE patients with paraneoplastic
syndrome (113, 114).
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Neurofilament Light (Nfl)
Neurofilament light (NfL) chains are scaffolding proteins
expressing specifically on the neural skeleton. They have
been used as unspecific markers of axonal damage during
neurodegeneration and neuroinflammation. To investigate the
association between the CSF-Nfl level and AE, researchers
collected CSF from AE patients including 37 of anti-NMDAR
encephalitis and 16 of anti-LGI1 encephalitis. They found that
compared to the control groups and AE patients without Nfl,
people who have either of these 2 types of AE accompanied
by CSF-Nfl elevation manifested poor diagnosis and prognosis.
There is also a strong correlation between CSF-Nfl and AE
pathogenesis (115).Moreover, there is also a significant difference
among anti-NMDAR AE patients with various etiologies (114,
116). Kammeyer et al. (117) collected 26 plasma and 14 CSF
samples of patients with autoimmune neurological disorders,
compared to the control group, and patients with active AE
show an elevated level of plasma Nfl, implying that it may
act as a minimally-invasive biomarker for CNS injury during
AE development. Another study also confirmed the opinion
that the Nfl level is closely related to disease severity during
diagnosis (118).

GFAP
GFAP is a key component of the cytoskeleton during astrocyte
development, and it is also an essential filament protein in
mature astrocytes (119). As neuronal and glial cell damage
markers in CSF, GFAP increased non-specifically in patients with
brain disorders (120). During brain injury, full-length GFAP
from injured astrocytes entered the subarachnoid CSF, which
then circulated to the peripheral blood through direct venous
drainage. Researchers gathered clinical data from 25 AE patients,
and the follow-up analysis found that the GFAP levels in the
CSF of AE patients were moderately elevated during the early
stage of disease development. The final outcome (disability at 1
year) strait was associated with the CSF-GFAP levels at all time
points (101).

T-Tau
As a representative marker of neuronal and axonal loss, T-tau
has long been used for the diagnosis of neurodegeneration. A
recent study has revealed a direct connection between AE and
atypical tauopathy (121). By comparing the serum and CSF level
of T-tau along with MRI data from 13 AE patients and their age-
matched controls, Peter Körtvelyessy et al. found that patients
with the temporal FLAIR-signal in the MRI and those developing
hippocampal sclerosis are prone to have a highly increased T-tau
level in CSF (114). Another research collected relevant data from
25 patients hospitalized for AE and followed for 1 year, and a high
CSF level of T-tau was found during the acute phase of AE. The
final outcome is directly linked to the CSF-T-tau level at around
3 months since the disease onset (101).

OLIGOCLONAL BANDS (OCBS)

OCBs are clones of immunoglobulins and can be detected in CSF
or serum (122). They are related to several diseases mediated by

many factors such as auto antibodies, demyelination, infection,
and inflammation. Patients with anti-NMDAR encephalitis and
other rarer subtypes like anti-GABABR, anti-AMPAR, and
anti-DPPX encephalitis, can show OCB positive in CSF and
/or serum, but patients with anti-LGI1, anti-IgLON5, anti-
CASPR2, and anti-GlyR antibodies are rarely OCB positive
(5, 6, 123–128). Studies have shown that the levels of OCB
are correlated with an increase in the CSF cells in AE
patients (5). Autoantibody negative encephalitis is a type
of AE with seronegative CSF, which caused the antibody
testing as non-pathognomonic. The CSF OCB positivity
rate is included in the clinical diagnostic criteria for both
anti-NMDAR encephalitis and possible AE with negative
antibodies (1). The presence of OCBs is related to the late
manifestations of anti-NMDAR encephalitis in patients with
decreased consciousness, movement disorders, and autonomic
symptoms (129). Moreover, OCBs predict the presence of cancer
at the time of AE diagnosis. In patients with OCB-positive
CSF, strict monitoring of potential malignant tumors should
be considered even before knowing the results of the neuro-
autoantibody tests (130).

In pediatric patients with anti-NMDAR encephalitis, mirror
OCBs develop initially and then progress into intrathecal
OCBs, suggesting that these patients develop a systemic
autoimmune response in the beginning, which is followed by
localized intrathecal antibody synthesis (122). Compared with
intrathecal OCBs, mirror OCBs have a lower specificity for
CNS inflammation. Mirror OCBs indicate the presence of OCBs
in serum and CSF. Recent studies have demonstrated that
autoimmune-related CNS disease antibodies are produced in
the peripheral circulation (131, 132). Therefore, mirror OCBs
should not be ignored, as they may be an important biomarker
of inflammatory CNS diseases.

MARKERS OF SYNAPTIC DYSFUNCTION

The increase of synaptic-associated proteins is reported
in the CSF of patients with neurodegenerative diseases,
suggesting an abnormal synaptic integrity and function
during disease pathogenesis. Among them, neurogranin and
synaptosomal-associated protein-25 (SNAP-25) are the 2
representative pre- and post-synaptic proteins, respectively
(133, 134). To clarify whether these markers can also
reflect the progression of antibody-mediated encephalitis
(AME), researchers obtained CSF from the diagnosis of
45 patients as AME including the NMDA receptor (n =

34) and LGI1/CASPR-2 (n = 11). By comparing with 39
age- and sex-similar health control, both neurogranin and
SNAP-25 were markedly decreased in the CSF of AME
patients at presentation. Lower SNAP-25 in prospectively
followed patients and higher neurogranin at presentation
are associated with greater disease severity (135). The
decreased synaptic protein level is probably due to acute
synaptic dysfunction and antibody-mediated receptor
internalization, which may correlate with disease severity
and outcome (135).

Frontiers in Neurology | www.frontiersin.org 6 July 2022 | Volume 13 | Article 746653

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Z
h
a
n
g
e
t
a
l.

C
S
F
B
io
m
a
rke

rs
fo
r
A
u
to
im

m
u
n
e
E
n
c
e
p
h
a
litis

TABLE 1 | Concise summary of potential AE biomarkers.

Marker types Sub-types Published putative function in AE

pathogenesis

Potential use (diagnosis, prognosis,

treatment response, etc)

Changes in specific AE subtype Degree of

importance

References

Cytokine and

chemokines

Factors that promote the

differentiation and

development of Th17 cells:

IL-6, TGF-β, and STAT3

IL-6, TGF-β and STAT3 are all upstream signal

molecules of Th17 cells. Combined with TGF-β,

IL-6 can promoteTH17 cell differentiation

mediated by STAT3. Th17-immunity has been

reported to be activated in AE

Factors mentioned in this part are mainly

Th17 cell-associated. Th17 cells

accumulation is correlated with poor

prognosis of AE, especially

anti-NMDAR AE. CXCK13 may be a

potential marker of treatment response

and relapse rate. Meanwhile, as indicators

for B cell and T cell respectively, CXCL13

and CXCL10 can reflect the disease

process as B cells take part in abnormal

inflammatory activation in the early stages

of the disease whereas T cells participate

in immune regulation Neopterin can reflect

the acute and recurrent encephalitis

during diagnosis.

IL-6: ↑ in anti-NMDAR encephalitis ⋆⋆⋆ (28, 50)

Cytokines secreted by Th17

cells: IL-17, IL-21, and

TNF-α

IL-17, IL-21 and TNF-α downstream signal

molecule of Th17 cells. Produced by Th17 cells

during inflammation. Th17-immunity has been

reported to be activated in AE.

IL-17: ↑ in anti-NMDAR encephalitis

TNF-α: ↑ in anti-NMDAR encephalitis

⋆⋆⋆ (28, 41, 43,

47, 52, 54, 70)

Immune-related

chemokines: CXCL10,

CXCL13, CCL19, CCL20,

and CCL22

CXCL13 and CXCL10 are responsible for B cell

activation and T cell chemotaxis respectively,

which are all reported to be activated in AE.

CCL20 and CCL22 promote Th17 cells

migration. Th17-immunity has been reported to

be activated in AE.

CXCL13: ↑in anti-NMDAR encephalitis

CCL20: ↑in anti-NMDAR encephalitis

CCL22: ↑in anti-NMDAR encephalitis

⋆⋆⋆ (28, 70)

Other factors involved in

immunity: Neopterin,

CHI3L1, and OPN

Neopterin is a marker for cell immunity

activation and can induce many inflammatory

mediators, which reported to participate in AE

progression.

CHI3L1 is mainly expressed in microglia during

inflammation, which participate in AE

pathogenesis.

OPN can induce B cell proliferation and

antibody production, it is also crucial in Th17

cell differentiation, hence contributing to the

development of AE.

CHI3L1: ↑ in anti-NMDAR encephalitis

OPN: ↑ in anti-NMDAR encephalitis

⋆⋆ (25, 51, 76,

79, 80, 82,

89–91)

(Continued)
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TABLE 1 | Continued

Marker types Sub-types Published putative function in AE

pathogenesis

Potential use (diagnosis, prognosis,

treatment response, etc)

Changes in specific AE subtype Degree of

importance

References

Nerve damage

and glial activity

markers

S100 protein S100 protein include 2 important members,

S100A and S100B. S100A can help B

lymphocytes to pass through the BBB in AE

patients, while S100B is a CNS-specific protein

and related to brain injury.

CNS concentration of S100B is closely

linked to treatment response, disease

severity and prognosis. The level of

CSF-Nfl is closely related to prognosis of

both anti-NMDAR and

anti-LGl1 encephalitis. Patient has either of

these 2 types of AE accompanied by

CSF-Nfl elevation manifested poor

diagnosis and prognosis. The level of Nfl is

also closely related to disease severity.

S100 protein: ↑ in anti-NMDAR and

anti-DPPX encephalitis

PGRN: ↑ in anti-NMDAR encephalitis

Nfl:↑ in anti-NMDAR and anti-LGI1

encephalitis

GFAP: ↑ in anti-NMDAR and limbic

encephalitis

Total-tau: ↑ in anti-NMDAR encephalitis

⋆ (103, 105–

108)

PGRN PGRN is a multifunctional immunomodulatory

molecule which is critical in autoimmune

diseases, elevated level of PGRN can be seen

in the CSF of patients with anti-NMDAR

encephalitis.

⋆⋆ (113, 114)

Nfl Neurofilament light chain (NfL) are scaffolding

proteins expressing specifically on the neural

skeleton. They have been used as unspecific

markers of axonal damage neuroinflammation.

As neuroinflammation usually involves in AE

development, the potential linkage between AE

and Nfl has been explored.

⋆⋆ (114, 115,

118)

GFAP GFAP is a key component during astrocyte

development, during astrocytes injury, GFAP

may enter to the CSF and eventually to the

peripheral blood through venous drainage.

Astrocytes injury also participates in AE

development.

The level of CSF-GFAP is directly related

to the final outcome (disability at 1 year)

since AE onset.

⋆⋆ (101)

Total-tau Total-tau is a representative marker of neuronal

and axonal loss, which is closely linked to AE.

The level of total-tau is associated with AE

severity, patients developing hippocampal

sclerosis are prone to have higher level of

total-tau. The level of total-tau also link to

the disease final outcome.

⋆ (101, 114)

OCBs / OCBs are clones of immune-globulins, their

presence can be mediated by autoimmune

antibodies which correlated to AE.

CSF OCB positivity rate is included in the

clinical diagnostic criteria for both

anti-NMDAR encephalitis and possible AE

with negative antibodies.

OCBs:↑ in anti-NMDAR anti-GABABR,

anti-AMPAR and anti-DPPX encephalitis

⋆⋆⋆ (5, 6, 123,

124, 129)

Markers of

synaptic

dysfunction

Neurogranin and SNAP-25 Neurogranin and SNAP-25 are both

presentative synaptic proteins. While synaptic

dysfunction participate in AE development,

relative biomarkers may reflect disease

Both neurogranin and SNAP-25 were

markedly decreased in the CSF of AME

patients at presentation. Lower SNAP-25

in prospectively followed patients and

higher neurogranin at presentation is

associated with greater disease severity.

Neurogranin: ↑ in anti-NMDAR

encephalitis

SNAP-25:↑ in anti-NMDAR encephalitis

⋆⋆ (135)
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PROSPECTS FOR TREATMENT

The most common treatment strategies for AE are the
first-line treatments such as corticosteroids, IVI g, and
plasma exchange as well as the second-line treatments like
rituximab, cyclophosphamide, mycophenolate mofetil, and
other immunosuppressive medication (38, 136–140). It has been
reported that 44% of patients with anti-NMDAR encephalitis
have failed first-line treatment, demonstrating that individual
patients may have specific immunological characteristics.
Compared with non-targeted immunotherapy, targeted
immunotherapy has the potential to improve the treatment
response, and further research on targeted immunotherapy will
be necessary to develop new treatment strategies (141).

Th17 cells are important immune cells involved in the
pathogenesis of AE. Inhibiting the differentiation and
development of Th17 cells can inhibit the development
and progression of inflammation. Studies have shown
that the cAMP-response element binding protein (CREB)-
regulated transcription coactivator (CRTC2) can promote the
differentiation of Th17 cells, therefore, its inhibitors may provide
therapeutic benefits for patients with autoimmune diseases.
Although there are no reports on inhibiting Th17 cells to treat
AE currently, this may be a viable therapeutic strategy for AE
in the near future (43). Additionally, IL-2 can constrain the
differentiation of Th17 cells, and low-dose IL-2 therapy can
be used to treat autoimmune diseases by restoring the balance
between Tregs and effector T cells (30, 142). The low-dose
IL-2 usage may be a feasible immunotherapy for refractory
AE treatment.

Cytokines play a critical role in the autoimmune response.
Some cytokine inhibitors, such as anti-IL-6 receptor antibody
(tocilizumab), IL-17A inhibitor (secukinumab), and CXCL-
10 inhibitor (50, 52, 143, 144) have been shown to block
CNS immune feedback pathways and antigen-specific Th17
cell differentiation (145), and they can also effectively treat
many autoimmune inflammatory diseases. AE-related cytokine
inhibitors and additional cytokines/chemokines involved in AE
may be identified as potential targets for future treatments (44,
146–148).

Furthermore, research on NR2B antagonists may yield
potential therapeutic options (149) to protect the BBB and

exhibit effective therapeutic effects without requiring antigen
specificity (150).

CONCLUSION

Recently, AE has received increasing attention, and the level
of AE diagnosis and treatment has dramatically improved.
However, there are drawbacks for clinical diagnosis based solely
on antibodies; therefore, additional biomarkers are needed to
guide diagnosis and treatment. Considering the primary role
of the immune mechanism in the pathogenesis of AE, this
review summarizes the relevant research progress in identifying
CSF biomarkers with a focus on cytokines/chemokines,
demyelination, and nerve damage (Table 1). Furthermore, we
also provide the latest information to aid the diagnosis and
treatment of the disease. Additional research will increase our
understanding of AE and improve the level of diagnosis and
treatment for this disease.
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