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Blood transcriptomics reveal the evolution and
resolution of the immune response in tuberculosis
Olivier Tabone1*, Raman Verma2*, Akul Singhania1, Probir Chakravarty3, William J. Branchett1, Christine M. Graham1, Jo Lee2,
Tran Trang4, Frederic Reynier4, Philippe Leissner4, Karine Kaiser5, Marc Rodrigue6, Gerrit Woltmann2, Pranabashis Haldar2**, and
Anne O’Garra1,7**

Blood transcriptomics have revealed major characteristics of the immune response in active TB, but the signature early after
infection is unknown. In a unique clinically and temporally well-defined cohort of household contacts of active TB patients that
progressed to TB, we define minimal changes in gene expression in incipient TB increasing in subclinical and clinical TB. While
increasing with time, changes in gene expression were highest at 30 d before diagnosis, with heterogeneity in the response in
household TB contacts and in a published cohort of TB progressors as they progressed to TB, at a bulk cohort level and in
individual progressors. Blood signatures from patients before and during anti-TB treatment robustly monitored the
treatment response distinguishing early and late responders. Blood transcriptomics thus reveal the evolution and resolution
of the immune response in TB, which may help in clinical management of the disease.

Introduction
Tuberculosis (TB) resulted in 1.5 million deaths in 2018. Al-
though a quarter of the world’s population is estimated to have
been infected by Mycobacterium tuberculosis (WHO, 2019), most
infected individuals remain asymptomatic (latently infected
[LTBI]; Richeldi, 2006) and are suggested to have a 5–15% life-
time risk of developing TB (Vynnycky and Fine, 2000). How-
ever, recent epidemiological studies suggest that most cases
occur within 2 yr after infection (Behr et al., 2018; Behr et al.,
2019; Behr et al., 2021) with the median time to TB disease
during infection occurring in the first year or earlier (Emery
et al., 2021; Menzies et al., 2021), implicating early immune
events as key determinants of outcome (Cadena et al., 2016).
Heterogeneity of LTBI in HIV-coinfected humans and nonhu-
man primates has been reported (Barry et al., 2009; Esmail et al.,
2016; Lin et al., 2016), but current assays cannot characterize the
underlying heterogeneity of immune responses toM. tuberculosis
determining TB risk or those that accompany disease progres-
sion. Clinically, the progressor LTBI state has been categorized
into two phenotypes: (1) incipient TB, no clinical symptoms,
radiological abnormalities or microbiological evidence of active
TB disease; and (2) subclinical TB, no clinical symptoms, but
either radiological changes or microbiological evidence of active
TB disease (Davies and Pai, 2008; Drain et al., 2018; Kendall

et al., 2021; Pfyffer et al., 1997; Richeldi, 2006; WHO, 2019).
Clinical TB patients display radiological features and microbio-
logical evidence of active TB disease (Davies and Pai, 2008; Drain
et al., 2018; Kendall et al., 2021; Pfyffer et al., 1997; Richeldi,
2006; WHO, 2019). Thus, a proportion of patients presumed as
LTBI may either be incipient or already have subclinical disease,
contributing to onward transmission of infection (Dowdy et al.,
2013; Drain et al., 2018; Kendall et al., 2021). Reported reduced
blood transcriptional signatures of TB risk were not related to
subclinical TB or incipient disease or to the blood signature of
active TB (Gupta et al., 2020; Penn-Nicholson et al., 2020; Scriba
et al., 2017; Singhania et al., 2018a; Singhania et al., 2018b;
Suliman et al., 2018; Zak et al., 2016). Earlier detection could
inform treatment and limit transmission.

Diagnosis of active pulmonary TB requires microbiological
samples for evidence of infection, which can be difficult to ob-
tain (Davies and Pai, 2008; Richeldi, 2006). A blood transcrip-
tional signature has been reported in patients with active TB
(Berry et al., 2010; Blankley et al., 2016; Bloom et al., 2013;
Joosten et al., 2013; Maertzdorf et al., 2011; Ottenhoff et al., 2012;
Roe et al., 2016; Scriba et al., 2017), which is dominated by type I
IFN signaling, reflects the extent of radiographical lung disease
(Berry et al., 2010; Moreira-Teixeira et al., 2020), and is
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diminished upon treatment (Berry et al., 2010; Bloom et al.,
2012; Cliff et al., 2013; Thompson et al., 2017). Biomarkers to
monitor TB treatment success are needed to accelerate assess-
ment of treatment responses and determine the required
treatment duration to adapt drug treatment regimens. The ac-
cepted biomarker is sputum conversion to negative culture after
2 mo, which has low sensitivity and modest specificity for pre-
diction of treatment failure (Horne et al., 2010; Mitchison, 1993).
Chest x rays (CRXs) and inflammatory markers commonly used
to assess the response to treatment are not universally available
and difficult to standardize (Walzl et al., 2011).

How the host response evolves after infection of humans
with M. tuberculosis toward the peak response in active TB is as
yet unclear. Sequential immune responses were reported during
TB progression but not linked to the clinical disease status, with
adolescents evaluated at enrollment and then only sampled ev-
ery 6mowith follow-up over 2 yr, or evaluated at baseline and at
the end of 2 yr (Scriba et al., 2017). Since this study was not on
household contacts, knowledge of when each individual was
exposed to M. tuberculosis infection could not be estimated,
limiting the scope for detailed temporal evaluation of changes in
the immune response during progressive infection. Without
detailed clinical characterization of patients upon serial sam-
pling before TB diagnosis, differential gene expression during
different phenotypic stages of disease ranging from incipient TB
to subclinical TB to clinical TB cannot be assessed. Moreover,
confounding interpretations due to reinfection in high TB bur-
den settings during the prospective period of observation and
sampling cannot be ruled out (Charalambous et al., 2008; van
Helden et al., 2008; van Rie et al., 2005; van Rie et al., 1999;
Verver et al., 2005; Warren et al., 2004). Although blood tran-
scriptional signatures have been shown to reflect the response to
TB treatment (Berry et al., 2010; Bloom et al., 2012; Cliff et al.,
2013; Penn-Nicholson et al., 2020; Thompson et al., 2017), the
patterns of resolution with treatment in different patient groups
using detailed kinetic analysis at multiple time points has not
been evaluated.

To address these questions, we undertook a prospective co-
hort study comprising participants with microbiologically con-
firmed pulmonary TB and household contacts of pulmonary TB
at Leicester, UK, a high-income, moderate TB setting (TB inci-
dence circa 40 per 100,000 population). An integrated clinical-
research platform enabled recruitment, regular follow-up, and
detailed characterization of participants at serial time points of
prospective observation (Materials and methods), with a low
probability of new community-acquired infection during pro-
spective follow-up of TB contacts. In total, 356 household con-
tacts of pulmonary TB and 74 participants with incident TBwere
recruited between 2015 and 2018 and prospectively followed
for 24 mo. TB contacts were reviewed every 3–6 mo with RNA
sequencing (RNA-Seq) samples collected, whole-genome se-
quencing of theM. tuberculosis strain to trace back contacts to the
index case, and CRX performed to screen for subclinical TB at
each visit, with detailed radiological characterization and clini-
cal investigation, including invasive sampling (bronchoscopy), if
x-ray abnormalities were suspected or symptoms reported. This
allowed reliable characterization of participants with incipient,

subclinical, or clinically active TB, and linking blood transcrip-
tional signatures to the clinical phenotype as disease progressed.
Active TB patients were sampled, and clinical characterization
was undertaken before starting TB treatment, and prospectively
at scheduled visits during treatment, with microbiological in-
vestigation, radiological surveillance with CRX, and computed
tomography scan as clinically indicated. Changes in blood gene
expression in different clinical subgroups of active TB patients
were related to the time of diagnosis and to detailed time points
during treatment. Bioinformatics analysis of blood RNA-Seq
data of contacts revealed minimal changes in gene expression
in incipient TB, increasing as patients progressed to subclinical
and clinical TB, with similar expression profiles in these clinical
phenotypes for published reduced risk signatures of TB. More-
over, gene expression changes in the blood of Leicester TB
progressors, and a published cohort of TB progressors from a
high burden TB setting, were most pronounced at 30 d before
diagnosis, although heterogeneity was observed over time be-
fore diagnosis. The signature of TB progression in the Leicester
cohort was compared with active TB disease, before and during
treatment, to understand the immune events underlying the
evolution and resolution of TB disease (Fig. 1; study design). Our
study provides information of the underlying host immune re-
sponse at the different stages of disease and a roadmap to de-
scribe the temporality of gene expression changes that occur
during progression and treatment of active TB, which may help
in clinical management of TB patients.

Results
Blood signature of gene expression changes in incipient,
subclinical, and clinical TB
To determine how global changes in differential gene expression
develop as individuals progress from incipient TB to subclinical
TB and then to to clinical TB and whether these clinical phe-
notypes show a graded increase in the immune response, we
performed detailed analysis of changes in gene expression over
time in blood of clinically defined Leicester household TB con-
tacts who then progressed to TB (Fig. 2). Contacts who pro-
gressed to TB were subdivided according to their clinical
phenotype at the time point of sampling (Table S1). In the 14
household contacts, incipient TB was concurrent with samples
(n = 10) collected earlier than 40 d before diagnosis; subclinical
TB spread between earlier than day 40 (n = 1), 21–40 d (n = 3),
and <20 d (n = 6) before diagnosis; clinical TB spread between
21–40 d (n = 4) or <20 d (n = 14) before diagnosis (Table S1).
Numbers of up- and down-regulated genes were minimal in
incipient TB (94 up-regulated and 48 down-regulated genes),
increasing in subclinical TB (483 up-regulated genes and
81 down-regulated genes) and in clinical TB (572 up-regulated
and 136 down-regulated genes; Fig. 2 A). Fewer down-regulated
genes were detected in each of the different clinical phenotypes
of the TB contacts as they progressed to TB (Data S1). Of the up-
regulated genes, Metacore pathway analysis showed a domi-
nance of the IFN-α/β signaling pathways in subclinical TB and
clinical TB with an increase in the ratio in the number of genes
per pathway, 14/62 and 16/62, respectively, with much lower
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Figure 1. Study plan.
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representation in incipient TB, 5/62 (Fig. 2 B). Incipient TB
showed IFN-γ activation of macrophages and the classical
complement as the top represented pathways; however, only 5/
50 and 5/53 genes were represented in each pathway, although
with a much lower ratio of genes per pathway overall (Fig. 2 B
and Data S1). The P values for the different clinical subgroups

showed a corresponding increasing statistical significance for
the IFN-α/β signaling pathways, progressing from the incipient
TB (8.65 × 10−5), subclinical TB (4.75 × 10−13), and clinical TB
(2.44 × 10−14) respectively (Fig. 2 B). Similarly, the type I IFN
modules increased in subclinical TB and clinical TB, although
clinical TB progressors showed additional changes resembling

Figure 2. Blood signature of gene expression changes in incipient, subclinical, and clinical TB. Analysis of RNA-Seq in blood from Leicester contacts,
incipient; subclinical TB; clinical TB. (A) Volcano plots of DEGs (number down-modulated, right, up-modulated, left; x axis, log2 fold change of patients
compared with controls; y axis −log10 of adjusted P value [padj], Benjamini–Hochberg; genes with absolute (abs) [log2 fold change] >1 and adjusted P value
<0.05 are considered statistically significantly differentially expressed, red dots). (B) Statistically significant top pathways derived from Metacore analysis
(Data S1). (C)Modular transcriptional analysis (red and blue indicate modules over- or under-abundant compared with controls; color intensity and size of dots
represent degree of perturbation; FDR P value <0.05 considered significant; name indicates biological processes associated with modular genes).
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the signature of active TB, including an increase in the innate/
hemopoeitic mediators module (Fig. 2 C). A decrease in the
natural killer (NK) and T cell module in incipient, subclinical,
and clinical TB was observed, with incipient TB showing no
other detectable changes at this stringent level of statistical
analysis (Fig. 2 C).

The top 30 differentially expressed coding genes (false dis-
covery rate [FDR] P < 0.05, log2 fold change >1) ranked by fold
change, selected from a total of 47 genes in incipient TB, 233
genes in subclinical TB, and 311 genes in clinical TB, showed that
many genes were differentially expressed across all three clin-
ical phenotypes, albeit to different levels (Table 1 and Data S1).
These included the genes C1QC***, SERPING1***, ETV7***, and
BATF2*** expressed in all three clinical phenotypes. C1QA**,
C1QB**, C2**, and EXOC3L1**were expressed in two of the clinical
phenotypes, and ANKRD22** and GBP6** were significantly ex-
pressed in subclinical TB and clinical TB and were barely ele-
vated above controls in the incipient TB (Data S1, full incipient
TB versus control tab). Although certain genes appeared to be
uniquely expressed within each clinical phenotype, most could
be detected across the three clinical phenotypes, albeit to dif-
fering levels. Seemingly unique genes within the top 30 gene set
of the incipient TB subgroup, such as CCL2, HESX1, PCGF2, LCN8,
and SIGLEC1, were only elevated to a very low level against
controls in the full set of differentially expressed genes, poten-
tially suggesting that they may come up early in the immune
response toM. tuberculosis, although they were also expressed at
a low level in clinical TB (Data S1; full incipient TB, full clinical
TB versus control tabs). The expression of the complement
fixing genes C1QC and C1QB in the top 30 genes of the incipient
TB versus control group is in keeping with the Metacore path-
way analysis in Fig. 2 B; however, these genes were also dif-
ferentially expressed within the top 30 genes of subclinical TB
and clinical TB (Data S1; full subclinical TB, full clinical TB
versus control tabs). BATF2 expression increased significantly
with increasing disease: 1.4 log2 fold change, P value 0.0011 in
incipient TB; 2.9 log2 fold change, P value 7.6 × 10−12 in sub-
clinical TB; and 3.48 log2 fold change, P value 6.07 × 10−24 in
clinical TB. Expression of SERPING1 and ETV7 showed a similar
increase in expression as individuals who progressed to TB
(Table 1 and Data S1).

Genes from a reduced published signature of TB risk are
increasingly differentially expressed in incipient, subclinical,
and clinical TB patients
Next we assessed changes in gene expression of the published
reduced 16-gene TB risk signature (Zak et al., 2016; GEO acces-
sion no. GSE79362) in the different Leicester clinical phenotype
groups. Only 7 out of this published 16-gene TB risk signature
(Fig. 3 A, ***) were common to the most highly differentially
expressed genes (DEGs) top 30 genes set from Leicester incipient
TB, subclinical TB, and clinical TB (Table 1). Expression of
FCRGR1A and SEPT4was only found in the 30-gene set of clinical
TB; GBP5 in the 30-gene set of subclinical TB; and ANKRD22 in
the 30-gene sets of subclinical TB and clinical TB. Expression of
SERPING1, ETV7, and BATF2 was detected in all three clinical
phenotype 30-gene sets (Table 1 and Fig. 3 A). The Zak 16-gene

signature was then tested on the Leicester incipient TB, sub-
clinical TB, and clinically active TB groups against controls
(Fig. 3 B) and found to be differentially expressed in subclinical
TB, increasing in clinical TB but not in incipient TB (Fig. 3 B),
with similar findings with distinct published reduced TB risk
signatures (data not shown). Only slight increases in expression
of SERPING1, ETV7, and BATF2 were seen in incipient TB, in-
creasing as contacts progressed to subclinical TB and clinical TB.
This is in keeping with our independent findings of expression
of SERPING1, ETV7, and BATF2 in the blood of Leicester TB
contacts and their increase as patients progressed from incipient
TB to subclinical TB and then to clinical TB phenotypes (Fig. 2 A
and Data S1).

Blood signature reveals differential gene expression changes
over time in patients before TB diagnosis
We next analyzed blood transcriptional changes that occurred
over time in Leicester TB household contacts as they progressed
to TB, together with patients sampled before they were diag-
nosed with TB (progressors) in view of our findings that high
levels of differential gene expression are mainly seen in pro-
gressors with subclinical TB and clinical TB, rather than in in-
cipient TB. RNA-Seq data were analyzed in blood from Leicester
household contacts of active TB patients at different time points
after recruitment as they progressed to clinical TB (Fig. 4 A;
Table S2, top, n = 12 TB contacts; total of 21 samples) together
with Leicester patients sampled before they were diagnosed
with active TB by culture/microbiological/clinical positivity
(Fig. 4 A; Table S2, bottom, n = 11 progressors, total of 12 sam-
ples), all before treatment; active TB patients at the time of di-
agnosis (Fig. 4 A, far right; Table S2, top, n = 49 TB patients), all
as compared with healthy controls (Table S2, top, n = 38 healthy
controls). The biggest changes in gene expression (log2 fold, FDR
P value of 0.05 cutoff) were observed at 0–20 d before TB di-
agnosis in the contacts (n = 11) and progressors (n = 9; 765 up-
regulated and 125 down-regulated genes; Fig. 4 A). Although the
change in the number of genes just before diagnosis appeared
similar to that observed in active TB patients at the time of di-
agnosis (1,231 up-regulated and 511 down-regulated genes; Fig. 4
A, far right), the extent of differential expression in the blood of
active TB patients at the time of diagnosis was higher (Fig. 4 A,
far right, scale on y axis 0–100; −log10 P adjusted) as compared
with the contacts and progressors sampled before diagnosis
(Fig. 4 A; 0–20 d before diagnosis, scale on y axis 0–15; −log10 P
adjusted). Changes in gene expression were substantially lower
between 21–40 d before diagnosis with low level up-regulation
of 185 and down-regulation of 80 genes (Fig. 4 A; representative
of four TB contacts that progressed to TB and three TB progressors
sampled before diagnosis). At 41–832 d before TB diagnosis, when
six samples were all from TB contacts subsequently progressing to
clinical TB, this change in gene expression was further reduced,
with very low levels of 109 up-regulated and 34 down-regulated
genes (Fig. 4 A, far left).

We next performed more in-depth analyses on Leicester TB
household contacts alone as they progressed to TB, recruited
and sampled from 2015 to 2018 and followed up to date, by
pooling our more recently recruited dataset with our previously
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published dataset (Singhania et al., 2018a; total 38 samples from
14 TB household contacts, sampled as they progressed to TB
against matched controls; Fig. 4 B and Table S3). Lower levels of
gene expression were now observed between 0 and 31 d before
diagnosis with only 23 up-regulated and 1 down-regulated gene
(Fig. 4 B; log2 fold, FDR P value of 0.05 cutoff; scale on y axis 0–4;
−log10 P adjusted), including up-regulation of GBP5, SEPTIN4,
ETV7, C1QC, BATF2, C1QB, FCGR1A, GBP6, and SERPING1. Gene
expression changes at earlier time points fluctuated over time,
with 15 up-regulated and 8 down-regulated genes observed be-
tween days 86 and 150 but not at 32–58 before diagnosis (Fig. 4 B).

Up-regulation of these genes was still detected, albeit to a much
lower level, at all the earliest time points before diagnosis
(Data S2). Some exceptions included C1QB, C1QC, and C1QA,
which were in the top seven DEGs at the time points 86–150
before diagnosis, while in the 0–31 d before diagnosis, only
C1QB and C1QC were in the top eight expressed genes at the
level of fold change over controls, suggesting heterogeneity
of gene expression over time.

We next analyzed a bigger dataset of individuals from South
Africa reported to have subsequently progressed to TB, reported
to have been sampled at 6 monthly intervals for blood RNA-Seq

Table 1. Top 30 gene signatures of each of incipient, subclinical, and clinical TB

Incipient versus control Subclinical versus control Clinical versus control

MTRNR2L10a MSLN MTRNR2L10a

C1QCb CCDC144A C1QCb

C1QBa SPACA3 MTRNR2L1

CCL2 HIST1H4A C1QBa

HESX1 HIST1H1B ANKRD22a

PCGF2 HIST1H4F SEPT4

SERPING1b NXPH3 SERPING1b

LCN8 HIST1H4B BATF2b

SEMA6B ZBED6 FAM20A

SIGLEC1 HSPA12B ETV7b

C1QAa TRAJ4 EXOC3L4

ISG15 ETV7b PDCD1LG2

AHRR TAS2R3 METTL7B

NEIL3 HTRA1 APOL4

FBXO39 BATF2b CFB

AXL SERPING1b C1QAa

C2a GALNT4 VWA3B

IFI6 HIST2H2AB SLC8A2

LGALS2 HIST1H1D GBP6a

IFITM3 HIST1H1E FCGR1A

RUFY4 GBP6a C2a

ETV7b HIST1H3C CARD17

TCN2 SLC2A14 EXOC3L1a

LGALS3BP TICAM2 RHOV

EXOC3L1a GBP5 AOC1

COL23A1 C1QCb KCNMA1

MT2A TAS2R60 FAM26F

BATF2b ANKRD22a KCNJ10

CXCL10 CH17-296N19.1 CD274

SCT HIST1H4C SDC3

Top 30 ranked genes selected by log2 fold change and FDR P = 0.05: 30 genes out of 47 coding DEGs in incipient TB; 30 genes out of 233 coding DEGs in
subclinical TB; 30 genes out of 311 coding DEGs in clinical TB. No footnote: genes are unique to each of incipient, subclinical, and clinical top 30 genes
expressed, although expressed in all datasets at lower levels.
aCommon in two out of three of the 30-gene signatures.
bCommon in all three 30-gene signatures.
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analysis before diagnosis, although without serial clinical
follow-up (Scriba et al., 2017; Zak et al., 2016). We further
subdivided the sampling into tighter time points and examined
differential gene expression levels as compared with LTBI
nonprogressors recruited in parallel. Again the highest levels of
gene expression changes were observed between 0 and 31 d
before diagnosis, with 1,155 up-regulated and 473 down-
regulated genes (Fig. 4 C; log2 fold, FDR P value of 0.05 cutoff;
scale on y axis 0–15; −log10 P adjusted), including up-regulation
of SEPTIN4, SERPING1, BATF2, GBP6, ETV7, and FCGR1A, similar to
those detected in our Leicester contacts 0–31 d before diagnosis
(Fig. 4 B). Expression of C1QA, C1QB, and C1QC was only detect-
able 0–31 d before diagnosis, perhaps reflecting the level of
detectability over controls. Changes in differential gene ex-
pression at most other time points before diagnosis were very
low (Fig. 4 C and Data S3), although fluctuations in differential
gene expression were observed over time, for example with
marked changes at 181–250 (88 up-regulated and 46 down-
regulated genes) and 251–360 d (51 up-regulated and 3 down-
regulated genes) before diagnosis, as compared with other time
points showing minimal changes. Among the top 30 genes found
to be up-regulated between 181 and 250 d before diagnosis were
SEPTIN4, GBP6, BATF2, ETV7, SERPING1, and FCGR1A, although
these genes were also among the top up-regulated 30 genes at
0–31 d before diagnosis, albeit then at a more significant level
(Data S3), suggesting a graded increase in the expression of these
genes as progressors approached TB diagnosis, with some het-
erogeneity of gene expression over time.

The blood modular signature of TB contacts and TB patients
sampled prediagnosis as in Fig. 4 A showed a reduction in the NK
and T cell module (dominated by IFNG and effector T and NK cell
genes) at >40 d before diagnosis, followed by an increase in the
innate/hemopoeitic mediator module from 40 d. Increased type
I IFN–inducible and inflammasome/granulocyte modules to-
gether with a reduction in the NK and T cell, and T and B cell
modules were detected at 0–20 d before diagnosis (Fig. 4 D),
similar to the reported TB blood signature (Moreira-Teixeira
et al., 2020; Singhania et al., 2018a). The decrease in the NK

and T cell module fluctuated over time before diagnosis in
progressors, which could reflect fluctuation in the response or
heterogeneity in the progressors. Changes in the type I IFN/C’/
myeloid and inflammasome/granulocyte modules together with
a reduction in the NK and T cell module were observed in
Leicester TB contacts alone, but to a lesser extent only detectable
from 30 d before diagnosis using a nominal P value of 0.05
rather than FDR (Fig. 4 E). The initial change at 200–850 d be-
fore diagnosis again consisted of a reduction in the NK and T cell
module, although this was not consistent, again reflecting het-
erogeneity over time. Changes in the Zak modular signature
over timewere also mainly detectable over time using a nominal
P value of 0.05 rather than FDR (Fig. 4 F). At 0–31 d before di-
agnosis, the modular signature for the Zak progressors (Fig. 4 F)
was almost identical to that of active TB (Fig. 4 D, far right;
Moreira-Teixeira et al., 2020; Singhania et al., 2018a), although
with less enrichment as at a nominal P value of 0.05 (Fig. 4 F),
including enrichment of inflammasome/granulocytes, innate/
hemopoetic mediators, innate immunity PRR/C’/granulocytes,
IFN/PRR, and IFN/C’/myeloid modules and decreased enrich-
ment of T cell, B cell, and NK and T cell modules. The modular
signature was barely detectable at other time points before di-
agnosis, with the IFN/PRR and IFN/C’/myeloid modules missing
at 32–78 and 79–104 d but then present at 181–250 and 251–360 d
before diagnosis, again suggesting temporal heterogeneity of
gene expression or potential reinfection as reported in high-
burden TB settings (Charalambous et al., 2008; Uys et al.,
2015; van Helden et al., 2008; van Rie et al., 2005; van Rie
et al., 1999; Verver et al., 2005).

Expression of the 30-gene signature of incipient, subclinical,
and clinical TB at different time points before diagnosis in
individual TB progressors from Leicester contacts and Zak
et al. (2016) TB progressor cohorts
To investigate the heterogeneity among Leicester TB household
contacts and the Zak progressors, the average gene expression
value of the 30-gene signatures (from Table 1) derived from
incipient TB (blue), subclinical TB (orange), and clinical TB (red)

Figure 3. Genes from a reduced published signature of TB risk are increasingly differentially expressed in incipient, subclinical, and clinical TB
patients. (A) List of published TB 16-gene risk signature from Zak et al. (2016) where *** indicates the presence of a 30-gene signature from Leicester in-
cipient, subclinical TB, and clinical TB from Table 1. (B) Volcano plots showing differential expression of the Zak 16 gene signature in blood of Leicester clinical
symptoms groups compared with healthy controls (left to right: incipient TB, subclinical TB, and clinical TB; x axis represents log2 fold change of patients as
compared with healthy controls; y axis represents the −log10 of adjusted P value (padj), Benjamini–Hochberg; genes with abs(log2 fold change) >1 and adjusted
P value <0.05 are considered statistically significantly differentially expressed and depicted on the colored plots.
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was assessed at different time points before diagnosis in indi-
vidual Leicester TB contacts (n = 9) and individual Zak pro-
gressors (SupTab1; SupTab6_RNA-Seq-Metadata from Zak et al.,
2016; training set n = 18; GEO accession no. GSE79362) where
two ormore sampling time points were evident. The average 30-
gene incipient TB, subclinical TB, and clinical TB signatures
were shown to be marginally elevated over the baseline (dotted
line for each) in four of the Leicester TB household contacts at all
time points analyzed before TB diagnosis, 0–30 d, with the
subclinical TB and clinical TB signatures showing slightly better
performance (Fig. 5 A, shorter time points, n = 4). Three out of
four of these contacts who progressed rapidly to TB disease had
been infected with an outbreak strain of M. tuberculosis identi-
fied by whole genome sequencing. TB contacts who progressed
over 100–200 d showed a greater elevation against baseline,
similar for the incipient, subclinical, and clinical TB 30-gene
signatures, increasing at times close to TB diagnosis (Fig. 5 A,
longer time points). One TB contact (Patient ID 493) showed
some fluctuation, although always above baseline for all three
signatures (Fig. 5 A, longer time points, n = 5). The average 30-
gene incipient TB, subclinical TB, and clinical TB signatures
showed an increase over the baseline (dotted line, LTBI controls)
in the Zak progressor patients between 4–600 d before diagnosis
(Fig. 5 B), although a sharp increase in the signatures over time
was only observed in around five of the progressors from just
>200 d to a maximum before diagnosis. Other patients showed
heterogeneity in expression of these 30-gene signatures over
time, many showing elevated signatures maintained at the same
level over time, with others actually decreasing (Fig. 5 B). The
published Zak 16-gene signature showed almost superimposable
curves with very similar increases above the baseline controls
over time in the individual Leicester TB household contacts (Fig.
S1 A, shorter time points and longer time points), and in the Zak
progressors, with identical increases in the five individuals and
the same heterogeneity as observed with the 30-gene signatures
(Fig. S1 B).

Transcriptional blood signature reveals differential treatment
responses in clinically defined TB subgroups
There is currently a need for early biomarkers to monitor TB
treatment success earlier and to evaluate robustly the duration
of treatment required in TB patients to adapt drug treatment
regimens. To establish treatment response signatures, RNA-Seq

was performed on blood from 74 TB patients at diagnosis
(treatment-naive), and longitudinally, at carefully planned time
points during TB treatment. We first monitored the transcrip-
tional response to treatment across the whole cohort, and second
monitored the transcriptional response of individual patients to
identify distinct profiles of their transcriptional response that
might help to stratify clinical treatment phenotypes. Blood was
collected and subjected to RNA-Seq from the 74 TB patients at
diagnosis before treatment and thereafter, at 1 and 2 wk, at 1, 2,
4, 5, 6, 7/8, 9/10, and 11/12 mo, and at >1-yr after treatment (Fig.
S2, A and B) from clinically defined patients: pulmonary TB,
difficult TB cases, TB drug–resistant, outbreak TB strain, and
other TB progressors (Table S4). TB patients received either
standard anti-TB treatment (ATT; 200 d or less) or extended
ATT (>200 d; Table S4), according to their clinical assessment
through treatment, with smear-positive patients mostly falling
within the extended ATT patient group (Fig. S2 C). The sample-
to-sample correlation heatmap and principal component analy-
sis (PCA) of all the active TB patients at diagnosis before treat-
ment and at the different time points during the treatment
course showed samples to mainly cluster according to time
points, with some heterogeneity (Fig. S2, D and E). The top 1,000
most variable gene expression heatmap distinguished patients
according to time of treatment, and according to smear posi-
tivity and negativity at treatment initiation (T0; Fig. S2 D). The
innate/hemopoietic, IFN/PRR, and IFN/C’/myeloid modules
were found to be over-abundant as compared with controls
before treatment and decrease in abundance to different degrees
within all the subgroups after T0, except for in the TB drug
resistant subgroup (Fig. 6 A). These modules decreased in a-
bundance after 1 wk of treatment and were completely abro-
gated after 4 mo of treatment in the standard ATT subgroup.
Although the extended ATT and difficult TB cases subgroups
showed a similar pattern to the standard ATT subgroup, a
stronger modular signature before treatment and an incomplete
diminishment after 6 mo were observed, when a standard
treatment course would be completed. The outbreak TB strains
subgroup showed a similar but weaker global modular signature
to the standard ATT subgroup, also resolving within 4 mo of
treatment. However, a small subgroup of four patients, the TB
drug–resistant subgroup, showed a distinct modular signature
that for the most part was not diminished, in accordance with
these patients requiring altered drug treatment regimens for a

Figure 4. Blood signature reveals differential gene expression changes over time in patients before TB diagnosis. Volcano plots of DEGs in blood at
detailed time points for TB progressors compared with healthy controls. (A) Leicester cohorts including TB contacts who progressed to active TB (Table S1,
top; n = 12 contacts; 21 samples) and individuals sampled before active TB diagnosis (Table S1, bottom; progressors, n = 11; 12 samples) at indicated time points
before diagnosis; active TB patients at time of diagnosis (n = 49; healthy matched controls n = 38 samples). (B) Leicester TB household contacts only who
progressed to active TB (Table S3; n = 14 contacts; 38 samples) at indicated time points before diagnosis. (C) Zak TB progressors (Zak et al., 2016) at indicated
detailed time points before diagnosis (n = 65 samples) compared with matched LTBI controls. Numbers of DEGs (down-modulated, right; up-modulated, left; x
axis log2 fold change of patients compared with controls; y axis −log10 of adjusted P value, Benjamini–Hochberg; abs(log2 fold change) >1 and adjusted P value
(padj) <0.05 were considered statistically significantly differentially expressed genes, red dots. n= in parentheses in A–C represents number of samples per
time point. (D–F) Modular transcriptional analysis of human blood TB modules in TB progressors at time points before diagnosis as in A–C, against controls.
(D) Leicester contacts together with active TB patients before TB diagnosis, and active TB patients at time of diagnosis (far right; modules with fold enrichment
scores FDR P value <0.05 are considered significant). (E) Leicester TB contacts only who progressed to active TB. (F) Zak TB progressors (red and blue indicate
modules over- or under-abundant compared with the controls; color intensity and size of dots represent degree of perturbation; module name indicates
biological processes associated with modular genes. (E and F)Modular analysis was performed similarly but using a nominal P value of 0.05. Th2, T helper cell.
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longer period (Fig. 6 A). The standard and extended ATT sub-
groups contained a large number of patients such that the
modular signature was more robust than in the other three
subgroups, which contained lower numbers of patients (Fig. 6
A). We therefore examined the members of each of these three
subgroups individually and show that at the level of the indi-
vidual, these modular responses to treatment are heterogeneous
and so should be validated in larger cohorts in future studies
(Fig. S3). The number of DEGs compared with controls was also
reduced upon treatment (Fig. 6 B). Smear-positive and smear-

negative TB patients showed a similar modular and gene ex-
pression decrease during treatment with complete diminish-
ment by 4–5 mo, although the smear-positive patients had a
stronger modular signature before treatment (data not shown).

Development of improved treatment response signatures
across TB patient cohorts
We then identified a 212-gene signature (TREAT-TB212) that
showed the response to treatment across the whole Leicester
cohort, mainly showing decreased gene expression as compared

Figure 5. Expression of the 30-gene signature of incipient, subclinical, and clinical TB over time before diagnosis in individual TB progressors from
Leicester contacts and Zak TB progressors. (A) The average expression value against baseline controls (dotted line) for the Leicester 30-gene incipient,
subclinical, and clinical TB signatures are shown per individual over time where samples were available for two or more time points per patient in Leicester TB
contacts, time points 1–30 (named shorter time points, n = 4) or 1–350 (named longer time points, n = 5) d before diagnosis. (B) Zak et al. (2016) progressors,
time points 4–600 (n = 18) d before diagnosis/treatment.
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with controls over the treatment course, which reverted to the
expression profile of healthy controls by 4 mo of treatment in
most but not all of the patients (Fig. 7 A) and in an independent
treatment response cohort dataset (Fig. 7 B; Thompson et al.,
2017). The TREAT-TB212 signature in not-cured patients from
the Thompson cohort was sustained at all time points up to

24 wk at similar levels to that of the pre- and very early treat-
ment response signatures (Fig. 7 B), at a comparable level to the
Leicester cohort of active TB patients, TB progressors recruited
as TB household contacts after diagnosis, and most different
clinical treatment response subgroups (Fig. 7 A). A higher
TREAT-TB212 signature was observed in patients receiving

Figure 6. Transcriptional blood signature reveals differential responses after treatment in clinically defined TB subgroups. (A) Modular blood RNA-
Seq analysis of the clinical subgroups: standard treatment, extended treatment, TB drug–resistant, difficult TB cases, and outbreak TB strain for all confirmed
active TB patients compared with healthy controls, at different time points relative to the start of treatment (ATT). T0 = before ATT (from 6 to 0 d before
treatment starts), week 1, 2; month 1, 2, 4, 6, 7–8, and month 9–10, 11–12 (in some groups) after ATT (red and blue indicate modules over- or under-abundant
compared with controls; color intensity and size of dots represent degree of perturbation; FDR P value <0.05 considered significant; name indicates biological
processes associated with modular genes). (B) Volcano plots showing the DEGs of all confirmed active TB patients compared with healthy controls, at different
time points relative to ATT. T0 = ATT (from 6 to 0 d before treatment starts) as in A. Number of differentially expressed genes, down-modulated, right, up-
modulated, left; x axis log2 fold change of patients as compared with controls; y axis −log10 of adjusted P value (padj), Benjamini–Hochberg; genes with abs(log2
fold change) >1 and adjusted P value <0.05 are considered statistically significantly differentially expressed, red dots.
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Figure 7. Development of improved treatment response signatures across TB patient cohorts. (A and B) Expression heatmaps of the full treatment
response signature (TREAT-TB212) in (A) Leicester cohort and in (B) validation in published cohort (Thompson et al., 2017). Expression values are centered and
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treatment for >200 d but this was observed only early after T0,
as compared with those receiving standard treatment of up to
200 d (Fig. 7 A). In keeping with the modular and differential
gene expression analyses, the TREAT-TB212 signature was only
different in the smear-positive and -negative patients at T0 but
not between 1 wk to 1 yr after T0, indicating that the patients
were responding similarly to treatment (Fig. 7 A). The log2 fold-
change of all TREAT-TB212 genes against controls verified
changes in gene expression upon treatment (Fig. 7 C, Leicester
cohort) with a similar profile in the Thompson cohort (Fig. 7 D).
Again, most of the gene expression profiles reverted to that of
healthy controls by 4 mo of treatment (Fig. 7 C, Leicester cohort),
although this could not be evaluated in the Thompson cohort due
to fewer sampling visits that did not include this time point
(Fig. 7 D). The TREAT-TB212 signature was further reduced to
a 27-gene signature (TREAT-TB27), which selected genes with
the greatest changes in expression over the treatment course in
the whole cohort (Fig. 7 E), and its validity was confirmed also in
the Thompson cohort (Fig. 7 F).

Although TB patients had been subgrouped according to their
clinical phenotype in response to treatment, as standard ATT,
extended ATT, difficult TB cases, TB drug–resistant, and out-
break TB strains, the TREAT-TB212 signature did not show a
clear transcriptional response trend according to their clinical
definition except for most of the drug-resistant group (Fig. 7 G,
compared with T0). However, by monitoring the transcriptional
response of individual patients according to their TREAT-TB212
signature profile, regardless of their clinical subgroups but
where samples at all time points had been obtained, four distinct
transcriptional profiles were revealed: expected, resembling
standard ATT; weaker, as compared with standard ATT; or
stronger initial or stronger delayed, as compared with standard
ATT (Fig. 7 H, compared with T0). Strikingly, stronger initial or
stronger delayed transcriptional response patient groups
showed differences in the transcriptional response already at

1 and 2 wk after T0, although at week 1 after treatment,
C-reactive protein (CRP) levels in both groups were comparable
(46.00 mg/l, stronger initial; 34.00 mg/l, stronger delayed). The
stronger delayed patient group displayed elevated levels of CRP
even after 1 mo of treatment as compared to stronger initial
(8 mg/l, stronger initial; 38 mg/l, stronger delayed group), also
correlating with minimal changes in radiographical signs of
disease (data not shown), suggesting continued inflammation
and potentially infection in the stronger delayed. Thus the
treatment response could not be predicted clinically by CRP
levels early but could be predicted by the different kinetics of the
transcriptional response observed as early as 1 wk after T0 in the
stronger delayed as compared with the stronger initial group,
supporting the role of transcriptional biomarkers as more sen-
sitive measures of the treatment response than existing clinical
markers. To develop a reduced transcriptional signature that
may enable early identification of poorer treatment responders,
based on the stronger initial and stronger delayed groups, the
differential expression of TREAT-TB212 between two consecu-
tive time points from T0 to 1 wk, 1 to 2 wk, and 2 wk to 1 mo was
computed leading to a reduced signature (EarlyRESP-TB25;
Fig. 7 H and Fig. S4). EarlyRESP-TB25 showed differences in the
stronger initial and stronger delayed patient groups by their
different transcriptomic profiles at 1–2 wk after T0 (Fig. 7 J),
with similar but not optimal results observed for TREAT-TB27
(Fig. 7 I; derived gene lists TREAT-TB27, EarlyRESP-TB25; Fig.
S4, A and B).

Reduced transcriptional blood signatures for diagnosis of TB
Reported reduced blood signatures of TB diagnosis or risk show
little to no overlap with each other, and most have been tested
for distinguishing active TB from LTBI but not active TB from
other diseases (ODs; Kaforou et al., 2013; Maertzdorf et al., 2016;
Roe et al., 2016; Singhania et al., 2018a; Suliman et al., 2018;
Sweeney et al., 2016; Zak et al., 2016; reviewed in Singhania

scaled; rows (genes) clustered withWard method and Euclidean distance; columns (samples) ordered according to time points, clinical subgroup, smear results
for Leicester dataset, and according to time points and treatment results for Thompson’s dataset. (C and D) Full treatment response signature (TREAT-TB212;
log2 fold change [FC]) of active TB patients (Leicester and Thompson cohorts) per treatment time point compared with controls. Each line represents a gene,
colored according to log2 FC value; gene expression is shown as red, higher; gray, not differentially expressed; blue, lower in TB patients compared with
controls. Vertical gray bar indicates 6 mo ATT. (E and F) Reduced global treatment response signature (TREAT-TB27). (G and H) Treatment response gene
signature (TREAT-TB212) tested on individual responses compared with T0 of clinical subgroups. (G) Development of new transcriptomic definition shown in
H. Treatment-course curves representing the mean molecular distance from T0 of individuals per time point in clinically defined subgroups: standard ATT
patients (sky blue, fully sensitive TB, clinical cure <200 d); extended ATT patients (dark yellow, fully sensitive TB, requiring extended treatment >200 d due to
clinical/radiological suspicion of TB); difficult TB cases (red, fully sensitive TB, requiring extended treatment due to treatment intolerance and/or adherence
issues); TB drug resistance patients (green, active TB with genotypic and/or phenotypic evidence of resistance to one or more first-line drugs); outbreak TB
strain (pink, active TB with genotypic evidence of infection with a fully sensitiveM. tuberculosis strain responsible for a chronic local outbreak). y axis represents
the mean molecular distance from T0 of TREAT-TB212 gene signature per individual, per time point; gray area = mean response profile of the standard ATT
subgroup. Each line corresponds to an individual, with at least one sample collected before ATT, and three samples collected during treatment (n = 48).
(H) Treatment-course curves representing the mean molecular distance from T0 of individuals per transcriptomic response group, per time point. Each line
corresponds to an individual, with at least one sample collected before ATT and three samples collected during treatment at time points shown (n = 48). Each
patient has been classified according to its transcriptional profile response, from TREAT-TB212 gene signature into expected (red, patients showing similar
profiles to the mean standard ATT subgroup); weaker (purple, patients showing weaker responses than standard ATT subgroup); stronger initial (sky blue,
patients showing a stronger response than standard ATT subgroup within the first 2 wk after ATT); stronger delayed (green, patients showing an initial similar
response compared with standard ATT but a stronger response from 1mo after ATT); gray area =mean response profile of the standard ATT subgroup. (I and J)
Reduced early treatment response of signature TREAT-TB27 and a new EarlyRESP-TB25 signature from reduction of signature in H; curves represent the mean
molecular distance from T0 at every time point for each of the reduced signatures. The curves represent the mean of stronger initial (blue); stronger delayed
(green). In G–J, the y axis scale is reversed, with the highest point showing a minimal and lowest point showing a maximal molecular distance from T0. w, week;
m, month.
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et al., 2018b). We set out to develop an optimized reduced sig-
nature that would distinguish active TB from ODs as well as
LTBI. Combined reduced blood signatures of TB diagnosis or risk
comprising 101 distinct genes (Kaforou et al., 2013; Maertzdorf
et al., 2016; Roe et al., 2016; Singhania et al., 2018a; Suliman
et al., 2018; Sweeney et al., 2016; Zak et al., 2016; unpublished
data) were analyzed in 10 published datasets from multiple
clinical disease cohorts including active TB, LTBI, and ODs and
healthy controls (Bloom et al., 2013; Parnell et al., 2012; Suarez
et al., 2015; Zhai et al., 2015), and the pooled dataset was batch-
corrected (Fig. S5, A and B; andMaterials andmethods). 12 genes
were identified in the reduced signature that were shared be-
tween the top 30 genes distinguishing active TB from LTBI, and
active TB from ODs, ranked by decreasing importance (mean
decrease accuracy; Fig. 8, A and B), further reduced to 10 genes
(TB10) based on performance (area under the curve [AUC] and
accuracy) on pooled cohort datasets with independent validation
(Fig. S5 C and Table S5). This TB10 signature originating from
the different reduced reported signatures (Fig. 8 C) comprised
genes that were either up- or down-regulated in active TB as
compared with controls, LTBI, and ODs (Fig. 8 D) and was shown
to be significantly different in TB versus ODs and LTBI and
controls using ANOVA (Data S4). Removal of the GBP5 gene (12th
in rank) reported to discriminate active TB and LTBI did not
improve the performances for discrimination of active TB from
ODs. Individual gene expression was heterogeneous across pa-
tients with active TB and the ODs (Fig. 8 D, likely reflecting the
different extents of morbidity; Berry et al., 2010; Bloom et al.,
2013).

The performances of TB10 were tested and compared with
the signatures that we describe in this study, including the 30-
gene incipient TB, the 30-gene subclinical TB, the 30-gene
clinical TB, the TREAT-TB27, and the EarlyRESP-TB25 (Fig.
S5 D), and previously published reduced signatures (Fig. 8 E
and Fig. S5 E; Kaforou et al., 2013; Maertzdorf et al., 2016; Roe
et al., 2016; Singhania et al., 2018a; Suliman et al., 2018; Sweeney
et al., 2016; Zak et al., 2016; described inMaterials andmethods).
TB10 showed the best performance for TB versus ODs (Fig. 8 E
and Fig. S5 D; AUC, 0.999; accuracy, 0.976; and 95% confidence
interval [CI], 0.9959–1), and TB versus LTBI (Fig. S5 E; AUC,
0.971; accuracy, 0.943; 95% CI, 0.9343–1). Although the Suliman
reduced signature was comparable to TB10 for distinguishing TB
from LTBI (Fig. S5 E), it showed poorer performance for dis-
tinguishing TB from ODs (Fig. 8 E).

Immune signatures reveal the evolution and resolution of
TB disease
The different reduced signatures that we have developed herein
were then tested on incipient TB, subclinical TB, and clinical TB
in the progressor Leicester TB cohort, before diagnosis, and in
active TB patients at the time of diagnosis (T0), and at 1 wk,
2 mo, and 6 mo after T0 (Fig. 9). All signatures barely showed a
significant increase in gene expression in incipient TB, with the
30-gene incipient TB signature showing the best performance as
expected, albeit with small magnitude/significance (Fig. 9).
However, all signatures increased in subclinical TB and then
maximally in clinical TB and active TB at the time of diagnosis

(Fig. 9), also showing a decrease at week 1 after treatment, with a
further decrease at month 2 and complete disappearance of any
gene expression changes by month 6 (Fig. 9). Analysis of the Zak
et al. (2016) 16-gene signature of TB risk likewise showed little
expression in the incipient TB cohort, but increased in sub-
clinical and clinical TB, and was diminished upon treatment,
similar to the signatures that we have developed in this study
(Fig. 9). The average expression value per signature versus
controls was calculated for each of the previously mentioned
stages of disease and time points of ATT to more quantitatively
show the changes in each of the signatures (Fig. 9, far right). The
30-gene incipient TB and the 30-gene subclinical signatures
both showed a lower plateau and lower apparent sensitivity in
detecting active TB, although the 30-gene incipient signature
continued to have greater sensitivity for incipient TB. The 30-
gene clinical TB signature, the TREAT-TB27, and the Zak 16-gene
signature showed the greatest plateau at the level of active TB
diagnosis, although this was most marked for the Zak signature,
and all three showed the sharpest increase from incipient TB
through the clinical phenotypes of subclinical TB and clinical TB
to active TB.

Discussion
Blood transcriptomics have revealed major characteristics of the
immune response in TB, show promise to support TB diagnosis,
and would be of great use to identify individuals with asymp-
tomatic incipient TB or subclinical TB before they progress to
clinical TB to facilitate targeted early treatment and reduce
onward transmission. Moreover, new tools for effective TB
treatment monitoring are needed to determine when and if
patients are responding to treatment to provide a personalized
approach to treatment and accelerate screening of new anti-TB
drugs. To achieve this, a detailed knowledge of how the host
immune response develops over time and relates to the state of
M. tuberculosis infection is needed. We now show, in a unique
clinically and temporally well-defined cohort of household
contacts of active TB patients, that minimal changes in blood
gene expression are detectable in incipient TB, increasing as
patients progress to subclinical TB, and maximal at the time of
presentation with clinical TB, with similar results for published
reduced risk signatures of TB. Although the transcriptional
signatures increased with time and were most highly expressed
around 30 d before diagnosis, there was heterogeneity over time
in the response in the TB contacts as they progressed to TB and a
published cohort of TB progressors from a high-burden TB
setting. Blood signatures at detailed time points during ATT
additionally allowed us to define signatures that can distinguish
early and late responders. Finally, we demonstrate comparable
performance of immune signatures developed for TB diagnosis
and detection of early stages ofM. tuberculosis infection and their
reduction upon TB treatment monitoring, with subtle differ-
ences for different signatures at different stages of development
and diminishment of TB disease. The temporality of gene ex-
pression changes during progression, and resolution of active
TB may provide mechanistic insights toward the develop-
ment of host therapies and supports a framework for future
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Figure 8. Development of TB10 signature to distinguish TB from ODs. (A and B) Top 50 ranking of the most important genes determined with random
forest for distinction between (A) active TB and LTBI patients, and (B) active TB and ODs. x axis represents the mean decrease accuracy (importance) from
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development of biomarkers to improve the clinical management
of LTBI and active TB.

TB contacts that progress to TB showed a decrease in the NK
and T cell effector modular signature, which was detectable
from the earliest stages of progression, in keeping with findings
that cytotoxic effector molecules and NK cells are important for
protection againstM. tuberculosis in human TB (Roy Chowdhury
et al., 2018). We observed an increase in the inflammatory and
IFN modular signatures in subclinical TB and clinical TB at time
points closest to TB diagnosis in both Leicester contacts and Zak
TB progressors, but not in incipient TB. That the IFN modular
signature fluctuated with time in Zak progressors potentially
explains differing reports that type I/II IFN signaling and the
complement cascade were elevated 18 mo before TB disease di-
agnosis in this cohort (Scriba et al., 2017), with others suggesting
increased expression of complement genes in subclinical TB
closer to diagnosis (Esmail et al., 2018). Our analysis at more
detailed time points of the Zak cohort suggests elevated type I
IFN signaling, and complement genes at 18 mo before diagnosis
may indicate individual patient heterogeneity, as we discuss
below. Amarked decrease in the B and T cell modular signatures
and increase in other modules found in active TB including
myeloid inflammation, lymphoid, and monocyte and neutrophil
gene modules occurred in progressors more proximally to TB
disease, in keeping with Scriba et al. (2017). A reciprocal re-
duction in the inflammation and IFN modules was observed
after a week of successful treatment and was restored to that of
healthy controls by 4 mo, together with the B and T cell modular
signatures. Our findings that the evolution of the immune re-
sponse on progression to TB shows the reverse upon treatment
is suggestive that reduced signatures optimized to support early
diagnosis of TB may also reflect the changes that occur in re-
sponse to treatment.

Reduced blood signatures have been proposed to determine
the risk of exposed individuals to their subsequently developing
TB (Penn-Nicholson et al., 2020; Singhania et al., 2018a;
Singhania et al., 2018b; Suliman et al., 2018; Zak et al., 2016);
however, it was unclear at the time whether any of these re-
ported blood signatures of TB risk predicted progressors at
stages of incipient or subclinical TB. We now show that while
these published gene risk signatures are expressed during sub-
clinical TB and clinical TB, only SERPING1, ETV7, and BATF2 from
the 16-gene Zak signaturewere up-regulated, albeit at a very low
level, in incipient TB, similarly to the global transcriptional
expression signature in these Leicester contact clinical pheno-
types. 7 of the 16-gene signature reported by Zak et al. (2016)
were among the 30 most highly expressed genes across the
Leicester contact clinical phenotypes of TB progression, in-
cluding FCRGR1A, SEPT4, GBP5, ANKRD22, SERPING1, ETV7, and

BATF2. Although C1QC, SERPING1, ETV7, and BATF2 were among
the top 30 DEGs in all the clinical phenotypes, increasing sta-
tistical significance of differential gene expression was observed
with progression from incipient to subclinical to clinical TB,
suggesting that they may be early indicators of M. tuberculosis
infection and reflect the evolution of the immune response with
time after infection. In support of this, IFN-α/β signaling path-
ways by modular and Metacore analysis were observed in sub-
clinical TB and more so in clinical TB, but were not apparent in
incipient TB. Collectively, our findings suggest that the levels of
gene expression increase with progressive infection from in-
cipient to subclinical to active TB, potentially explaining why
distinct published signatures of TB risk show little overlap with
each other (Penn-Nicholson et al., 2020; Singhania et al., 2018a;
Suliman et al., 2018; Zak et al., 2016; reviewed in Singhania et al.,
2018b) due to differential levels of detectable gene expression
and/or uncertainty in the stage of infection at which sampling
was performed. The unique gene set expressed in incipient TB is
characterized by low-level gene expression changes across
multiple pathways, which may limit their value for predicting
which incipient TB patients will progress to clinical TB. How-
ever, genes that were differentially expressed in subclinical TB
and clinical TB at a high and significant level were detectable in
incipient TB, supporting suggestions that serial testing among
carefully selected clinical target groups might be required for
optimal implementation of biomarkers for TB risk (Esmail et al.,
2020; Gupta et al., 2020). Indeed, inclusion of clinical details of
TB progressors over detailed sampling times after exposure/
infection withM. tuberculosis allowed us to define progressors as
incipient TB and subclinical TB (Drain et al., 2018) and to assign
changes in blood gene expression at an early stage of infection to
each clinical phenotype, providing a framework for improved
biomarker selection to target early TB treatment and block on-
ward transmission.

Our findings of temporal heterogeneity in the blood tran-
scriptional response of Leicester TB progressors and more so in
the Zak TB progressors (Zak et al., 2016), both at bulk cohort
levels as well as in individual progressors, likely reflect the
dynamic nature of the host–pathogen interaction over time, and
are consistent with observations in positron emission tomog-
raphy scan and computed tomography scan studies of pro-
gressive infection in humans with LTBI coinfected with HIV/TB
and in nonhuman primates (Barry et al., 2009; Esmail et al.,
2016; Lin et al., 2016). The majority of Leicester contacts pro-
gressed over 100–200 d, displaying a greater elevation in their
blood signatures against the baseline as they progressed to TB.
However, a subset showed rapid progression with an increased
signature close to diagnosis, mostly explained by infection
with an outbreak strain of M. tuberculosis, supporting previous

random forest algorithm for each comparison. y axis depicts the gene names and the reduced signature it comes from. (C) TB10 gene names, signature(s) of
origin, and rankings from random forest algorithm importance (mean decrease accuracy) for TB versus LTBI and TB versus OD comparisons. (D) TB10 signature
expression profiles from pooled dataset. Box plots depicting the log2 normalized expression values of each gene from TB10 signature, of control, LTBI, active
TB, and ODs, with active TB shown to be statistically significant from controls, LTBI, and ODs by ANOVA (Data S4). (E) Comparison of performances of our new
TB10 signature against published signatures for TB versus ODs. Receiver operating characteristic curves of training (dashed) and test (plain) sets of random
forest models are shown, with AUC and accuracy and 95% CI depicted from the test set. norm., normalized.
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reports of differing virulence of M. tuberculosis strains (Coscolla
and Gagneux, 2014), suggesting that the time at which protective
immune responses were overwhelmed leading to TB progres-
sion could differ according to the infecting strain of M. tuber-
culosis. Detailed analysis of individuals in the Zak et al. (2016)
cohort, sampled for >600 d, showed a sharp increase in the
signatures over time in only five progressors from 200 d before
diagnosis, progressing sharply to the highest signature before
diagnosis, again suggesting that immune responses had been

overwhelmed. However, in other Zak progressors, the fate of
infection appeared to hang in the balance for a prolonged period
until diagnosis, possibly reflecting subclinical disease, although
in-depth clinical analysis was not performed at these earlier
sampling time points in the study. Moreover, since it was not a
study of recent TB contacts, there was no knowledge of time of
exposure or the infectingM. tuberculosis strain. Our findings are
consistent with a recent randomized controlled clinical trial
for biomarker-guided tuberculosis preventive therapy (termed

Figure 9. Immune signatures reveal the evolution and resolution of TB disease. Each row shows a different gene signature. Volcano plots depict the DEG
in contacts of TB patients that subsequently progressed to TB, at different stages of the disease, incipient TB, subclinical TB, and clinical TB stages (left); active
TB patients, from T0 before treatment starts (middle), to week 1, month 2, and month 6 after T0 (right); all were compared to their respective controls; time-
course curves show the average expression value per signature versus controls in each of the previously mentioned stages of disease/time point of ATT (far
right). padj, adjusted P value.
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CORTIS; NCT02735590), which concluded that a reduced sig-
nature RISK11 derived from the Zak 16-gene signature (Zak et al.,
2016) was better suited to screening of symptomatic individuals
with possible early clinical TB than for mass community-based
screening for incipient TB (Scriba et al., 2021). It is unclear
whether this signature can distinguish subclinical or active TB
from other infections, particularly viral infections, which may
present with symptoms similar to clinical TB and are also
dominated by type I IFN signaling (Singhania et al., 2018a;
Singhania et al., 2018b).

Improved biomarkers to monitor TB treatment success are
needed to reliably evaluate the duration of treatment required in
individual TB patients and deliver optimal drug treatment reg-
imens. We adopted both clinical and bioinformatics approaches
to develop blood signatures of the treatment response. Using the
clinical approach, individual patients of the Leicester TB cohort
were stratified on the basis of treatment response (standard
ATT, extended ATT, and difficult TB) and infecting strain
characteristics (drug-resistant TB and outbreak TB strains). The
treatment response signature corresponded with their clinical
treatment response, discriminating both the subgroup of drug
resistant patients in Leicester responding more slowly to treat-
ment, and the subgroup labeled as not cured in the African
Thompson cohort (Thompson et al., 2017), supporting identifi-
cation of patients not responding to treatment. Using the
bioinformatics approach, we monitored the transcriptional
response of individual patients, independent of their clinically
defined treatment phenotype, and defined four types of TB pa-
tients: the expected group responding standardly to treatment;
the weaker group defining a subgroup with a lower grade of
infection (low CRP, and longer time to M. tuberculosis culture
positivity); and the stronger initial and stronger delayed groups,
showing differences in their transcriptional response at 1 wk
after T0. Differences between these latter two subgroups were
not discernible by clinical measures of their treatment response,
such as CRP and x ray, at these early time points, supporting the
utility of transcriptional biomarkers as more sensitive measures
of the treatment response than existing clinical markers, to in-
form clinical management of TB patients and to support drug
development platforms and future drug treatment trials.

Existing TB diagnostic tools are limited in their scope and
dependent on sputum availability for rapid identification of TB.
Diagnostic blood transcriptomic signatures of TB may provide a
pathway to support early diagnosis for a broader spectrum of
disease phenotypes, although there is little consensus between
reported reduced signatures for TB risk and those that distin-
guish active TB from LTBI (Kaforou et al., 2013; Maertzdorf et al.,
2016; Penn-Nicholson et al., 2020; Roe et al., 2016; Scriba et al.,
2021; Singhania et al., 2018a; Singhania et al., 2018b; Suliman
et al., 2018; Sweeney et al., 2016; Zak et al., 2016). Moreover,
there is a need to distinguish TB from other confounding dis-
eases (Kaforou et al., 2013; Singhania et al., 2018a; Singhania
et al., 2018b). Our blood signature, TB10, derived from pub-
lished reduced signatures tested on multiple disease cohorts,
optimally distinguished patients with TB from those with LTBI,
and TB from those with ODs. Although some of the published
signatures had similar performance in distinguishing TB from

LTBI, they had poorer performance than TB10 in distinguishing
TB from ODs. All reduced signatures derived in this study, in-
cluding the 30-gene signatures of incipient TB, subclinical TB,
and clinical TB progression and the new treatment-monitoring
signatures TREAT-TB27 and EarlyRESP-TB25, showed poorer
performances than TB10 in distinguishing TB from LTBI and in
distinguishing TB from ODs, suggesting that the top gene ex-
pression changes that occur temporally upon progression to TB
may not exactly match the top gene set that is temporally di-
minished after TB treatment.

All signatures increased in subclinical TB and maximally in
clinical TB, also decreasing at week 1 after treatment, with a
further decrease at month 2 and complete disappearance of gene
expression changes by month 6. However, all signatures barely
showed a significant increase in expression in incipient TB
above controls, with the exception of the 30-gene incipient TB
signature, which potentially could be further reduced to the
most highly expressed genes and optimized to give the highest
sensitivity of gene expression to detect what is likely to be early
M. tuberculosis infection in asymptomatic individuals with in-
cipient TB and subclinical TB, at risk of progression to TB. The
global aim of our study, however, was not to develop optimized
signatures of risk and progression to TB, but to use signatures
developed at different stages of disease progression and treat-
ment to determine how and to what extent they are perturbed in
the different clinical phenotypes of progression to TB, during
active TB, and upon treatment.

In conclusion, using in-depth temporal analysis of gene ex-
pression changes over time in a cohort of clinicallywell-characterized
household contacts of TB patients from a moderate-burden TB
setting with minimal risk of reinfection, together with reanalysis
of gene expression at more detailed time points in a published
cohort of TB progressors from a high TB burden setting, we
demonstrate significant heterogeneity in changes of gene ex-
pression, at both the bulk cohort level and in individual patients,
as they progress to TB. This has major implications for assessing
TB risk in individuals with LTBI. Our characterization of the im-
mune response underlying the evolution and resolution of TB
provides a framework for biomarker development to improve
clinical management of this disease.

Materials and methods
Recruitment of Leicester TB progressors (contacts and TB
patients) recruited before diagnosis and ATT response patient
cohorts and healthy controls
Between September 2015 and September 2018, longitudinal co-
horts of active TB and TB contacts were recruited from the
clinical TB service at Glenfield Hospital, University Hospitals of
Leicester National Health Service Trust, Leicester, UK (Table S1,
top). All participants were prospectively enrolled and sampled
before the initiation of any TB treatment. The Research Ethics
Committee for East Midlands–Nottingham 1, Nottingham, UK
(REC 15/EM/0109) approved the study. All participants gave
written informed consent. All active TB patients had microbio-
logically confirmed disease with whole-genome sequencing of
culture isolates performed for case linkage with contacts. All
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participants were prospectively followed with visits at sched-
uled time points from the time of diagnosis (pretreatment) until
12 mo after completing treatment.

Household TB contacts were identified through routine
contact tracing and underwent systematic baseline investigation
with routine CXR, IFN-γ release assay for M. tuberculosis reac-
tivity (IGRA) testing, and a symptom questionnaire. Sputumwas
collected if participants were spontaneously expectorating, and
bronchoscopy performed in those not expectorating with clini-
cal or radiological suspicion of TB. On this basis, participants
were classified with LTBI, subclinical TB, or active TB. Partic-
ipants with LTBI were prospectively followed up for a minimum
period of 2 yr with scheduled follow-up visits at 3–6 monthly
intervals. At each visit, a symptom screen and CXR was per-
formed and a blood RNA sample collected. In total, 356 TB
contacts were recruited (150 IGRA-positive and 206 IGRA-
negative [IGRA-ve]). To date, 20 participants from this cohort
have been diagnosed with TB and classified as TB progressors,
although 6 were excluded from the gene expression study due to
either cDNA library failure (n = 1) or failure to secure microbi-
ological confirmation (n = 5) essential for case linkage with the
index case. In these cases, the diagnosis of active TB was based
on clinical symptoms, typical radiological features, and sup-
porting histology from the site of infection. At each visit, a
symptom screen and CXR were performed and a blood RNA
sample collected. At the time of our publication in 2018
(Singhania et al., 2018a), we reported a modified disease risk
score using a TB-specific 20-gene signature in 9 TB contacts who
had developed TB during the study, with 99 contacts remaining
healthy for 2 yr or more, but performed no detailed analysis on
changes in gene expression and the immune response. Since
then, not considering the excluded progressors detailed above,
an additional five TB contacts (n = 5) developed TB and were
included for in-depth temporal analysis of the blood signature of
TB progressors at different time points before diagnosis. In total,
blood samples from 14 contacts who progressed to TB were
subjected to RNA sequencing out of the 20 contacts who pro-
gressed to TB. Six were excluded from the RNA-Seq gene ex-
pression study due to either cDNA library failure (n = 1) or
failure to secure microbiological confirmation (n = 5). This was
important as essential for case linkage with the index case, al-
though they were confirmed as progressing to TB by positive
histology showing caseating lungs. The contacts had the fol-
lowing characteristics: gender, 35.7% male and 64.3% female;
ethnicity, 28.6% South Asian, 14.3% East African, 42.9% British
Caucasian (5/6 outbreak strain), and 14.3% European. The con-
trols had the following characteristics: gender, 47.1% male and
52.9% female; ethnicity, 64.7% South Asian, 11.8% East African,
5.9% European, and 17.6% British Indian. Since these were small
numbers and skewed somewhat by the British Caucasian and
gender, we applied COMBAT batch correction as described later
in the Materials and methods. We collected blood at detailed
time points to examine in detail changes in gene expression in
the different clinical phenotypes, incipient TB, subclinical TB,
and clinical TB (Table S1), and also to examine changes in gene
expression occurring over time in Leicester cohorts of contacts
of active TB patients (Table S2, top; n = 12 TB contacts; 25

samples; Singhania et al., 2018a) and from noncontact patients
with symptoms before they were diagnosed with active TB by
culture/microbiological/clinical positivity (Table S2, bottom; n =
10 TB progressors; 14 samples), all before treatment, and from
active TB patients at the time of diagnosis (Table S2, top, n = 49
TB patients), all as compared with healthy controls (Table S2,
top, n = 38 healthy controls). Blood from TB contacts who pro-
gressed to TB and from TB progressors was subjected to RNA-
Seq and analysis at the time points indicated (Table S2), together
with that from 49 newly recruited active TB patients at the time
of diagnosis, before initiation of treatment. To investigate this
further in Leicester TB contacts who progressed to TB only,
datasets representing all time points, sampled before diagnosis
throughout 2015 to 2018, were analyzed in TB contacts only that
progressed to TB, by pooling our previously published TB con-
tact dataset (Singhania et al., 2018a), which had not been in-
vestigated in depth with respect to kinetic changes in the
immune responses, with our more recently recruited TB contact
dataset (Table S3). This pooled dataset, now consisting of 38
samples from 14 TB contacts as they progressed to TB, was batch
corrected and analyzed against matched controls, as described
later in the Materials and methods.

The treatment response cohort had the following character-
istics. The Leicester active TB cohort composed of 74 patients
with pulmonary TB was simultaneously recruited between
September 2015 and September 2018, at the Glenfield Hospital,
University Hospitals of Leicester National Health Service Trust,
Leicester, UK, at the time of diagnosis (treatment-naive; Fig. S2
A and Table S4). A cohort of 38 healthy IGRA-ve controls was
recruited in parallel. To follow the transcriptional response after
treatment, whole blood samples were collected and were sub-
jected to RNA-Seq at diagnosis before initiation of any ATT (T0),
and thereafter, at 1 and 2 wk; 1, 2, 4, 5, 6, 7/8, 9/10, and 11/12 mo;
and >1 yr after T0 with clinical assessment including CXR, CRP,
and symptom assessment. All RNA isolation and processing
were performed on all blood samples simultaneously (Fig. S2
and Table S4). Patients who had previous TB, had previous
treatment for LTBI, were pregnant, were under 16 yr age, or
were immunosuppressed were excluded from this study. All
participants had routine HIV testing, and patients with a posi-
tive result were excluded. Patients with active TB were all
confirmed by laboratory isolation of M. tuberculosis on the cul-
ture of a respiratory specimen (sputum or bronchoalveolar
wash/lavage) with sensitivity testing performed by the Public
Health Laboratory Birmingham, Heart of England National
Health Service Foundation Trust, Birmingham, UK. All partic-
ipants were prospectively enrolled and sampled before the initia-
tion of any TB treatment. The Research Ethics Committee for East
Midlands–Nottingham 1, Nottingham, UK (REC 15/EM/0109), ap-
proved the study. All participants gave written informed consent.

Published RNA-Seq datasets used for TB progressor and
treatment response analyses
The Singhania Leicester RNA-Seq dataset (GEO accession no.
GSE107993) and the current Leicester dataset of TB contacts
progressing to TB (GEO accession no. GSE157657; Fig. 2 B and
Table S2, top) were pooled, and the pooled datasets were
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corrected using the reference COMBAT algorithm (Zhang et al.,
2020). Patients were segregated into groups based on the pa-
rameter “days to TB,” and groups were compared with gender-
and ethnically matched controls using DESEQ2 (Love et al., 2014;
version 1.24.0) within the R environment (version 3.6.0). DEGs
were defined as those showing statistically significant differ-
ences between pairwise groups if the adjusted P value was <0.05
(FDR < 0.05). Variance-stabilized transformation expression
values for genes from signatures were used to draw changes
over time per patient using ggplot2 (https://ggplot2.tidyverse.
org; version 3.3.2).

The Zak RNA-Seq dataset (GEO accession no. GSE79362) was
independently used for TB progression analyses (Fig. 3; Fig. 4, C
and F; Fig. 5 B; and Fig. S1). Raw counts were used for differential
gene expression of Zak RNA-Seq analysis using the Wald test
(DESeq2) of TB progressors at different time points before they
progress to TB (Fig. 2 C), compared with LTBI. Gender bias was
corrected using the reference COMBAT (Zhang et al., 2020).
Patients were segregated into groups based on the parameter
“days to TB,” and groups were compared with (LTBI) non-
progressors using DESEQ2 (Love et al., 2014; version 1.24.0)
within the R environment (version 3.6.0). DEGs were defined as
those showing statistically significant differences between
pairwise groups if the adjusted P value was <0.05 (FDR < 0.05).
Variance-stabilized transformation expression values for genes
from signatures were used to draw changes over time per pro-
gressor patient using ggplot2 (https://ggplot2.tidyverse.org;
version 3.3.2), where progressors were selected from GEO ac-
cession no. GSE79362 (Zak et al., 2016, in individuals where two
or more sampling time points were evident; data taken from
GSE79362 and guided by training set n = 18; SupTab1; Sup-
Tab6_RNASeqMetadata from Zak manuscript).

The Thompson RNA-Seq dataset (GEO accession no.
GSE89403) was independently used for treatment response
analyses validations. Raw counts were used and normalized
using the DESeq and VST functions (from the DESeq2 package)
for monitoring treatment response using newly identified sig-
natures at different time points, at time of diagnosis (T0), and
during treatment course (week 1, week 4, and week 24 after T0).

Average gene signature derivation for individual TB
progressor analysis
For both the Leicester TB contacts progressing to TB and the Zak
progressors, the average expression values per 30-gene sig-
natures derived from the Leicester incipient TB, subclinical TB,
and clinical TB signatures, and from the Zak 16-gene signature,
were obtained using the variance-stabilized transformation
normalized expression to draw changes over time per patient
using https://ggplot2.tidyverse.org (version 3.3.2). The average
expression values per signature using matched controls were
used to draw the baseline, and both Leicester contacts and Zak
progressors were only selected when samples from two or more
time points were available (from Zak progressors used as
above). Gender/ethnicity bias was corrected the reference
COMBAT (Zhang et al., 2020). Leicester household contact #86
was not used for this kinetic analysis, even though sampled at
four time points, since these were wide apart and separated due

to an extended trip to India with no clinical follow-up during
that time, only returning to Leicester close to diagnosis.

RNA-Seq data analyses
Raw readcounts were processed using the bioconductor package
DESeq2 v.1.12.4 in R v.3.5.1 and normalized using the DESeq
method to remove the library-specific artifacts. Genes with 5
read counts or more in at least 12 samples were considered and
normalized with variance-stabilizing transformation to obtain
normalized log2 gene expression values. Post–data processing
quality control was performed using PCA, correlation heatmap,
and density plots. DEGs were calculated using the Wald test in
DESeq2. Genes with absolute log2 fold change >1 and FDR P value
<0.05 corrected for multiple testing using the Benjamini–
Hochberg method were considered significant. Fold enrichment
for the weighted gene coexpression network analysis modules
was calculated using QuSAGE (Singhania et al., 2018a), to
identify the modules of genes over- or under-abundant in a
dataset, compared with the respective control group using log2
expression values. Only modules with enrichment scores with
FDR P values <0.05 were considered significant and plotted
using the ggcorrplot function in R. All blood RNA-Seq data from
individuals recruited to this study are available in GEO accession
no. GSE157657.

RNA extraction, cDNA library preparation, and processing for
RNA-Seq from new Leicester cohorts
A volume of 3 ml whole blood was collected by venipuncture
into Tempus blood RNA tubes (Thermo Fisher Scientific). Tubes
were mixed vigorously immediately after collection and then
stored in a −80°C freezer before use. Total RNA was isolated
from blood from TB progressors and treatment response cohorts
and IGRA-ve healthy controls simultaneously from 1 ml whole
blood using the MagMAX for Stabilized Blood Tubes RNA Iso-
lation Kit (Applied Biosystems/Thermo Fisher Scientific), ac-
cording to the manufacturer’s instructions. Globin RNA was
depleted from the total RNA (1.5–2 µg) using the human GLO-
BINclear kit (Thermo Fisher Scientific), according to the man-
ufacturer’s instructions. The RNA yield of the total and the
globin-reduced RNA was assessed using a NanoDrop 8000
spectrophotometer (Thermo Fisher Scientific). Quality and in-
tegrity of the total and the globin-reduced RNA were assessed
with the HT RNA Assay reagent kit (Perkin Elmer) using a
LabChip GX bioanalyser (Caliper Life Sciences/Perkin Elmer)
and assigned an RNA Quality Score. The samples (200 ng) with
an RNA Quality Score >6 were used to prepare a cDNA library
using the TruSeq Stranded mRNA HT Library Preparation Kit
(Illumina). The tagged libraries were sized and quantitated in
duplicate (Agilent TapeStation system) using D1000 ScreenTape
and reagents (Agilent), normalized, pooled, and then clustered
using the HiSeq 3000/4000 PE Cluster Kit (Illumina). The li-
braries were imaged and sequenced on an Illumina HiSeq 4000
sequencer using the HiSeq 3000/4000 SBS kit (Illumina) at a
minimum of 25 million paired-end reads (100 bp) per sample.
The raw RNA-Seq data from paired-end reads obtained for TB
progressors and treatment response cohorts were processed all
at once and subjected to quality control using FastQC (Babraham
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Bioinformatics) v0.11.5 and MultiQC v1.7 (Ewels et al., 2016).
Trimmomatic (Bolger et al., 2014) v0.36 was used to remove the
adapters and filter raw reads below 36 bases long, and trailing
bases below quality 30. The filtered reads were aligned to the
Homo sapiens genome Ensembl GRCh38 (release 95) using HI-
SAT2 v2.1.0 (Kim et al., 2015) with default settings and RF rna-
strandedness including unpaired reads from Trimmomatic. Af-
ter mapping and alignment, the reads were quantified at gene
level using HtSeq60 v0.6.1 (Anders et al., 2015) with default
settings and reverse strandedness.

Whole cohort transcriptomic treatment response analysis for
signature identification
Differential expression algorithm for longitudinal count datasets
was performed on all 74 patient treatment response samples
using the Impulse DE2 algorithm (ImpulseDE2 v1.6.1 library),
which is based on a negative binomial noise model with dis-
persion trend smoothing by DESeq2, which led to a subset of
2,851 genes for which expression levels changed monotonously
over time (case-only option, genes with adjusted P value <0.05,
and isMonotonous = TRUE were considered). In parallel, dif-
ferential expression gene analyses were performed using the
Wald test (DESeq2 library) between active TB patients at each
time point (T0; 1 and 2 wk; and 1, 2, 4, 5, 6, 7/8, 9/10, and 11/12
mo after T0) and controls, leading to 2,321 distinct genes that
were differentially expressed in at least one time point. The
comparison between the two lists of genes (2,851 from Im-
pulseDE2 and 2,321 from DESeq2), showed 212 genes in common,
forming the full signature for global monitoring treatment re-
sponse (named TREAT-TB212). The full 212 gene signature was
reduced based on the most changing gene expression at every
time point during the treatment course using the gene feature
selection Boruta algorithm (Boruta v6.0.0 library, ntree = 500,
maxRuns = 1,000), which led to a reduced gene signature of 27
genes for monitoring the treatment response on all active TB
patients (named TREAT-TB27).

Individual patient transcriptomic treatment response analysis
for further signature determination
Mean molecular distances from T0, consisting of the mean ab-
solute log2 fold change of the 212 genes from TREAT-TB212 at a
particular time point compared with T0, were computed for
each patient, before (T0) and during treatment. Only patients
who had at least one sample at T0 and three samples at later time
points were considered (n = 48). Transcriptomic profiles (mean
molecular distances from each patient’s T0 profile) from each
patient was compared with the mean molecular distance of the
standard ATT clinical subgroup. For identification of a reduced
signature of distinct patients that responded differently to those
with a transcriptional response of standard ATT, we first iden-
tified patients who showed a stronger initial (named stronger
initial) or stronger delayed (named stronger delayed) tran-
scriptional response, based on the longitudinal kinetics of their
transcriptional response at early time points (T0, week 1, week
2, and month 1 after T0), compared with the distribution of the
mean response with standard ATT over the same period. We
then compared the differences of expression between two

consecutive time points (T0–week 1, week 1–week 2, week 2–
month 1) between the stronger initial and stronger delayed
transcriptional profile groups (ANOVA test, P value <0.05), and
found 48 statistically significantly different genes between the
two groups. We then further reduced the list of 48 genes using
the gene feature selection Boruta algorithm based on the dif-
ferences on two consecutive time points between the two groups
(ntree = 500, maxRuns = 1,000), leading to a reduced signature
of 25 genes (EarlyRESP-TB25).

Pooled published cohort and reduced TB signature datasets
for diagnosis of TB
We used 10 published blood RNA-Seq or microarray datasets
(Berry et al., 2010; Bloom et al., 2013; Leong et al., 2018; Parnell
et al., 2012; Singhania et al., 2018a; Suarez et al., 2015; Thompson
et al., 2017; Zak et al., 2016; Zhai et al., 2015) from multiple
clinical disease cohorts including active TB (225 patients) and
LTBI (217 individuals) from Berry, London and South Africa
(GEO accession nos. GSE107991 and GSE107992); Bloom (GEO
accession no. GSE42834); Singhania, Leicester (GEO accession
no. GSE107993); Zak (GEO accession no. GSE79362); Thompson
(GEO accession no. GSE89403); Leong (GEO accession no.
GSE101705); and ODs influenza (Parnell [GEO accession no.
GSE40012] and Zhai [GEO accession no. GSE68310]), Bloom lung
cancer (GEO accession no. GSE42834), Bloom pneumonia (GEO
accession no. GSE42834), Bloom sarcoidosis (GEO accession no.
GSE42834), and Suarez bacterial/viral infections (GEO accession
no. GSE60244; total 186 patients); and healthy controls from
each respective dataset (223 individuals). We downloaded from
GEO the filtered and normalized datasets, which have been
normalized with different methods, according to type of data
(RNA-Seq or Illumina microarray) or laboratory practices. We
then pooled the 10 datasets together, matching the targets by
gene names. When a gene was absent in a least one dataset of
origin, we completely removed a gene from the pooled dataset,
so that we had a robust and stringent pooled dataset. A gene
could be absent from any dataset for multiple reasons: one of the
platforms did not target this gene, the gene annotation databases
used were different for each dataset (different version of the
genomes) and there was no correspondence of gene name, or the
gene was filtered out due to low expression in the filtered da-
taset of origin. Using these stringent criteria, we had a pooled
dataset containing 11,912 genes in total, regrouping 851 indi-
vidual whole blood samples. We then batch-corrected the pooled
dataset, the batch being the origin of dataset, with the reference
COMBAT algorithm (Johnson et al., 2007) from the sva library in
R. We checked the impact of batch correction on a mix of RNA-
Seq and microarray datasets by drawing PCA plots (Fig. S5 A).
We also verified high correlations before/after batch correction
per group of patients (Fig. S5 B) and expression on gene of in-
terest (data not shown). From the 11,912 batch-corrected genes,
we then selected the 101 genes that were contained in at least
one of the nine published reduced gene signatures (Kaforou
et al., 2013; Maertzdorf et al., 2016; Roe et al., 2016; Singhania
et al., 2018a; Suliman et al., 2018; Sweeney et al., 2016; Zak et al.,
2016; and reviewed in Singhania et al., 2018b; and unpublished
data). Trang Tran’s 20-gene signature was independently
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derived from both Berry London (Berry et al., 2010; GEO ac-
cession no. GSE107991) and Leicester RNA-Seq datasets (GEO
accession no. GSE107993). Differential gene expression analyses
were performed on active TB patients compared with controls,
LTBI, or controls plus LTBI individuals, usingWald tests (DESeq2
library; Love et al., 2014) by fitting generalized linear models. A
gradient-boosting machine algorithm (gbm v2.1.7 library) was
applied on the lists of DEGs to determine the high order ranking
of genes predicting the active TB status. For signature reduction,
we performed a random forest algorithm (randomForest library
v4.6-14) based on cumulative sensitivity of genes in their im-
portance order. Finally, the meta-data with cross-validation
analysis combining two optimal signatures from microarray
datasets from Berry et al. (2010) and six optimal signatures
from the Berry London and Leicester RNA-Seq datasets (TB
versus controls, TB versus LTBI, TB versus controls plus LTBI
for each cohort) yielded 20 gene signatures (FCGR1A, GBP5,
SEPT4, ANKRD22, BATF2, FCGR1B, GBP1, GBP6, LHFPL2, SERPING1,
C1QB, CD274, GBP4, AIM2, FBXO6, PSTPIP2, ASPHD2, FCMR, RTP4,
and APOL6).

Identification of TB10 reduced signature for diagnosis of TB
We split the dataset of 851 patients into training (80%, 684
samples) and test (20%, 167 samples) sets, keeping the pro-
portions between the different disease groups (active TB, LTBI,
OD, and control, with caret library). We ran a random forest
algorithm (RandomForest library, ntree = 1,000, best.m identi-
fied with tuneRF function, other options are by default) for
ranking the 101 genes based on their importance (mean decrease
accuracy) for distinguishing between active TB versus LTBI
patients and active TB versus ODs (Fig. 8, A and B; and Table S5).
We identified 12 genes that are among the two top 30 most im-
portant genes lists for the two distinctions (Fig. S5 C and Table
S5). We then tested the performances of the newly found sig-
nature of 12 genes on the pooled dataset and also on a single and
independent dataset not included in the pooled dataset (Kaforou
et al., 2013; GEO accession no. GSE37250), and compared it with
further reduced signatures from 12 to 2, based on the ranking of
TB versus OD distinction on decreasing importance (Table S5).

Accuracy and performances of reduced new and published
signatures for TB
The performances of TB10 with the other nine published sig-
natures and the other signatures derived in the current study
were tested by training a random forest model for each signa-
ture on a training set and testing it on the test set signature of TB
versus ODs and TB versus LTB1. AUC and accuracy shown are
the performances on the test set. 95% CIs were calculated using
the “ci.auc” function in the pROC package for the test dataset
(Fig. 8 E; and Fig. S5, D and E).

Gene annotation analyses
Genes ranked by DESeq2 Wald statistic for TB progressor
patients at different time points or with different clinical
symptoms compared with controls were used to look for en-
richment of either the hallmark gene set using Broad’s gene set
enrichment analysis preranked analysis and default settings. The

normalized enrichment score and the FDR were plotted using
ggplot2. The different genes lists of DEG in the different clinical
phenotypes, incipient TB, subclinical TB, and clinical TB (Fig. 2) were
functionally annotated using Metacore (Thomson Reuters v 19.4).

R libraries used: All analyses have been made with R 3.5.1,
usingmultiple libraries, and Bioconductor v3.8 (Anders et al., 2015).
The libraries are: arules v1.6-4, sva v3.30.1 (Leek et al., 2012), Boruta
v6.0.0 (Kursa and Rudnicki, 2010), ranger v0.12.1, ImpulseDE2
v1.6.1 (Fischer, 2019), VennDiagram v1.6.20, caret v6.0-85, lattice
v0.20-38, RColorBrewer v1.1-2, tibble v2.1.3, tidyr v0.8.3, dplyr
v0.8.1, DESeq2 v1.22.2 (Love et al., 2014), ComplexHeatmap v2.3.1
(Gu et al., 2016), ROCR v1.0-7, randomForest v4.6-14, ggbiplot v0.55,
ggplot2 v3.2.0, and qusage v2.16.1 (Yaari et al., 2013).

Online supplemental material
Expression of the 30-gene signature of incipient and subclinical
TB and the 16-gene signature from Zak et al., respectively, is
shown at different time points before diagnosis in the blood of
TB progressors from the Leicester and Zak et al. (2016) cohorts
(Figs. 5 and S1). Fig. S2 provides a description of the Leicester
treatment response cohort dataset. Fig. S3 shows the modular
transcriptional blood treatment response in individuals of the
nonclassical clinical TB subgroups. Fig. S4 provides the ultra-
reduced TREAT-TB27 and EarlyRESP-TB25 treatment (Fig. S4
A) and performances of the EarlyRESP-TB25 treatment blood
signature and the TB10 diagnosis blood transcriptional signature
in monitoring the response to treatment. Fig. S5 shows the
processes for initial development of the TB10 transcriptional
blood signature for diagnosis (Fig. S5, A–C) and the perform-
ances of additional reduced signatures from this study for dis-
tinguishing TB from ODs and TB from LTBI, and published
signatures for distinguishing TB from LTBI (Fig. 8 E; and Fig. S5,
D and E). Table S1 provides the numbers of contacts of active TB
patients who progressed to clinical TB, with clinical phenotypes
of incipient TB, subclinical TB, and clinical TB, and their sam-
pling time points before diagnosis, in addition to the number of
healthy controls. Table S2 provides the TB contact progressor
patient ID and their sampling time points before diagnosis (top);
ID of TB patients sampled before diagnosis with their exact
sampling time points before diagnosis (bottom); and the number
of active TB patients and healthy controls (top right). Table S3
shows the ID of contacts who progressed to TB and their sam-
pling time points before diagnosis of contacts recruited be-
tween 2015 and 2018 and followed up to date constituting
combined data from Singhania et al. (2018a) (GEO accession
no. GSE107993), and current study recruitment progressor
contacts in GEO accession no. GSE157657. Table S4 shows the
total numbers of recruited healthy, active TB, and TB contact
progressors recruited to this study, their breakdown into TB
subgroups, and demographics of the treatment patient cohorts.
Table S5 shows the TB12 signature reduction and correspond-
ing performances in the pooled dataset and Kaforou indepen-
dent dataset and the TB12 gene list and ranks according to TB
versus LTBI and TB versus OD distinctions. Data S1 shows DEG
lists with Metacore enrichment for incipient TB, subclinical TB,
and clinical TB shown in Fig. 2 B. Data S2 shows the DEG list for
Leicester household contacts that progressed to TB as shown in
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Fig. 4 B. Data S3 shows the Zak corrected DEG lists shown in
Fig. 4 C. Data S4 provides the ANOVA statistical analysis for each
of the genes in TB10 in distinguishing TB from LTBI and from
ODs in Fig. 8 D.
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Supplemental material

Figure S1. Expression of the 30-gene signature of incipient and subclinical TB at different time points before diagnosis in TB progressors from
Leicester and Zak et al. (2016) cohorts. (A and B) The published Zak 16-gene TB signature is shown per individual (A) Leicester TB contacts at time points of
1–30 (designated as shorter time points; n = 4) or of 1–350 (designated as longer time points; n = 5) d before diagnosis as in Fig. 5; and (B) Zak et al., 2016
progressors at time points of 4–600 (n = 18) d before diagnosis/treatment where progressors were selected from GEO accession no. GSE79362 (Zak et al.,
2016, in individuals where two or more sampling time points were evident; from Zak paper training set n = 18; SupTab1; SupTab6_RNASeqMetadata).
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Figure S2. Description of the Leicester treatment response cohort dataset. (A) The table depicts all the time points when samples have been collected,
from T0 (before ATT initiation) to weeks (w) 1 and 2, months (m) 1, 2, 3, 4, 5, 6, 7–8, 9–10, 11–12, or >1 yr after ATT initiation. Below are represented the exact
range of days used for making time point categories, then the corresponding number of samples collected and distinct number of patients at each time points.
(B) ATT duration and treatment response samples. The graphic shows the distribution of treatment duration of patients included in the study. x axis shows the
treatment duration in range of 20 d; the y axis represents the number of patients with a treatment duration of corresponding treatment duration. Each bar is
colored according to the clinical subgroup of each patient: pulmonary TB culture positive (red), difficult TB cases (brown), TB drug–resistant (yellow), outbreak
TB strain (light green), or other TB progressor (salmon). Patients have then been classified in two groups based on treatment duration (purple vertical bar):
≤200 d of treatment, which corresponds to the standard treatment duration, >200 d of treatment, which corresponds to extended ATT group. (C) The table
shows the crossed table of number of patients with either negative or positive smear results at time of diagnosis and either standard or extended ATT duration.
(D) Sample-to-sample correlation after data processing with DESeq2 (normalization, log2 scaled) of the Leicester treatment response cohort dataset. Pearson’s
correlation values are going from 0.94 (blue) to 1 (red). Samples are annotated, from top to bottom, according to the group, clinical subgroup, time points, and
smear results. Clustering has been made with the Ward method and Euclidean distance. (E) PCA of the top 1,000 most variable genes. Each dot represents a
sample and is colored according to its corresponding simplified time point, T0 before ATT starts (red), week 1 (gold), week 2 (green), month 1 (sky blue), >1 mo
after ATT initiation (blue), or healthy controls (purple). PTB, pulmonary TB.
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Figure S3. Modular treatment response in individuals of the nonclassical clinical TB subgroups.Modular analysis of samples of all individuals included in
nonclassical clinical TB subgroups (difficult TB cases, TB drug–resistant, or outbreak strain TB groups). Patient IDs are shown on the top of the plots, and
columns represent samples ordered chronologically according to times of collection and analysis before or after treatment starts. Human blood TBmodules are
tested in those individuals compared with healthy controls. Red and blue indicate modules over- or under-abundant compared with the controls. Color in-
tensity and size of the dots represent the degree of perturbation. Module name indicates biological processes associated with the genes within the module.
Only modules with fold enrichment scores with FDR P value <0.05 are considered significant.
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Figure S4. Ultra-reduced EarlyRESP-TB25 signature and TB10 diagnosis signature for treatment monitoring response. (A) The tables show the list of
genes from global treatment response reduced signature (TREAT-TB27, left) and early response reduced signature (EarlyRESP-TB25, right). (B and C) Box plots
representing the mean difference of expression (log2 fold change; y axis) between two consecutive time points (x axis) of (B) the early response reduced
signature EarlyRESP-TB25, or (C) the optimal TB diagnosis signature TB10. Each box is colored according to the initial or delayed strength of the transcriptional
response group (stronger initial in sky blue and stronger delayed in green). Comparisons between the two groups have been made at each interval of time-
point (Wilcoxon tests). w, week; m, month. * signifies significant difference.
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Figure S5. Initial development of TB10 signature for diagnosis and testing against signatures from this study and published signatures. (A) PCA of
the pooled 10 cohort datasets before batch correction. Each dot represents a sample and is colored according to its dataset of origin. Principal component
1 (PC1) and PC2 represent 83.7% and 11.6% of the total variance (var.), respectively. (B) PCA of the pooled 10 cohort datasets after batch correction with
reference COMBAT algorithm. Each dot represents a sample and is colored according to its dataset of origin. PC1 and PC2 represent 13.7% and 10.9% of total
variance, respectively. (C) Venn diagram that shows the number of genes that are shared between the two top 30 lists from random forest importance gene
ranking for TB versus LTBI (blue) and TB versus ODs (red) and depicts the reduction of the optimal signature for diagnosis from 12 to 10 genes (TB10; Table S5).
(D) Comparison of performances of our new TB10 signature against our 30-gene signatures of incipient, subclinical TB, and clinical TB, and our treatment
response–reduced signatures TREAT-TB27 and EarlyRESP-TB25, for distinguishing TB versus ODs. (E) Comparison of performances of our new TB10 signature
against our 30-gene signatures of incipient, subclinical TB, and clinical TB, and our treatment response–reduced signatures TREAT-TB27 and EarlyRESP-TB25,
and published signatures for distinguishing TB versus LTBI. Receiver operating characteristic curves of training (dashed) and test (plain) sets of random forest
models are shown, with AUC and accuracy and 95% CI depicted from the test set.
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Five tables and four datasets are provided online as separate files. Table S1 provides the numbers of contacts of active TB patients
who progressed to clinical TB, with clinical phenotypes of incipient TB, subclinical TB, and clinical TB, and their sampling time points
before diagnosis, in addition to the number of healthy controls. Table S2 provides the TB contact progressor patient IDs and their
sampling time points before diagnosis (top); ID of TB patients sampled before diagnosis with their exact sampling time points
before diagnosis (bottom); and the number of active TB patients and healthy controls (top right). Table S3 shows the ID of contacts
that progressed to TB and their sampling time points before diagnosis of contacts recruited between 2015 and 2018 and followed
up to date constituting combined data from Singhania et al. (2018a) (GEO accession no. GSE107993) and current study recruitment
progressor contacts (GEO accession no. GSE157657). Table S4 shows the total numbers of recruited healthy, active TB, and TB
contact progressors recruited to this study, their breakdown into TB subgroups, and demographics of the treatment patient
cohorts. Table S5 shows the TB12 signature reduction and corresponding performances in the pooled dataset and Kaforou
independent dataset and the TB12 gene list and ranks according to TB versus LTBI and TB versus OD distinctions. Data S1 shows
DEG lists with Metacore enrichment for incipient TB, subclinical TB, and clinical TB shown in Fig. 2 B. Data S2 shows the DEG list for
Leicester household contacts that progressed to TB as shown in Fig. 3 B. Data S3 shows the Zak corrected DEG lists shown in Fig. 4
C. Data S4 provides the ANOVA statistical analysis for each of the genes in TB10 in distinguishing TB from LTBI and from ODs in
Fig. 8 D.
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