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Abstract
In this study, the dynamic characteristics of a plate-like micro-cantilever beam attached with

multiple concentrated masses are studied. The vibration modes of the cantilever plate are

represented by combinations of beam functions. Using classical mechanics (the effect of

size is not considered) and the corrected Cosserat’s theorem (the effect of size is consid-

ered), we employ the Lagrange equations to establish a dynamic model of the plate-like

micro-cantilever beam attached with multiple concentrated masses. The accuracy of the

model proposed in this paper is verified by comparing with the results of published literature.

Then, the natural frequencies of the cantilever plates are calculated with self-compiled algo-

rithms, and the results of the plates with 1–5 masses are displayed. The results are in high

accordance with the exact solution, and all errors are within 0.5%. The analysis shows that

the proposed model and analysis method converges quickly and is highly efficient. In addi-

tion, the effects of characteristic lengths, Poisson's ratios and plate thickness on the micro-

cantilever plate’s resonant frequency for the first five modes are analyzed.

Introduction
Micro-mass detection using a micro-cantilever beam sensor has been widely applied to mea-
sure one single cell or molecule with high accuracy[1,2,3] since it was first proposed in 1995
[4,5]. Typically, the measurement parameters of the dynamic response of the micro-cantilever
beam sensor are used to establish the dynamic model of the micro-cantilever beam with multi-
ple ultra-micro-masses attached[6,7], and from this inverse solution, the mass parameters of
the attached particles can be obtained [8].

Current research on micro-cantilever sensors is concentrated on single-beam with multiple
attached particles [9,10,11] and, alternatively, single-beam with uniformly distributed mole-
cules attached [12]. However, for the detection of individual adsorbed masses of a plate-like
micro-cantilever beam, two limitations need to be noticed 1) Most micro-cantilever sensors in
a practical application have a plate-like structure; however, in most cases their dynamic behav-
iors are analyzed using beam theory, and dynamic analysis with plate theory has rarely been
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reported. 2) The thickness of the practical micro-cantilever sensor is on the micrometer scale,
and as a result, the effect of size cannot be neglected, but studies on this effect are quite scarce.

In this study, plate theory is utilized to establish the dynamic model of the plate-like micro-
cantilever sensor with multiple concentrated masses attached considering the size effect. The
computed results are then compared with related references to verify the efficacy of the
improvements of the established model in our study. Additionally, the natural frequencies of a
widely applied type of rectangular micro-cantilever sensor with multiple concentrated masses
attached are calculated using a self-compiled algorithm, and the results for sensors with 1–5
masses are presented.

Materials and Methods
Amicro-cantilever plate with N concentrated masses attached is set as the research object in
this study. The masses are spherical particles of different substances with known material prop-
erties, diameters (mass is known) and locations on the beam (the distributions of the particles
along the length and width of the beam are known). The size and material properties of the
plate are also known (the scale of the length of the plate is on the order of 100 μm, the width
10 μm, and the thickness 1 μm). The details of the model are shown in the Fig 1.

A Cartesian coordinate system O−xyz is established on the plate, as shown in Fig 1. The Oxy
plane is the middle plane of the plate, and the displacement in the x, y, and z directions is repre-
sented as u, v, and w, respectively. we assume that the length of the plate in the x and y direc-
tions is a and b and the thickness isH (in the z direction). It is given a hypothesis that
concentrated masses are attached to the upper and lower surfaces of the plate at ±H / 2 on the z
axis and that the ith particle has the coordinates (xi,yi,±H / 2). The Poisson's ratio of the plate is
μ, the Young’s modulus is E, the density is ρ, and the mass of the ith particle isMi.

A. General Theory
In this section we present the theory of studying on dynamic behavior of plate-like micro-can-
tilever with multi-particles attached. This theoretical framework is applicable to thin plates of

Fig 1. Model of the plate-like micro-cantilever beamwith concentrated masses attached, which are dispersed in different locations.

doi:10.1371/journal.pone.0151821.g001
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arbitrary plan view and uniform thickness exhibiting small deflections, where the effects of in-
plane loading on the transverse (out-of-plane) deflections are negligible [13,14,15]. Since the
sizes of the particles are negligible compared with the size of the plate, they can be regarded as
concentrated masses. So only their kinetic energy and not their potential energy is considered
in the analysis [8].

The Poisson-Kirchhoff theorem of thin plates is applied to establish the strain-displacement
relationship (geometrical equation) and the stress-strain relationship (physical equation) of the
micro-cantilever plate.

For small deformation and displacement, higher-order terms are negligible, and the follow-
ing six equations are derived based on geometric principles [16]:

εx ¼
@u
@x

; εy ¼
@v
@y

; εz ¼
@w
@z

gyz ¼
@v
@z

þ @w
@y

; gzx ¼
@w
@x

þ @u
@z

; gxy ¼
@u
@y

þ @v
@x

ð1Þ

where ε represents unit elongation, and γ represents shear strain.
As the plate under study belongs to the Poisson-Kirchhoff theorem of thin plates, according

to straight line assumption, we have γyz = γzx = 0. Introducing the expressions of γyz and γzx in
Eq (1) yields.

uðx; y; z; tÞ ¼ u0ðx; y; 0; tÞ � z
@w
@x

vðx; y; z; tÞ ¼ v0ðx; y; 0; tÞ � z
@w
@y

ð2Þ

where u0 and v0 are the displacements of the middle plane. According to the theory [11], no
deformations occur in the middle plane, so both u0 and v0 are zero. Then Eq (2) is inserted into
Eq (1) and the above analysis yields the strain-displacement relationship of the Poisson-Kirch-
hoff thin plate (geometric equation):

εx ¼ �z
@2w
@x2

; εy ¼ �z
@2w
@y2

; gxy ¼ �2z
@2w
@x@y

ð3Þ

The general form of the physical equation of an isotropic elastic material is[16]

εx ¼
1

E
½sx � mðsy þ szÞ�

εy ¼
1

E
½sy � mðsz þ sxÞ�

εz ¼
1

E
½sz � mðsx þ syÞ�

gxy ¼
txy
G

; gyz ¼
tyz
G

; gzx ¼
tzx
G

ð4Þ

According to the above analysis, we have γyz = γzx = 0. We can assume the normal stress per-
pendicular to the middle plane is neglected [16], in other words, the normal stress perpendicu-
lar to the middle plane is zero (σz = 0). Inserting these values into Eq (4), and combining with
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G = E / (2(1 + μ)), yields

sx ¼ E
1� m2

ðεx þ mεyÞ

sy ¼ E
1� m2

ðεy þ mεxÞ
txy ¼ Ggxy

ð5Þ

B. Energy of the micro-cantilever plate with concentrated masses
attached
First, the energy of the plate is calculated. The potential energy of the deformation of an isotro-
pic elastic body is

UC ¼
ððð
V

1

2
ðsxεx þ syεy þ szεz þ txygxy þ tyzgyz þ tzxgzxÞdV ð6Þ

For the Poisson-Kirchhoff thin plate in this study, we have σz = τyz = τzx = 0, so Eq (6) can
be further simplified. Substituting Eqs (3) and (5) into Eq (6) yields

UC ¼
ða
0

ðb
0

ð H
2

�
H
2

1

2
ðsxεx þ syεy þ txygxyÞdxdydz

¼
ða
0

ðb
0

ð H
2

�
H
2

1

2

E
1� m2

ðεx þ mεyÞεx þ
E

1� m2
ðεy þ mεxÞεy þ Ggxygxy

� �
dxdydz

¼
ða
0

ðb
0

ð H
2

�
H
2

1

2

Ez2

1� m2

@2w
@x2

þ m
@2w
@y2

� �
@2w
@x2

þ @2w
@y2

þ m
@2w
@x2

� �
�

�

@2w
@y2

þ ð1� mÞ
2

�2
@2w
@x@y

� �2
#
dxdydz

¼ D
2

ða
0

ðb
0

@2w
@x2

� �2

þ @2w
@y2

� �2

þ 2m
@2w
@x2

@2w
@y2

þ 2ð1� mÞ @2w
@x@y

� �2
" #

dxdy

ð7Þ

where D is the bending stiffness of the plate and can be expressed as[17]

D ¼ EH3

12ð1� m2Þ ð8Þ

Eq (7) is the potential energy due to the deformation of the plate derived with classical
mechanics. When the effect of the size of the plate is considered, the bending stiffness of the
plate is changed and is represented by D0[17]

D0 ¼ EH3

12ð1� m2Þ þ
EHl2

2ð1þ mÞ ð9Þ

A Plate-Like Micro-Cantilever with Multiple Particles Attached

PLOS ONE | DOI:10.1371/journal.pone.0151821 March 29, 2016 4 / 16



Accordingly, the potential energy due to the deformation of the plate is

UC ¼ D0
2

ða
0

ðb
0

@2w
@x2

� �2

þ @2w
@y2

� �2

þ 2m
@2w
@x2

@2w
@y2

þ 2ð1� mÞ @2w
@x@y

� �2
" #

dxdy ð10Þ

Comparing Eqs (7) and (10) shows that their only difference lies in the bending stiffness.
If only the transverse bending vibration of the plate (movement in the z direction, that is w)

is considered and the movements in the plane of the plate (movements in the x and y direc-
tions, that are u and v) are neglected, the kinetic energy of the plate is

TC ¼
ððð
V

1

2
dk � vz2 ¼

ða
0

ðb
0

ð H
2

�
H
2

1

2

@w
@t

� �2

� rdxdydz

¼ 1

2
rH
ða
0

ðb
0

@w
@t

� �2

dxdy

ð11Þ

After the energy of the plate is obtained, the energy of the attached concentrated masses
must be derived. As stated above, it is assumed that N numbers of particles that can be taken as
concentrated masses are attached to the upper (or lower) surface of the micro-cantilever plate.
As the particles can be taken as concentrated masses, their sizes are negligible compared with
the size of the plate, so the particles have no strain energy resulting from deformation, and only
the kinetic energy of the particles needs to be considered.

The ith particle has massMi and coordinates (xi,yi,zi), where zi =H/ 2 (when the particle is
attached to the upper surface of the plate) or zi = −H/ 2 (when the particle is attached to the

lower surface of the plate). Its velocity is viz ¼ @wðxi ;yi ;ziÞ
@t

(only the movement of the particle in the

direction of the transverse bending vibration of the plate is considered (or in the z direction,
w)), so the total kinetic energy of N numbers of particles is

TP ¼
XN
i¼1

1

2
MiðvizÞ2 ¼

XN
i¼1

1

2
Mi

@wðxi; yi; ziÞ
@t

� �2
ð12Þ

Now, the expression of the total energy of the micro-cantilever plate with N attached parti-
cles is as follows:

U ¼ UC; T ¼ TC þ TP ð13Þ

C. Dynamic Equations
First, the vibration profiles of the plate are approximated. In this study, combinations of the
beam functions satisfying the boundary conditions are used to approximate the vibration pro-
files of the plate, and the displacement of the vibration in the z direction is expressed as

Wðx; y; tÞ ¼
X1
m¼1

X1
n¼1

cmnW
x
mðxÞ �Wy

nðyÞ � sinomnt ð14Þ

Eq (14) does not contain z, as it is assumed that no deformation occurs in the z direction,
i.e., each point on the normal of the middle plane has uniform displacement w in the z direc-
tion. In this equation,m and n represent the order of beam functions included in the vibration
profile along x and y directions, respectively. cmn is an unknown weighting coefficient. sin ωt is
the harmonic function.Wx

mðxÞ is the mth vibration-profile beam function corresponding to the
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boundary conditions along x direction, andWy
nðyÞ is the nth vibration-profile beam function

corresponding to the boundary conditions along y direction. The detailed expressions are
shown in Table 1.

The expression describing the coefficient Cm in Table 1 is shown in Table 2, and the expres-
sion describing the coefficient in Tables 1 and 2 is αm = αma / a, where αma is calculated in
Table 3. Note that the vibration-profile beam function in the y direction,Wy

nðyÞ, has the same
form as the vibration-profile beam function in the x direction,Wx

mðxÞ, so onlyWx
mðxÞ is listed

in Tables 1–3. The cantilever plate in this study has the following boundary conditions: free-
free in the x direction (F-F); in the y direction, fixed at y = 0(C), and free (F) at y = b.

F-F: free-free boundary conditions [18]

Wx
mðxÞ ¼

1 m ¼ 1

ffiffiffi
3

p 2

a
x � 1

� �
m ¼ 2

Cm1ðcoshamx þ cosamxÞ � Cm2ðsinhamx þ sinamxÞ m � 3

8>>>>>><
>>>>>>:

Cm1 ¼
coshama� cosama
sinhamasinama

; Cm2 ¼
sinhamaþ sinama
sinhamasinama

a3a ¼ 4:730; a4a ¼ 7:853; a5a ¼ 10:995; ama ¼ ð2m� 3Þ p
2
ðm > 5Þ

ð15Þ

C-F: fixed-free boundary conditions [18]

Wx
mðxÞ ¼ Cm1ðcoshamx � cosamxÞ � Cm2ðsinhamx � sinamxÞ

Cm1 ¼
coshamaþ cosama
sinhamasinama

; Cm2 ¼
sinhama� sinama
sinhamasinama

a1a ¼ 1:875; a2a ¼ 4:694; a3a ¼ 7:854; ama ¼ ð2m� 1Þp
2
ðm > 3Þ

ð16Þ

Let cmn sin ωmnt be qmn(t), which is chosen as the generalized coordinate, and the beam
functions in the x and y directions are truncated to them0

th and n0
th modes, respectively.

Transforming Eq (14) into the form of multiplication of vectors yields

Wðx; y; tÞ ¼ WTðx; yÞqðtÞ ð17Þ

Table 1. Beam vibration-profile functions expression in the different boundary conditions.

left boundary
condition x = 0

right boundary
condition x = a

Wx
mðxÞ

S S sin mp
a x

C C (coshαmx − cosαmx) − Cm(sinhαmx − sinαmx)

F F
Wx

1 ¼ 1; Wx
2 ¼ ffiffiffi

3
p

1� 2x
a

� �

Wx
m ¼ ðcoshamx þ cosamxÞ � Cmðsinhamx þ sinamxÞ ðm � 3Þ

C S (coshαmx − cosαmx) − Cm(sinhαmx − sinαmx)

C F (coshαmx − cosαmx) − Cm(sinhαmx − sinαmx)

F S Wx
1 ¼ ffiffiffi

3
p

1� x
a

� �
Wx

m ¼ ðcoshamx þ cosamxÞ � Cmðsinhamx þ sinamxÞ ðm � 2Þ
doi:10.1371/journal.pone.0151821.t001
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whereW(x,y) and q(t) have the following expressions:

Wðx; yÞ ¼ ½Wx
1 �Wy

1 ; � � � ;Wx
1 �Wy

n0
;Wx

2 �Wy
1 ; � � � ;Wx

2 �Wy
n0
;

� � �Wx
m �Wy

n; � � � ;Wx
m0

�Wy
1 ; � � � ;Wx

m0
�Wy

n0
�T

qðtÞ ¼ ½q11; � � � ;q1n0
;q21; � � � ;q2n0

; � � � ;qmn; � � � ;qm01
; � � � ;qm0n0

�T
ð18Þ

The vibration-profile function of the plateW(x,y) constructed in this section does not con-
tain the z coordinate. The expression describing the kinetic energy of the attached concentrated
masses also shows that the location of the masses in the z direction does not affect their kinetic
energy. Therefore, only the projected locations of the particles are required in the computation,
i.e., the (xi,yi) coordinates.

Insert the vibration-profile of the plate into the elastic potential energy and kinetic energy of
the micro-cantilever plate with concentrated masses attached. The expression of the energy can
be separated and represented as a superposition of finite terms. The dynamic equations can
then be derived using the Lagrange equations.

It is noted that the expression describing the energy of the micro-cantilever plate with

attached concentrated masses includes the power and multiplication of @2w
@x2
, @

2w
@y2
, @2w
@x@y

and @w
@t
, so

their expressions are derived as follows:

@2w
@x2

¼ @2WT

@x2
q;

@2w
@y2

¼ @2WT

@y2
q;

@2w
@x@y

¼ @2WT

@x@y
q;

@w
@t

¼ WT _q ð19Þ

Table 2. The expression for the coefficient Cm of beam vibration-profile functions is shown.

left boundary condition
x = 0

right boundary
condition x = a

Cm left boundary condition
x = 0

right boundary
condition x = a

Cm

S S —— C S coshamaþcosama
sinhamaþsinama

C C coshama�cosama
sinhama�sinama

C F coshamaþcosama
sinhamaþsinama

F F coshama�cosama
sinhama�sinama ðm � 3Þ F S coshamaþcosama

sinhamaþsinama ðm � 2Þ

doi:10.1371/journal.pone.0151821.t002

Table 3. The coefficient αma is given in the different boundary conditions.

Boundary conditions αma

x = 0 x = a m = 1 m = 2 m = 3 m = 4 m = 5 m�6
S S π 2π 3π 4π 5π mπ

C C 4.73004 7.85320 10.9956 14.1372 17.2786 ð2mþ 1Þ p
2

F F 0 0 4.73004 7.8532 10.9956 ð2m� 3Þ p
2

C S 3.9266 7.06858 10.2102 13.3518 16.4934 ð4mþ 1Þ p
4

C F 1.87510 4.69409 7.85476 10.9955 14.1372 ð2m� 1Þ p
2

F S 0 3.9266 7.06858 10.2102 13.3518 ð4m� 3Þ p
4

doi:10.1371/journal.pone.0151821.t003
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@2w
@x2

� �2

¼ qT @
2W

@x2
@2WT

@x2
q;

@2w
@y2

� �2

¼ qT @
2W

@y2
@2WT

@y2
q

@2w
@x2

@2w
@y2

¼ qT @
2W

@x2
@2WT

@y2
q;

@2w
@x@y

� �2

¼ qT @
2W

@x@y
@2WT

@x@y
q

@w
@t

� �2

¼ _qTWWT _q

ð20Þ

The Galerkin discrete energy is derived as follows:

UC ¼ D
2

ða
0

ðb
0

qT @
2W

@x2
@2WT

@x2
qþ qT @

2W

@y2
@2WT

@y2
qþ

�

2mqT @
2W

@x2
@2WT

@y2
qþ 2ð1� mÞqT @

2W

@x@y
@2WT

@x@y
q

�
dxdy

ð21Þ

TC ¼ 1

2
rH
ða
0

ðb
0

_qTW WT _qdxdy ð22Þ

TP ¼
XN
i¼1

1

2
miðvizÞ2 ¼

XN
i¼1

1

2
mi _q

TWðxi; yi; ziÞWTðxi; yi; ziÞ _q ð23Þ

K1 ¼ D
2

ða
0

ðb
0

@2W

@x2
@2WT

@x2
dxdy; K2 ¼ D

2

ða
0

ðb
0

@2W

@y2
@2WT

@y2
dxdy

K3 ¼ Dm
ða
0

ðb
0

@2W

@x2
@2WT

@y2
dxdy; K4 ¼ Dð1� mÞ

ða
0

ðb
0

@2W

@x@y
@2WT

@x@y
dxdy

M0 ¼ 1

2
rH
ða
0

ðb
0

W WTdxdy; Mi ¼ 1

2
miWðxi; yi; ziÞ WTðxi; yi; ziÞ

ð24Þ

Eqs (22), (23) and (24) can be simplified as follows:

UC ¼ qTK1qþ qTK2qþ qTK3qþ qTK4q ð25Þ

TC ¼ _qTM0 _q ð26Þ

TP ¼
XN
i¼1

1

2
miðvizÞ2 ¼ _qT

XN
i¼1

Mi

 !
_q ð27Þ

The vector form of the Lagrange equation of the micro-cantilever plate with attached con-
centrated masses is

d
dt

@ðTC þ TPÞ
@ _q

� �
� @

@q
ðTC þ TPÞ þ

@UC

@q
¼ Q ð28Þ

where q is the generalized coordinate vector, and Q is the generalized force vector. As free
vibration is studied in this paper, we setQ = 0 to obtain the natural frequencies and modes of
the micro-cantilever plate with attached concentrated masses.
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The detailed expressions of dynamic equation are derived as follows:

@ðTC þ TPÞ
@ _q

¼ ðMT
0þM0Þ _q þ

XN
i¼1

MT
i

 !
þ

XN
i¼1

Mi

 !" #
_q

d
dt

@ðTC þ TPÞ
@ _q

� �
¼ ðMT

0þM0Þq þ
XN
i¼1

MT
i

 !
þ

XN
i¼1

Mi

 !" #
q

@

@q
ðTC þ TPÞ ¼ 0

@UC

@q
¼ ðKT

1 þK1ÞqþðKT
2 þK2ÞqþðKT

3 þK3ÞqþðKT
4 þK4Þq

ð29Þ

Inserting Eq (29) into Eq (28) and arranging the terms yields

½MT
0þM0 þ ð

XN
i¼1

MT
i Þ þ ð

XN
i¼1

MiÞ�qþ

ðKT
1 þK1þKT

2 þK2þKT
3 þK3þKT

4 þK4Þq ¼ 0

ð30Þ

Eq (30) shows that K1, K2, K4,M0, andMi are symmetric matrices, so they have the follow-

ing property:MT
0þM0 ¼ 2M0(the same for the other matrices), and Eq (30) can be simpli-

fied as follows:

2 M0 þ
XN
i¼1

Mi

 !" #
q þ ð2K1þ2K2þKT

3 þK3þ2K4Þq ¼ 0 ð31Þ

Eq (31) is the dynamic equation of free vibration of the micro-cantilever plate with attached
concentrated masses (without considering the effect of size). When the effect of size is consid-
ered, the dynamic equation is similar to Eq (31), only with Eq (9) as the bending stiffness.

The general solution of ordinary differential equations has the following form:

q ¼ celt ð32Þ

Inserting the above equation into Eq (31) yields

2 M0 þ
XN
i¼1

Mi

 !" #
cl2eltq þ ð2K1þ2K2þKT

3 þK3þ2K4Þcelt ¼ 0 ð33Þ

eλt can be removed because eλt 6¼ 0, i.e.,

l2 � 2 M0 þ
XN
i¼1

Mi

 !
þ ð2K1þ2K2þKT

3 þK3þ2K4Þ
" #

c ¼ 0 ð34Þ

Because the coefficient vector c 6¼ 0, we have

l2 � 2 M0 þ
XN
i¼1

Mi

 !
þ ð2K1þ2K2þKT

3 þK3þ2K4Þ
					

					 ¼ 0 ð35Þ

Eqs (34) and (35) are the characteristic equation and frequency equation of the system,
respectively.
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Results and Discussion
To verify the efficacy of the dynamic model proposed in this paper, two comparisons are con-
ducted with the results of published literatures.

The first comparison is made using the result computed with classical mechanics (the effect
of size is not considered). We adopt the plate model that is shown by M1. The boundary condi-
tion is assumed as simply supported at four edges (SSSS). The geometrical parameter and
material parameter of the plate are shown in Table 4. The mass is attached to the plate which is
shown in Fig 2. The parametres of the attached masses are as follows: (xi,yi) = (0.75a,0.25b)
andm1 = 50 kg. The bending stiffness in Eq (8) is adopted because we use classical mechanics.
The frequency can be calculated by Eq (35), which is compared with the one in the Reference
[19]. The comparison results are shown in Table 5. The comparisons show that the frequencies
computed using the equation in this paper are agree very well with the computation results of
reference [19], both within 0.5% error compared with the exact value. This agreement and
accuracy indicate that the equation derived in this paper for calculating the frequencies of
plates with attached masses is correct and has sufficient precision. The precision is enough in
practical engineering application.

The second comparison is made using the result computed with the DQ method and the
Rayleigh-Ritz method (the effect of size is considered). We adopt the plate model that is shown
by M2. The boundary condition is assumed as simply supported at four edges (SSSS). The geo-
metrical parameter and material parameter of the plate are shown in Table 4. The character
length of l is 3 μm. The bending stiffness in Eq (9) is adopted while the frequency is calculated
in Eq (35). We made a comparison between the computed result and the result of Reference
[17]. The comparison result is shown in Table 6. The results obtained from the method

Table 4. Geometric andmaterial parameters of the plates studied in this paper.

Dimension parameter M1 M2 M3 Material parameter M1 M2 M3

Length a 2 m 50 μ m 29 μ m E (GPa) 205.1 50 160

Width b 2 m 50 μ m 87 μ m Poisson's ratio 0.3 0.33 0.27

Thickness H 0.005 m 5 μ m 2 μ m Density (kg/m3) 7850 2700 2320

doi:10.1371/journal.pone.0151821.t004

Fig 2. Diagrammatic sketch of the parameters of the attachedmass, P1 (50kg, 0.75a, 0.25b).

doi:10.1371/journal.pone.0151821.g002
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proposed in this paper agree very well with the those computed by using the DQ method and
the Rayleigh-Ritz method [17]. This agreement reveals that the equation reported in this paper
may be used to analyze the free vibration of micro-plates for which the size of the effect needs
to be considered.

Finally, we adopt the equation derived in this paper for calculating the natural frequencies
of micro-cantilever plates with attached masses. we choose a type of rectangular micro-cantile-
ver plate, which is shown as the plate M3 in Table 4. The cantilever length, width, thickness, E,
Poisson's ratio and density are approximately 29μm, 87μm, 2μm, 160GPa, 0.27 and 2320kg/
m3, setting l = 0.365 μm imposes the characteristic length. Fig 3 shows the locations of the mas-
ses, and the parameters of the masses are listed in Table 7. Then, the natural frequencies of the
plate with 1–5 attached masses are computed, and the results are shown in Table 8.

Table 5. Natural frequencies of the M1 plate simply supported at four edges (comparison with classical mechanics).

Method Natural frequencies (rad/s)

ω1 ω2 ω3 ω4 ω5

FEM[19] 32.503 63.913 97.13 130.077 182.947

ANCM[19] 31.814 63.232 95.415 127.616 180.593

Exact[19] 31.825 63.318 95.415 127.741 180.677

Present 31.854 63.550 95.415 128.073 180.891

Error (%) 0.090 0.367 0.000 0.260 0.119

doi:10.1371/journal.pone.0151821.t005

Table 6. Natural frequencies of the M2 plate simply supported at four edges (comparison with the DQmethod and the Rayleigh-Ritz method;
based on corrected Cosserat’s theorem (the effect of size is considered)).

Mode Reference[17](f / 107 Hz) (f / 107 Hz)

DQ method Rayleigh-Ritz method Frequency Modal combination(m, n)

1 1.289 1.292 1.293 (1, 1)

2 5.154 5.171 5.174 (2, 2)

3 11.59 11.63 11.64 (3, 3)

doi:10.1371/journal.pone.0151821.t006

Fig 3. Locations of the attachedmasses. Five points are choosing on the plate, there mass and location are different.

doi:10.1371/journal.pone.0151821.g003
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In the following, some studies about parameters are carried out by using the dynamic model
which is attached in the masses on the plate M3 in Table 4. The locations and the parameters
are showed in Fig 3 and in Table 7.

Fig 4 shows that the variation of first-five resonant frequencies of the micro-cantilever plate
attached five points with characteristic length. From this figure, it is seen that the change of the
characteristic length causes the change of the micro-cantilever plate’s resonance frequency.
When the vibration mode is different, the degree of frequency variation is also different. When
the vibration modal is constant and characteristic length is small, the change of the micro-can-
tilever plate's resonance frequency is not obvious. When the characteristic length is big, the
effect of size is obvious. With the increase of the characteristic length, the resonance frequency
has increased dramatically.

We analyzed different Poisson's ratio and the quality of the five points distribution for the
first five modes as a change of the micro-cantilever plate’s resonant frequency. From the Fig 5,
it can be observed that different Poisson's ratio and points distribution will cause the change of
the micro-cantilever plate’s resonance frequency, and each order resonance frequency’s change
is different. Some resonance frequency reduce with the increase of the poisson's ratio, others
are higher, but the change of the higher resonance modes are significant than the lower reso-
nance modes.

Fig 6 shows that the change of first-five resonant frequencies with different thicknesses of
the plate and the qualities of five points distribution. From this figure, it is observed that the
increase of the thickness will cause the increase of the micro-cantilever plate’s resonance fre-
quency, and the increase of the higher resonance frequency are significant than the lower reso-
nance frequency. About plate thickness influence for resonant frequency, which can be
explained from bending rigidity. When the thickness increase, the bending stiffness will
increase. It cause the increase of the micro-cantilever plate’s resonance frequency.

Conclusions
This paper studies the dynamic characteristics of a micro-cantilever plate with multiple con-
centrated masses attached. Classical mechanics (the effect of size is not considered) and the
corrected Cosserat’s theorem (the effect of size is considered) are alternatively used to establish

Table 7. Location andmass of the attachedmass on the plate.

Attached mass P1 P2 P3 P4 P5

Location (0.5a, 0.125b) (0.75a, 0.25b) (0.25a, 0.625b) (a, 0.75b) (0, b)

Mass m1 = 0.05m0 m1 = 0.1m0 m1 = 0.15m0 m1 = 0.2m0 m1 = 0.25m0

doi:10.1371/journal.pone.0151821.t007

Table 8. Natural frequencies of the plate-like micro-cantilever beamwith attachedmasses from P1 to P5 for the first five modes.

Attached mass f1 f2 f3 f4 f5

P1 3.8823E+05 2.4210E+06 2.4223E+06 6.7387E+06 7.6039E+06

P1, P2 3.8751E+05 2.3231E+06 2.4221E+06 6.0400E+06 7.4270E+06

P1, P2, P3, 3.6201E+05 2.1220E+06 2.3386E+06 5.6949E+06 7.4267E+06

P1, P2, P3, P4 3.1706E+05 1.6566E+06 2.1992E+06 5.2193E+06 7.4145E+06

P1, P2, P3, P4, P5 2.4472E+05 1.1501E+06 1.9518E+06 4.5446E+06 6.6338E+06

doi:10.1371/journal.pone.0151821.t008
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Fig 4. Different characteristic length for the first-five modes as a change of the micro-cantilever plate’s resonant frequency, l = 0μm-5μm.

doi:10.1371/journal.pone.0151821.g004

Fig 5. Different Poisson’s ratio for the first five modes as a change of the micro-cantilever plate’s resonant frequency, μ = 2–4.

doi:10.1371/journal.pone.0151821.g005
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the kinetic energy and elastic potential energy of the micro-cantilever plate, including the
energy of the particles. The Galerkin discretization and the Lagrang equations are used to
establish the dynamic model of the micro-cantilever plate with multiple concentrated masses
attached.

To verify the accuracy of the model, first, the proposed method is compared with the finite
element method (FEM) and analytical and numerical combined method (ANCM). The fre-
quencies of a plate whose boundary condition is SSSS with attached masses are computed by
the three methods, and the results are in high accordance with one another. All errors are
within 0.5% of the exact solution. This agreement suggests that the equation derived in this
paper for calculating the frequencies of a plate with attached masses is accurate and has suffi-
cient precision.

Next, the proposed method is compared with the DQ method and the Rayleigh-Ritz
method. The frequencies of a plate simply supported at four edges are calculated by the three
methods, and the results agree well with one another. This comparison shows that the method
proposed in this paper can be applied to analyzing the free vibration of micro-plates when the
effect of size is considered.

Finally, the equation derived in this paper for calculating the natural frequencies of micro-
cantilever plates with attached masses is used to calculate the natural bending frequencies of a

Fig 6. Different thickness of the plate for the first five modes as a change of the micro-cantilever plate’s resonant frequency, H = 0μm-5μm.

doi:10.1371/journal.pone.0151821.g006
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plate-like micro-cantilever beam with concentrated masses attached, and the results with 1–5
masses are presented. Also we analyzed different characteristic length, Poisson's ratio and
thickness of the plate for the first five modes as a change of the micro-cantilever plate’s reso-
nant frequency. According the analysis results, we can further optimize relevant parameter and
obtain the more accurate results.
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