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Enhanced Characterization of Drug Metabolism 
and the Influence of the Intestinal Microbiome: A 
Pharmacokinetic, Microbiome, and Untargeted 
Metabolomics Study

Alan K. Jarmusch1,†, Alison Vrbanac2,†, Jeremiah D. Momper3, Joseph D. Ma3, Maher Alhaja3, Marlon Liyanage3, Rob Knight2,4,5,*, 
Pieter C. Dorrestein1,2,4,* and Shirley M. Tsunoda3,*

Determining factors that contribute to interindividual and intra-individual variability in pharmacokinetics (PKs) and drug me-
tabolism is essential for the optimal use of drugs in humans. Intestinal microbes are important contributors to variability; how-
ever, such gut microbe-drug interactions and the clinical significance of these interactions are still being elucidated. Traditional 
PKs can be complemented by untargeted mass spectrometry coupled with molecular networking to study the intricacies of 
drug metabolism. To show the utility of molecular networking on metabolism we investigated the impact of a 7-day course of 
cefprozil on cytochrome P450 (CYP) activity using a modified Cooperstown cocktail and assessed plasma, urine, and fecal data 
by targeted and untargeted metabolomics and molecular networking in healthy volunteers. This prospective study revealed that 
cefprozil decreased the activities of CYP1A2, CYP2C19, and CYP3A, decreased alpha diversity and increased interindividual mi-
crobiome variability. We further demonstrate a relationship between the loss of microbiome alpha diversity caused by cefprozil 
and increased drug and metabolite formation in fecal samples. Untargeted metabolomics/molecular networking revealed sev-
eral omeprazole metabolites that we hypothesize may be metabolized by both CYP2C19 and bacteria from the gut microbiome. 
Our observations are consistent with the hypothesis that factors that perturb the gut microbiome, such as antibiotics, alter drug 
metabolism and ultimately drug efficacy and toxicity but that these effects are most strongly revealed on a per individual basis.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  There are few human studies investigating the clinical 
effect and mechanism of the microbiome modulating drug 
metabolism. Animal studies suggest that bacteria present 
in the gut may modulate regulatory elements in cytochrome 
P450 (CYP) genes leading to alterations in activity.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  This study addressed the following questions: (i) Does 
the antibiotic cefprozil modify the microbiome and cause 
significant changes in drug metabolizing enzyme activity? 
(ii) Can untargeted metabolomics with molecular network-
ing provide additional insight into drug metabolism by the 
host and the microbiome?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This study showed that the antibiotic cefprozil de-
creased CYP1A2, CYP2C19, and CYP3A activity in 

humans, increased beta diversity, and decreased alpha 
diversity, which correlated with increased drug and drug 
metabolites. In addition, this study illustrates the impor-
tant use of untargeted metabolomics and molecular net-
working together with targeted pharmacokinetics (PKs) to 
differentiate host and bacterial drug metabolism.
HOW MIGHT THIS CHANGE CLINICAL PHARMA COL­
OGY OR TRANSLATIONAL SCIENCE?
✔  This study is at the interface of translational science by 
asking a clinically important question: Does altering the mi-
crobiome with antibiotics affect drug metabolism leading 
to important changes in drug action? We investigate this 
question using a novel method of untargeted metabolomics 
and molecular networking tools combined with traditional 
PK analysis. This methodology may enhance future drug 
metabolism studies, particularly involving the microbiome.

https://doi.org/10.1111/cts.12785
mailto:﻿
mailto:﻿
mailto:﻿
mailto:robknight@health.ucsd.edu
mailto:robknight@health.ucsd.edu
mailto:pdorrestein@health.ucsd.edu
mailto:smtsunoda@health.ucsd.edu
https://doi.org/10.1111/cts.12785


973

www.cts-journal.com

Drug Metabolism and the Intestinal Microbiome
Jarmusch et al.

Identifying factors that contribute to the variability of 
drug action forms the basis for precision medicine. Drug 
metabolism is influenced by a variety of factors, includ-
ing genetics, ontogeny, diet, xenobiotics, and circadian 
rhythms, is dynamic and occurs in multiple locations in 
the human body (e.g., gut lumen and liver). The impact of 
the gut microbiota on drug metabolism has been of recent 
interest leading to the burgeoning field of pharmacomicro-
biomics1 with implications for toxicity2,3 and efficacy.4,5 Gut 
microbes interact directly with drugs and indirectly with the 
human intestinal drug metabolizing enzymes and transport-
ers. Recent investigations have shown that bacteria may 
generate metabolites previously unreported by traditional 
methods.6 Additionally, animal and human studies suggest 
that microbes can alter the activities of cytochrome P450 
enzymes (CYP) in the intestine leading to alterations in drug 
action.7-10

A traditional approach to studying drug metabolism in 
humans involves investigating the pharmacokinetics (PKs) 
of probe compounds that serve as biomarkers for enzyme 
or transporter activity. A probe compound is chosen and 
validated based upon its high specificity for the enzyme 
or transporter of interest, its safety profile, and availability. 
Cocktail studies involving the simultaneous administration of 
multiple noninteracting drug probes enable multiple enzymes 
to be probed with improved efficiency. The Cooperstown 
cocktail has been validated11 and used to study CYP1A2 
(caffeine), CYP2D6 (dextromethorphan), CYP2C9 (warfarin), 
CYP2C19 (omeprazole), and CYP3A4 (midazolam). Enzyme 
phenotypes are assessed by PK parameters, such as oral 
clearance or parent:metabolite area under the curve (AUC) 
ratios.

Mass spectrometry (MS) is a common technology used 
in measuring drugs and their transformation in biofluids 
and tissues; MS is used for targeted PK methods, which 
provide accurate quantification with low limits of detec-
tion as well as untargeted methods, including those used 
for metabolomics, and provide a broad characterization of 
the chemicals.12 MS detects the mass-to-charge (m/z) of 
ions and charged versions of neutral chemicals, thus pro-
viding information on the intrinsic mass of the chemical as 
well as a corresponding abundance, which is related to but 
not directly proportional to concentration. Further, MS can 
provide structural information of chemicals via product ion 
scans (one type of MS2) that contain interpretable fragments 
of a chemical structure when supplied with an excess of in-
ternal energy (such as higher-energy collision dissociation). 
Often, MS is coupled to chemical separation, such as liquid 
chromatography (LC) or gas chromatography, prior to mass 
analysis to facilitate analysis of complex samples. Targeted 
MS methods, such as those used for PKs, are very sensitive 
(often able to detect chemicals in the low part-per-billion 
range) and specific as the chemicals to be detected are 
determined a priori, but are rarely used to monitor tens to 
hundreds of chemicals concurrently. Untargeted MS meth-
ods are more akin to a screening approach in which the aim 
is to detect all chemicals present in a given sample without 
any prior knowledge. With respect to the understanding of 
drug metabolism, targeted PKs and untargeted MS provide 
complementary information.

One challenge of the untargeted MS approach is the 
overwhelming amount of data generated. A solution is to 
use molecular networking, which connects chemicals with 
similar molecular structures based on MS2 fragmentation 
patterns via the Global Natural Products Social Molecular 
Networking (GNPS) platform.13,14 The MS2 spectra are also 
used to provide putative annotations for their corresponding 
MS1 feature (i.e., m/z and retention time). Chemical annota-
tions are generated by comparing measured MS2 spectra 
with that of reference MS2 spectra in GNPS. GNPS anno-
tations are considered level 2 (putative annotation based 
on spectral library similarity) or level 3 (putatively character-
ized compound class based on spectral similarity to known 
compounds of a chemical class) by the 2007 metabolomics 
standard initiative.15 Feature-based molecular networking 
provides the ability to link the MS2 data processed in GNPS 
with the MS1 features making qualitative assessments of 
PKs possible.

Our approach to improving understanding of the influence 
of the intestinal microbiome on human drug metabolism is 
reported in this proof-of-concept investigation. Traditional 
targeted PK analysis was conducted using a modified 
Cooperstown cocktail to simultaneously assess CYP1A2, 
CYP2C19, CYP2D6, and CYP3A activities in healthy volun-
teers before and after a 7-day course of oral cefprozil—an 
antibiotic with no known direct effect on CYP-mediated drug 
metabolism. This was paired with untargeted MS coupled 
with molecular networking to detect and qualitatively mea-
sure drug metabolites in plasma, urine, and feces. Finally, 
16S rRNA analysis of the microbiome was used to inves-
tigate changes in microbial composition and diversity after 
antibiotic therapy. Utilizing this methodology allowed us to 
more deeply interrogate gut microbial and host drug metab-
olism interactions and the effects of antibiotic perturbation 
of the gut microbiome on CYP drug metabolism.

METHODS
Clinical protocol
This prospective, two-period, crossover study was ap-
proved by the UC San Diego Human Research Protections 
Program (Protocol #161940). All procedures were con-
ducted upholding the ethical standards according to the 
Declaration of Helsinki. All subjects provided written in-
formed consent.

Fourteen healthy human subjects aged ≥ 18 years who 
met the inclusion/exclusion criteria were enrolled. Subjects 
were excluded if they were or had household contact within 
2  weeks of the following: healthcare facility worker, farm 
worker, slaughterhouse worker, animal care worker; or were 
a vegetarian, smoker, consumed moderate amounts of alco-
hol chronically, on antibiotic therapy, hospitalized within the 
last 12 months, living with someone or an animal that had 
been on antibiotic therapy in the last month, had any gastro-
intestinal illness, any chronic illness, any infection requiring 
chemotherapy or antibiotics, diarrhea in the past 3 months, 
taking medications affecting the gastrointestinal system, 
CYP3A, CYP1A2, CYP2D6, CYP2C19 enzyme systems, 
immunomodulatory medications, allergy to beta-lactams, 
pregnant or lactating, taking any herbal, dietary, or naturally 
derived supplements, or had an abnormal body mass index.
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In order to phenotype multiple drug metabolizing en-
zymes simultaneously, we used a modified and validated 
Cooperstown cocktail.16,17 The Cooperstown cocktail is a 
panel of four drugs used in PK studies to determine drug 
metabolizing enzyme activity. We used the following drug 
probes: caffeine for CYP1A2,18 omeprazole for CYP2C19,19 
dextromethorphan for CYP2D6,20 and midazolam for 
CYP3A.21 We excluded warfarin and the  evaluation of 
CYP2C9. We genotyped subjects for common allelic vari-
ants of CYP2C19, CYP2D6, CYP3A4, and CYP3A5.

Subjects were admitted to the outpatient unit of the 
Clinical and Translational Research Institute at UC San 
Diego. On study days 1 and 9, simultaneous single oral 
doses of caffeine 2  mg/kg, omeprazole 40  mg, dextro-
methorphan 30  mg, and midazolam 0.075  mg/kg were 
administered. On study days 2–8, subjects took the antibi-
otic cefprozil 500 mg orally twice daily. The cefprozil dosing 
regimen was chosen based upon its therapeutic use and a 
previous study demonstrating a reproducible effect on the 
gut microbiome.22 Blood (5 mL) samples were taken prior 
to and 5 minutes, 0.5, 1, 2, 4, 5, 6, and 8 hours after drug 
administration on study days 1 and 9. Urine was sampled 
every 2 hours during the 8 hours after drug administration 
to dynamically assess metabolomics. Duplicate aliquots 
were obtained for metabolomic analysis. Fecal samples 
were obtained prior to study day 1 as a baseline, daily 
during antibiotic therapy, and on study days 1 and 9, as 
well as days 15 and 38, which corresponded to 7-day and 
30-day postantibiotic therapy. Subjects fasted overnight, 
including avoidance of alcohol or caffeine, and were given 
standardized meals and snacks on study days 1 and 9 
(Figure 1).

Pharmacokinetic analysis
Caffeine, omeprazole, 5-hydroxyomeprazole, dextrometho-
rphan, dextrorphan, and midazolam PKs were determined 
by noncompartmental analysis using Phoenix version 8.1 
(Pharsight, Cary, NC, USA). The AUC from time zero to infinity 
(AUC0–∞) was calculated as the sum of AUC from time zero 
to the last measurable concentration (AUC0–last) plus the ratio 
of the last measurable concentration and the elimination rate 
constant. Midazolam and caffeine apparent oral clearances 
were calculated as F*Dose/AUC0-∞. A log-linear trapezoidal 

method was used to calculate AUC0-last. Additional PK param-
eters calculated included maximum plasma concentration 
(Cmax), the  volume of distribution, elimination rate constant, 
and half-life.

Statistical analysis
Fourteen subjects were randomized to detect a 25% dif-
ference (80% power) with an alpha = 0.05 based upon the 
change in midazolam oral clearance using previously pub-
lished mean and SD data.23 Data were log-transformed 
prior to analyses. Based on January 2020 Food and Drug 
Administration Guidance for Clinical Drug Interaction 
Studies: Study Design, Data Analysis, and Clinical 
Implications (https://www.fda.gov/media /13458 1/down-
load), analyses of variance and a general linear model were 
performed that included subject and treatment effects as 
factors and calculated least squares geometric mean ra-
tios (LS-GMRs). Ninety percent confidence intervals (CIs) 
were calculated and expressed as a percentage relative 
to the LS-GMR of the pre-antibiotic cocktail phase. If the 
90% CI is within the 0.8 to 1.25 interval, it is concluded that 
there is no significant drug interaction. In contrast, values 
outside the 0.8 to 1.25 interval are indicative of an interac-
tion between cefprozil and the specific drug-metabolizing 
enzyme.24 This statistical approach has been used in previ-
ous phenotyping cocktail studies.25,26 Statistical analyses 
were performed using SAS version 9.3 (SAS Institute, Cary, 
NC, USA).

Pharmacogenomic analysis
Genotyping of the genes and variants listed below was 
performed by using polymerase chain reaction (PCR) 
and TaqMan allele discrimination in a custom designed 
microarray. TaqMan reagents consisted of a pair of un-
labeled PCR primers and a TaqMan probe with a FAM or 
VIC dye label on the 5′ end and minor groove binder and 
nonfluorescent quencher on the 3′ end. TaqMan probes 
were designed to anneal within a DNA region amplified by 
a specific set of primers. As the Taq polymerase extended 
the primer and synthesized the nascent strand, the 5’ to 
3’ exonuclease activity of the polymerase degraded the 
probe that annealed to the template. Degradation of the 
probe released the fluorophore from it and broke the close 

Figure 1 Clinical protocol design and sampling schema. Subjects received the Cooperstown cocktail on study days 1 and 9. Cefprozil 
was taken study days 2–8. Nine blood samples, five urine samples, and fecal samples were obtained on study days 1 and 9. Fecal 
samples were taken each day during cefprozil therapy and on study days 15 and 38. CAF, caffeine; DEX, dextromethorphan; MDZ, 
midazolam; OME, omeprazole.

https://www.fda.gov/media/134581/download
https://www.fda.gov/media/134581/download
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proximity to the quencher, thus relieving the quenching 
effect and allowing fluorescence of the fluorophore. The 
fluorescence detected in the quantitative PCR thermal 
cycler was directly proportional to the fluorophore re-
leased and the amount of DNA template present in the 
PCR. Using TaqMan probes for both the normal and vari-
ant allele enabled genotyping. Each variant was tested 
individually or within a custom array. For copy number 
analysis, gene specific (CYP2C19, CYP2D6, and CYP3A) 
and a reference gene were compared. Individual samples 
were run in quadruplicate. Each replicate was normalized 
to the reference gene to obtain a ΔCt (FAM dye Ct, VIC 
dye Ct), and then an average ΔCt for each sample (from 
the 4 replicates) was calculated. All samples were then 
normalized to a calibrator sample to determine ΔΔCt. 
The relative quantity was 2-ΔΔCt, and copy number was 
2 X relative quantity.

Targeted mass spectrometry
Quantitative simultaneous determination of caffeine, 
omeprazole, 5-hydroxy (5-OH) omeprazole, and mid-
azolam in human plasma and dextromethorphan, 
dextrorphan, and dextrorphan-O-glucuronide in human 
urine was accomplished by the use of high-performance 
liquid chromatography with tandem MS detection. 
Caffeine, omeprazole, 5-OH omeprazole, and midazolam 
were precipitated from 50 µL of plasma with 100 µL of 
100% acetonitrile  (ACN). Twenty µl of supernatant was 
injected directly onto a C-18 reversed phase high-perfor-
mance liquid chromatography (HPLC) column (MacMod 
Ace-5, 2.1 × 150 mm). The LC mobile phase consisted of 
HPLC grade water with 0.1% formic acid (elute A) and ACN 
with 0.1% formic acid (elute B), and eluted with a gradient 
program of 0.5–3 minutes/90% B; 3.25–10 minutes/10% 
B at a flow rate of 0.4  mL/min. MS/MS detection was 
made in positive electrospray ionization mode, at mass 
transitions of 196 → 137 m/z (caffeine), 346 → 198 m/z 
(omeprazole), 362  →  214  m/z (5-OH omeprazole), and 
326  →  291  m/z (midazolam). The method had a dy-
namic range of 2–25,000  ng/mL. Dextromethorphan, 
dextrorphan, and dextrorphan-O-glucuronide were pre-
cipitated from 100 µL of urine with 200 µL of 100% ACN. 
Twenty µL of supernatant was injected directly onto a 
C-18 reversed phase HPLC column (MacMod Ace-5, 
2.1 × 150 mm). The LC mobile phase consisted of HPLC 
grade water with 0.1% formic acid (elute A) and ACN with 
0.1% formic acid (elute B), and eluted with a gradient 
program of 0.5–3 minutes/100% B; 3.50–10 minutes/0% 
B at a flow rate of 0.3  mL/minutes. MS/MS detection 
was made in positive electrospray ionization mode, at 
mass transitions of 272 → 171 m/z (dextromethorphan), 
261 → 156 m/z (dextrorphan), and 434 → 258 m/z (5-OH 
dextrorphan-O-glucuronide). The method had a dynamic 
range of 0.98–500  ng/mL. For analytes in both plasma 
and urine, calibration standards were used to generate 
a curve using a linear regression algorithm to plot the 
peak area ratio vs. concentration with 1/× weighting, 
over the full dynamic range of analyte concentrations. 
Dextromethorphan to dextrorphan molar ratios were eval-
uated for CYP2D6 activity; however, as many samples 

were below the lower limit of quantitation of the assay 
(0.98 ng/mL), the results were not interpretable.

Untargeted mass spectrometry
Sample preparation: Plasma. Three hundred µL of 
MeOH (100%) was added to each well of the 96-well 
plate Phree Phospholipid Removal Kit and centrifuged at 
500 g for 5 minutes, 3 times prior to sample addition; the 
MeOH was discarded in the laboratory hazardous waste. 
Blood plasma was stored at −80°C prior to extraction in 
1.5  mL microtubes. The blood plasma microtubes were 
thawed at room temperature prior to extraction. Blood 
plasma samples were placed into one of four Phree 
Phospholipid Removal Kit 96-well plates randomly. 
The thawed blood plasma samples were vortexed for 
5 seconds and centrifuged for 1 minute at 5,000 rpm prior 
to pipetting 50 µL of each sample into the 96-well Phree 
Phospholipid Removal Kit. Two hundred  µL of MeOH 
(100%) was added to each well using a multichannel 
pipette; the solution was aspirated and dispensed 5 
times to mix the blood plasma and organic solvent. A 96-
well plate (Eppendorf Microplate 96/U-PP) was placed 
under the Phree Phospholipid Removal Kit to collect the 
sample and centrifuged at 500 g for 5 minutes. The Phree 
Phospholipid Removal Kit portion was discarded in the 
solid biohazardous waste and the sample-containing 
96-well plate was evaporated until dry using a CentriVap 
Benchtop Vacuum Concentrator (Labconco, Kansas City, 
MO). The 96-well plate containing the dried extract was 
covered (Storage Mat III 3080) and stored at −80°C prior 
to analysis. Immediately prior to analysis, the dried extract 
material was resuspended in 200 µL of MeOH-water (1:1), 
sonicated for 5  minutes, centrifuged for 5  minutes at 
500 g, and covered with a plate-sealing film (Zone-Free 
Sealing Films).

Sample preparation: Urine. Urine samples collected 
using BD Vacutainer tubes were stored at −80°C prior to 
extraction. Urine samples were thawed at room temperature. 
The Vacutainer tubes were vortexed for 5  seconds and 
centrifuged at  600  g for 5  minutes. The Vacutainer tube 
cap for each sample was carefully removed and 20 µL was 
pipetted into a well in the 96-well plate (Eppendorf Microplate 
96/U-PP). Five µL of an internal standard solution (20 µg/
mL solution of omeprazole-d3, caffeine-d3, midazolam-d4, 
dextromethorphan-d3, and dextrorphan-d3) was added to 
the sample as well as 175 µL of ACN-water (1:174). The 96-
well plate was covered with a plate sealing film (Zone-Free 
Sealing Films) for analysis.

Sample preparation: Feces. Fecal samples were stored 
at −80°C prior to extraction. The swab tip of the BD Falcon 
SWUBE Collection and Transport System swabs were cut 
into Nunc 96-Well Polypropylene DeepWell Storage Plates. 
Sample barcodes were scanned using a barcode scanner 
and saved into a Google Sheets spreadsheet generating a 
record of which sample was positioned in each well of the 
plate. Three hundred µL of MeOH-water (1:1) was added 
to each well using a multichannel pipette. The deep well 
plate was covered with a storage mat and floated in an 
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ultrasonic bath for 5  minutes. The samples were placed 
in a 4°C refrigerator overnight to extract. Subsequently, 
the swabs were removed from each well using tweezers, 
rinsing in between with nanopure water. The swab tips were 
disposed of in the solid biohazardous waste. Extracts were 
evaporated until dry using a CentriVap Benchtop Vacuum 
Concentrator (Labconco, Kansas City, MO, USA). The 
96-well plates containing the dried extract were covered 
(96-deep well plate mats, Nunc 96 Well Caps for 1.0  mL 
Polystyrene DeepWell Plates) and stored at −80°C prior to 
analysis. Immediately prior to analysis, the dried extract 
material was resuspended in 300 µL of MeOH-water (1:1), 
sonicated for 5  minutes, and centrifuged for 5  minutes 
at 500 g. One hundred µL of extract from each well was 
transferred into a 96-well plate (Eppendorf Microplate 
96/U-PP) and diluted twofold using MeOH-water (1:1), and 
covered with a plate-sealing film (Zone-Free Sealing Films).

Data acquisition
Blood plasma, urine, and fecal samples were analyzed using 
an ultra-high-performance LC (UltiMate 3000; Thermo) 
coupled to a quadrupole time-of-flight MS (maXis Impact, 
Bruker). Chromatographic separation was carried out on the 
analytical C18 column with corresponding C18 guard car-
tridge maintained at 40°C during separation. Then, 5.0 µL of 
the extract was injected per sample. Mobile phase composi-
tion was as follows: A, water with 0.1% formic acid (v/v) and 
B, ACN with 0.1% formic acid (v/v). Gradient elution was per-
formed as follows: 0.0–0.8 minutes, 3% B; 0.8–5.0 minutes, 
100% B; 5.0–6.5 minutes, 100% B; and 6.6 minutes–7.6 min-
utes, 3% B. MS data were collected using data dependent 
acquisition. An MS1 scan from m/z 50–1,500 at 3  Hz was 
followed by MS2 scans. Fragmentation was produced by 
stepped collision induced dissociation, of the five most 
abundant ions in the prior MS1 scan. Electrospray ionization, 
positive mode, was used to convert solution phase mole-
cules into gas-phase ions for MS analysis using the following 
source parameters: drying gas, 9.0 L min-1; dry gas heater, 
200 °C; capillary voltage, +4.5 kV; end plate offset, −0.5 kV; 
and nebulizer, 2.0 bar. Hexakis (2,2-difluoroethoxy) phosp-
hazene, lock mass standard, was sublimed in the ionization 
source; the lock mass standard was added such that a sig-
nal of ~ 1 × 105 signal was observed.

Data processing and data analysis
Lock mass corrected.mzXML files were generated from 
the raw qToF file (.d) using DataAnalysis (Bruker). MZmine2 
was used to perform feature finding27 (file with all parame-
ters available in MassIVE MSV000082493), yielding a data 
matrix of MS1 features (i.e., m/z and retention time) and as-
sociated peak area. Feature-based molecular networking 
outputs were generated from MZmine2 using the “export to 
GNPS” module, which generates a “quant.csv” which con-
tains the MS1 feature information and a corresponding .mgf  
file, which contains MS2 information linked to the MS1 
 features when an MS2 was detected.

Molecular networking (GNPS)
A molecular network was created with the feature based 
molecular networking workflow (https://ccms-ucsd.github.

io/GNPSD ocume ntati on/featu rebas edmol ecula rnetw orkin 
g/) on GNPS (https://gnps.ucsd.edu/Prote oSAFe /status.
jsp?task=b3966 445ab ad465 8a3cd c63c8 198a666). The 
data were filtered by removing all MS2 product ions within 
± 17 m/z of the precursor m/z. MS2 spectra were window 
filtered by choosing only the top 6 fragment ions in the 
±  50  m/z window throughout the spectrum. The precur-
sor m/z tolerance was set to 0.02 m/z and a MS2 product 
ion m/z tolerance of 0.02 m/z. A network was then created 
where edges were filtered to have a cosine score above 0.7 
and more than 4 matched peaks. Further, edges between 
two nodes were kept in the network if and only if each of 
the nodes appeared in each other’s respective top 10 most 
similar nodes. Finally, the maximum size of a molecular 
family (i.e., network component) was set to 100, and the 
lowest scoring edges were removed from molecular fami-
lies until the molecular family size was below this threshold. 
The spectra in the network were then searched against 
GNPS spectral libraries. The library spectra were filtered 
in the same manner as the input data. All matches kept be-
tween network spectra and library spectra were required to 
have a score above 0.7 and at least 4 matched peaks.

Curves were generated in blood plasma, urine, and 
feces samples using code (R language) available at GitHub 
(see below). The MS1 features corresponding to the drug 
and drug metabolites were subsetted from the MS1 feature 
table (“quant.csv”) generated for feature-based molec-
ular networking by linking the chemical annotations from 
GNPS (based on MS2 spectral matching) or the monoiso-
topic mass (confirmed by manual interpretation of the MS2 
product ion spectra). MS1 features detected in urine were 
normalized by the peak area of creatinine to compensate 
for variable concentration in random urine collection. MS1 
features detected in fecal samples were normalized by the 
peak area of stercobilin, a heme catabolite responsible 
for the brown color of feces, to compensate for variable 
amounts in material extracted. Blood samples were ana-
lyzed without normalization as a fixed amount of volume 
was extracted in each sample. The results were sub-
sequently plotted using the ggplot2 library in R. Note, 
nonfinite values were dropped when applying log10-scaling 
to the y-axis to facilitate interpretation as the peak areas 
for the drug and drug metabolites span multiple orders of 
magnitude.

Metabolomics data and code availability
All MS data (.d and .mzXML files) are publically available 
via GNPS/MassIVE (massive.ucsd.edu), a public MS data 
repository, under the accession number MSV000082493. 
All other code and materials (R) used to process data and 
generate plots are freely available at GitHub (github.com/
alan-jarmusch/UntargetedMS-DrugMetabolism).

Microbiome
Sample and data processing. The Earth Microbiome 
Project28 DNA extraction and 16S sequencing protocol 
was used for sample processing. In brief, stool sample 
DNA was extracted from swabs using the 96-well MoBio 
Powersoil DNA kit, and barcoded 515F-806R primers 
targeting the V4 region of the 16S rRNA gene were used 

https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/
https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/
https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b3966445abad4658a3cdc63c8198a666
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b3966445abad4658a3cdc63c8198a666
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for 16S amplification. The resulting V4 amplicons were 
sequenced at UCSD Institute for Genomic Medicine on an 
Illumina MiSeq.

Raw 16S sequencing data were uploaded to Qiita,29 
where it was demultiplexed, trimmed to 150  bp reads, 
and processed to suboperational taxonomic units (sOTU)
s using Deblur.30 The resulting feature table and represen-
tative sequences were downloaded and further analyzed 
with QIIME 231 to perform rarefaction, taxonomic as-
signments, phylogenetic tree generation, and differential 
abundance testing, and to calculate alpha and beta di-
versity. Taxonomic assignments used the naive bayes 
sklearn classifier32 in QIIME 2 trained on the 515F/806R 
region of Greengenes 13_8 99% operational taxonomic 
units (OTUs). Phylogenetic tree generation was performed 
by inserting representative sequences into the Greengenes 
13_8 99% tree with SEPP33 in QIIME 2. The feature table 
was rarefied to 5,000 reads per sample before perform-
ing alpha diversity (observed OTUs) and beta diversity 
(unweighted UniFrac) calculations in QIIME 2. Statistical 
significance of alpha diversity comparisons between days 
was determined with the alpha-group-significance com-
mand (Kruskal–Wallis) in QIIME 2. Differentially abundant 
features (microbes) between study days 1 and 9 were 
calculated with discrete false discovery rate34 on the rar-
ified feature table collapsed to species-level and on the 
noncollapsed table, implemented in QIIME 2. Repeated 
measures correlations were calculated using the python 
package Pingouin,35 which implements repeated measures 
correlation (rmcorr)36 in python and were run individually 
for each metabolite. Unweighted UniFrac distances used 
in repeated measures correlations were the unweighted 
UniFrac distances for each individual subject at study days 
2–9 compared with their study day 0 (baseline) sample. 
Comparisons of beta diversity variability between subjects 
by day were calculated by taking the unweighted UniFrac 
distances between all subjects for each day and perform-
ing pairwise Kruskal–Wallis tests with Scipy37 between the 
study day 0 distances and all other days.

Data visualizations were generated with the python 
packages seaborn (seaborn: statistical data visualization — 
seaborn 0.9.0 documentation. http://seabo rn.pydata.org/) 
and matplotlib.38

Microbiome data availability
Sequencing data are publicly available in Qiita at https://
qiita.ucsd.edu/study /descr iptio n/11766 and the EBI acces-
sion number is ERP117671. Jupyter notebooks with data 

analysis code are available at  https://github.com/afvrb 
anac/Tsuno da-Drug-Metab olism.

RESULTS
Cefprozil decreased activity of multiple CYP isoforms
After a 7-day course of oral cefprozil at therapeutic doses 
(500 mg twice daily), the LS-GMR of the PK parameter for 
caffeine, omeprazole, and midazolam decreased (Table 1). 
Furthermore, the 90% CI of the LS-GMR for caffeine, ome-
prazole, and midazolam were all outside the 0.8 to 1.25 
interval. Consequently, the decrease in the LS-GMRs and 
accompanying 90% CIs suggest a decrease in CYP1A2, 
CYP2C19, and CYP3A4 activities. Due to uninterpretable 
results, dextromethorphan (CYP2D6) data are not reported. 
No trends could be explained from sex, race, or the genetic 
variation in the CYPs (Table S1).

Cefprozil modified the gut microbiome
Microbiome alpha diversity (i.e., the number of observed 
OTUs per sample, remained similar between enrollment 
(study day 0) and the pre-antibiotic Cooperstown cock-
tail administration (study day 1). The antibiotic cefprozil 
was taken orally beginning on study day 2, which resulted 
in an observed decrease in alpha diversity over the 
week-long course (Figure 2a), and alpha diversity was sig-
nificantly lower on study days 5, 7, 8, and 9 (postantibiotic 
Cooperstown cocktail administration) compared with study 
day 1. Alpha diversity recovered to pre-antibiotic levels by 
study day 15 after cessation of antibiotics on study day 8. 
Although cefprozil decreased alpha diversity in subjects, 
the induced changes in the microbiome of subjects were 
individualistic. Unweighted UniFrac distances, a measure 
of beta diversity between subjects were significantly higher 
on study days 3–9 and 15 compared with enrollment (study 
day 0), Figure S1. Cefprozil was qualitatively detected 
using untargeted metabolomics in the fecal samples begin-
ning on study day 3 through study day 9, affirming subject 
adherence, Figure S2.

Despite an increase in microbiome variability (i.e., beta di-
versity) between subjects with cefprozil treatment, changes in 
certain bacteria were consistent across subjects. Collinsella 
aerofaciens, Lachnospiraceae Blautia, Blautia obeum, 
Coprococcus, Roseburia, and Ruminococcus were signifi-
cantly decreased in the study day 9 fecal samples compared 
with study day 1 (Figure 2b). Although the Lachnospiraceae 
family overall was significantly lower in study day 9 sam-
ples, differential abundance testing at the sOTU level 
(individual 16S sequences) revealed multiple bacteria in the 

Table 1 Pharmacokinetic measurement of CYP activity prior to and after cefprozil

CYP Parameter
Geometric mean period 1 

(no antibiotic)
Geometric mean period 2 

(after antibiotic) LS­GMR 90% CI

CYP1A2 Caffeine (CL/F; mL/hour) 24.9 23.5 0.93 0.53–1.33a

CYP2C19 OME/5-OH OME (AUC) 1.4 1.2 0.89 0.63–1.17a

CYP3A4 Midazolam (CL/F; mL/hour) 9.7 9.6 0.98 0.78–1.19a

AUC, area under the curve; CI, confidence interval; CL/F, total clearance; CYP, cytochrome P450; LS-GMR, least squares geometric mean ratio; OME, 
omeprazole; 5-OH OME, 5-hydroxy omeprazole.
a90% CI is outside the 0.8–1.25 interval.

http://seaborn.pydata.org/
https://qiita.ucsd.edu/study/description/11766
https://qiita.ucsd.edu/study/description/11766
https://github.com/afvrbanac/Tsunoda-Drug-Metabolism
https://github.com/afvrbanac/Tsunoda-Drug-Metabolism
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Figure 2 Box and whisker plots displaying changes in fecal microbiota. (a) Alpha diversity was measured by observed operational 
taxonomic units (OTUs). Boxes shaded in grey indicate the period of time in which oral cefprozil was administered. Asterisks indicate 
statistical significance (Kruskal-Wallis) compared with alpha diversity on study day 1. (b) Differentially abundant bacteria between 
study days 1 and 9. Statistical significance was assessed with dsFDR(49) on the rarified feature table collapsed to species-level. Plots 
are displayed as relative abundance for ease of interpretability. The boxes represent the 25%, 50%, and 75% quartile and the whiskers 
extend ±1.5 times the interquartile range.
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Lachnospiraceae family that increased with antibiotic treat-
ment, including a Lachnospiraceae Clostridium sOTU and a 
Clostridium lavalense sOTU (Table S2).

Untargeted metabolomics and molecular networking 
enhance characterization of drug metabolism
Metabolomics data collected using untargeted MS were ana-
lyzed using molecular networking. Molecular networking links 
similar chemicals based on similar MS/MS fragmentation pat-
terns. Every unique MS/MS spectrum is displayed as a node 
(ellipse) in Figure 3 and colored by annotation status (green 
annotated or grey unannotated). The majority of nodes, a proxy 
for how many different chemicals were detected, were unan-
notated. The CYP probe drugs, midazolam (components 1 and 
3), omeprazole (components 2 and 5), and dextromethorphan 
(component 4) were molecular networked. Midazolam me-
tabolites generated by CYP3A4 and glucuronosyltransferase 
(1-hydroxymidazolam, 1-hydroxymidazolam-O-glucuronide, 
and dihydroxymidazolam glucuronide) were detected in com-
ponent 3. Omeprazole metabolites generated by CYP2C19, 
CYP3A4, and glucuronosyltransferase were detected in 
component 2 (5-hydroxyomeprazole, 5-carboxyomeprazole, 
and 5-hydroxyomeprazole-O-glucuronide, respectively). 

Component 4 contained the CYP2D6-derived metabolite 
dextrorphan. Caffeine was detected in the samples but is not 
included in the  network as it falls below the networking criteria 
for the minimum number of fragment peaks (i.e., product ions).

Component 5 of the molecular network (Figure 3) included 
additional omeprazole metabolites, including omeprazole 
sulfide (a reported bacterial metabolite) and omeprazole 
sulfone (a reported CYP3A metabolite).16-18 An unanno-
tated node with a measured m/z of 346.1226 was linked 
to omeprazole sulfide, and was tentatively annotated as 
hydroxyomeprazole sulfide (presumed to be the 5-hy-
droxy metabolite) upon the  manual interpretation of the 
MS/MS spectra (Figure S3 and S4). Characteristic prod-
uct ions of m/z 313.1422 (neutral loss of -SH), 198.0571, 
and m/z 149.0684 were noted. The neutral loss of 18.0110 
(-H2O), 32.9803 (-HS), 63.9620 (-SO2) was observed in 
omeprazole, omeprazole sulfide, and omeprazole sulfone, 
respectively. The neutral loss corresponding to the substi-
tuted benzimidazole ring (m/z 148.0652), also detected as 
a product ion of m/z 149.0684, was observed in omepra-
zole, omeprazole sulfide, and omeprazole sulfone, and the 
respective product ions of m/z 198.0581, 182.0619, and 
214.0521. The detection of m/z 198.0571 corresponding 

Figure 3 Molecular networking via Global Natural Products Social Molecular Networking for all samples with nodes (ellipse) representing 
unique tandem mass spectrometry (MS/MS) consensus spectra and edge (lines) indicating similarity in MS/MS fragmentation. 
Annotation is concurrently performed via MS/MS spectral library matching (level 2) and is indicated in grey (unannotated) or green 
(annotated). Authentic chemical standards improve confidence in annotation (level 1), red node outline. Illustrative molecular networking 
components (i.e., chemical families) are enlarged to highlight the detection and networking of CYP drug probes as well as metabolites.
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to the charged substituted pyridine ring (and neutral loss 
of the substituted benzimidazole ring) matched that of 
omeprazole. The fragments suggested the presence of a 
chemical, isobaric with omeprazole with the same molec-
ular formula, but differing in the location of oxygen atoms. 
The tentatively annotated hydroxyomeprazole sulfide 
shared a product ion of m/z 167.0922 with that of 5-hy-
droxyomeprazole indicating hydroxylation. In summary, 
the link between molecular networking indicated a chem-
ical similar to omeprazole sulfide, a bacterial metabolite, 
with an MS/MS spectra indicative of hydroxylation of the 
substituted pyridine ring, which we presume is the known 
5-hydroxymetabolite produced by CYP2C19.

The metabolomics data provided a global view of drug 
metabolism when analyzed via multivariate statistics (i.e., 
principal component analysis (PCA)). The urine data were 
relatively similar in chemical composition indicated by the 
grouping and a large amount of overlap in the PCA score 
plots in Figure 4a,b for pre-antibiotic and postantibiotic 
study days. Data along the principal component (PC1) axis, 
displayed in the density plot (inset), indicate a shift asso-
ciated with time after drug administration. The median in 
samples PC1 values shift in the positive PC1 direction after 
0  minutes (pre-administration of drugs) and continues to 
do so until ~ 240 or 360 minutes before beginning shifting 
in the negative direction on the PC1 axis at 480 minutes. 

The high-level view of metabolism indicated that chemical 
shifts following the metabolism of the drugs is detect-
able, whereas modest differences are noted reflecting the 
minor effect of adding a few drugs to the complex chem-
ical composition of urine. Untargeted metabolomics data 
provided semiquantitative information about the temporal 
changes in plasma, urine, and fecal samples of known drug 
and drug metabolites, such as omeprazole, hydroxyome-
prazole, and omeprazole sulfide (Figure 4c–e), as well 
as putatively annotated drug metabolites resulting from 
molecular networking (e.g., hydroxyomeprazole sulfide). 
Assuming similar ionization efficiency (i.e., the rate of con-
verting neutral molecules to charged forms for detection 
via MS) based on the structural similarity of omeprazole 
and plotted metabolites, one could interpret the relative 
levels of the metabolites. In plasma, Figure 4c, ome-
prazole, 5-hydroxyomeprazole, and hydroxyomeprazole 
sulfide were similar in abundance, whereas omeprazole 
sulfide was less abundant. The level of omeprazole began 
to increase ~ 30 minutes after dosage. Hydroxyomeprazole 
levels began increasing ~ 60 minutes after dosage, quickly 
increasing to the peak level at 120 minutes. Similar trends 
in omeprazole sulfide and hydroxyomeprazole sulfide were 
observed with a more gradual increase to peak levels (~ 120 
to 240  minutes) beginning at 30 to 60  minutes. In urine, 
omeprazole and omeprazole sulfide were less abundant 

Figure 4 Principal component analysis of untargeted metabolomics urine data for (a) study day 1 (pre-antibiotics) and (b) study day 
9 (postantibiotics). Points represent urine samples and are colored by the time in which they were collected after drug consumption. 
Density plots for principal component (PC)1 values are inset. Lines at the bottom of each distribution reflect individual points, the 
median value is indicated (black line), and the distributions are offset by time. (c) Plot of time vs. peak area (log-scaled) for omeprazole, 
hydroxyomeprazole, omeprazole sulfide, and hydroxyomeprazole sulfide in plasma samples. (d) Plot of time vs. peak area normalized 
by creatinine (log-scaled) for omeprazole, hydroxyomeprazole, omeprazole sulfide, and hydroxyomeprazole sulfide in urine samples. 
(e) Plot of study day vs. peak area normalized to stercobilin (log-scaled) for omeprazole, hydroxyomeprazole, omeprazole sulfide, and 
hydroxyomeprazole sulfide in fecal samples obtained daily. The period of antibiotic use is indicated in orange. The boxes represent 
the 25%, 50%, and 75% quantile and the whiskers extend ± 1.5 times the interquartile range. Note, values are log10-scaled to facilitate 
interpretation and points with nonfinite values are not displayed; however, statistical analyses were performed using all points.
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than hydroxyomeprazole sulfide and 5-hydroxyomper-
azole. Similar to the blood levels, hydroxyomeprazole 
sulfide levels more gradually increased over time com-
pared with hydroxyomeprazole. The values for study day 1 
and study day 9 are displayed in different colors revealing 
trends, but the changes were not statistically significant in 
plasma or urine. The fecal data, Figure 4e, indicated that 
during the period of time after the initial dose of omepra-
zole, the parent drug, and its metabolites were detected in 
fecal samples over the following week.

Decreased microbiome alpha diversity correlated with 
increased formation of drug and drug metabolites in 
feces
Microbiome perturbation was associated with elevated 
drug and drug metabolites in fecal samples. Using a re-
peated measures correlation36 to account for interindividual 
variation, we found microbiome alpha diversity was anti-
correlated with both levels of omeprazole and omeprazole 
metabolites (Figure 5), independent of time (Figure S5). 
Additionally, the unweighted UniFrac distance for each 
individual’s sample to their study day 0 (baseline) sample 
was positively correlated with omeprazole and omepra-
zole metabolites (Figure 5). Taken together, this indicates 
that the magnitude of microbiome disruption, measured 

by both microbiome alpha diversity changes and individ-
ual deviation from baseline (beta diversity), was associated 
with omeprazole and omeprazole metabolite accumula-
tion in feces. A similar trend was observed for other drugs, 
including caffeine and midazolam (Figure S6), although 
midazolam accumulation in feces was significantly associ-
ated with time (Figure S5).

DISCUSSION

After a 7-day course of the oral antibiotic cefprozil, the 
phenotyping parameters for caffeine, omeprazole, and 
midazolam were altered reflecting decreased activities of 
CYP1A2, CYP2C19, and CYP3A, respectively. Cefprozil had 
a greater effect on CYP2C19 and modest effects on CYP3A4 
and CYP1A2. The mechanism for this effect is not likely due 
to cefprozil directly affecting CYP-mediated metabolism as 
the majority of the drug is excreted unchanged in the urine; 
hepatic metabolism is thought to be minimal, and no CYP-
mediated drug-drug interactions have been reported with 
these probe compounds.39 Cefprozil is a second-genera-
tion cephalosporin that has activity against gram positive 
bacteria (e.g. Streptococci, Haemophilus influenza) as well 
as gram negative bacteria (e.g., Escherichia coli); and af-
fects specific organisms in the gut microbiome.22 Therefore, 

Figure 5 Correlations among fecal omeprazole (OME), 5-hydroxy (5-OH) OME, and 5-OH OME sulfide levels, and (a) alpha diversity 
(observed operational taxonomic unit (OTUs)) or (b) unweighted UniFrac distance to each subject’s baseline sample. Plots display 
regression lines for each individual subject and statistics displayed are from the repeated measures correlation using days 2–9. 
Subjects DM10 and DM18 were omitted as their study day 0 (baseline) samples were either below the sequencing quality threshold 
or not collected. 
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we propose that cefprozil is modifying the gut microbiome 
and affecting CYP activity. It is possible that other antibi-
otics that more dramatically alter gut microorganisms may 
have different effects on CYP-mediated metabolism.

Cefprozil decreased microbiome alpha diversity, which 
significantly recovered by study day 15. Similar to a previ-
ous study,22 there was significant interindividual variability in 
the gut microbial changes after cefprozil (Figure S1). Most 
of the gut bacteria that decreased with cefprozil treatment 
(Lachnospiraceae, Blautia, Coprococcus, Roseburia, and 
Ruminococcus) were from the Firmicutes phyla, which to-
gether with Bacteroides composes the majority of the human 
gut microbiome. Although none of these bacteria have been 
previously associated with changes in drug metabolism, inter-
esting associations with human disease and drug activity have 
been reported. Increased Lachnospiraceae Blautia was asso-
ciated with survival in graft-vs.-host disease.40 Coprococcus 
has been shown to be depleted in depression.41 Roseburia 
has been associated with several diseases suggesting that 
it may be a biomarker for a healthy microbiome.42 Collinsella 
aerofaciens from the actinobacteria phylum was significantly 
decreased in our study. Interestingly, C. aerofaciens has been 
associated with inflammatory bowel diseases, aging, and drug 
activity. A recent in vitro drug screen suggests that C. aerofa-
ciens may contribute to the metabolism of 16 different drugs43 
and an increased abundance was associated with greater 
response to anti-PD-1 therapy in patients with metastatic 
melanoma.44

Recent investigations have drawn attention to the role of 
Faecalibacterium prausnitzii in the disposition of the CYP3A 
substrate and immunosuppressive agent tacrolimus. The 
abundance of F. prausnitzii in feces was positively correlated 
to tacrolimus dosing in patients who underwent kidney 
transplantation10; and, upon further investigation, F. praus-
nitzii was shown to form a tacrolimus metabolite.6 We did 
not observe a change in F. prausnitzii in our data, although 
it was shown to be present throughout individuals over time 
(Figure S7). Cefprozil did not significantly affect this particu-
lar organism in our cohort.

Metabolomics performed using untargeted MS provided 
information on drug metabolites via molecular network-
ing, an overall picture of drug metabolism via PCA, and 
qualitative information on the temporal dynamics of drug 
metabolites. Molecular networking was able to connect 
parent and metabolite drugs, including known CYP bio-
transformation products, such as 1-hydroxymidazolam 
(CYP3A4), dextrorphan (CYP2D6), and 5-hydroxyomepra-
zole (CYP2C19) across blood plasma, urine, and feces. 
Deuterated chemical standards of the parent drugs and 
select metabolites networked with their respective par-
ent drugs increased confidence in chemical annotations 
provided via spectral library matching in GNPS. Phase II 
drug metabolites were concurrently detected (e.g., glucu-
ronidation). The drug metabolites that were not assigned a 
chemical annotation were more often than not due to the 
unavailability of a reference MS2 spectrum in the GNPS 
(a compilation of nearly all public MS2 reference spectra, 
including MoNA, MassBank, MassBank EU, etc.); however, 
connections to known metabolites could be established 
using molecular networking facilitating annotation de novo.

Omeprazole sulfide was detected in the blood, urine, 
and fecal samples in support of previous reports in human 
blood plasma,45 human urine,46 and wastewater sam-
ples.47 The exact mechanism or location in the human 
body at which omeprazole sulfide is produced cannot be 
conclusively determined in this study; however, there is 
prior evidence that omeprazole sulfide can be produced 
by the intestinal microbiome of rat feces ex vivo as well 
as in the blood of rats after oral ingestion and intrarec-
tal dosage.48 Further, human and rabbit feces incubated 
with sulphinpyrazone and sulindac resulted in sulfoxide 
reduction, which is also observed in rabbits in vivo.49 
Biochemically, the reduction of the sulfoxide functional 
group may serve as an electron acceptor in anaerobic 
respiration. We cannot discount the role of chemical re-
duction, particularly in acidic conditions, that may occur. 
Regardless of the mechanism and location of production, 
our study affirms that omeprazole sulfide can be detected 
in blood plasma, urine, and feces in humans. Further, mo-
lecular networking indicated the presence of a chemical, 
connected to omeprazole sulfide, which was tentatively 
identified as hydroxyomeprazole sulfide based on MS/MS 
and exact mass (2.02  ppm mass error). This metabolite 
was reported previously in wastewater samples47; but a 
source was never identified. We postulate that this me-
tabolite is the combined product of both host CYP and 
intestinal gut microbiota metabolism, although we did not 
test this directly.

With respect to the omeprazole metabolites, we inves-
tigated the changes in alpha diversity and beta diversity, 
and the formation of omeprazole and its metabolites over 
study days 2–9. We found alpha diversity was negatively 
correlated with omeprazole and omeprazole metabolites, 
associating a loss of microbial diversity with the accu-
mulation of omeprazole, 5-OH omeprazole, and 5-OH 
omeprazole sulfide in feces. This was not simply an ar-
tifact of time, neither omeprazole nor its metabolites 
were significantly correlated with day (Figure S5). We 
also quantified the magnitude of microbiome changes 
for each individual over the course of the study by look-
ing at the unweighted UniFrac distances from the study 
day 0 baseline sample to study days 2–9. An increase in 
UniFrac distance to baseline, indicating a greater change 
in microbiome composition, was significantly correlated 
with omeprazole, 5-OH omeprazole, and 5-OH omepra-
zole sulfide accumulation in feces. Although we cannot 
directly link these results to bioavailability of the drug, 
disruption of the microbiome seems to be associated 
with drug and drug metabolite content in feces. Notably, 
we did not observe a significant correlation with changes 
in CYP activity and alpha or beta diversity, although un-
like fecal metabolite correlations, we were limited to data 
from only study days 1 and 9 where CYP activity was 
measured.

In conclusion, using the tools of targeted MS and untar-
geted MS/molecular networking and microbiome analysis, 
we demonstrated a relationship between perturbation of 
the gut microbiome and drug metabolism. Untargeted MS 
data analyzed by molecular working via GNPS were useful 
in connecting drugs with their known CYP and phase II drug 
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metabolites, suggesting the presence of uncharacterized 
drug metabolites, which could be confirmed using exact 
masses, molecular formulae, and interpretation of MS2 
product ion spectra; and that qualitative assessment of PK 
levels in multiple human biofluids is possible. We affirm the 
presence of omeprazole sulfide in human blood plasma, 
urine, and fecal samples. We report the presence of 5-hy-
droxyomeprazole sulfide, 5-carboxyomeprazole sulfide, 
and 4-hydroxyomeprazole sulfide-O-glucuronide in human 
blood plasma and urine, and hypothesize they are pro-
duced through the combination of human CYP and phase 
II metabolism and that of intestinal microbiota. Enhanced 
interrogation of drug metabolism with our methodology 
provides insight into the chemical modifications, which may 
be previously unknown and allows differentiation between 
host and microbe. Alteration of drug metabolizing enzymes 
by antibiotics may be an important mechanism to consider 
in the variability of drug PKs, drug action, and pharmaco-
dynamics. Future studies to identify gut microbes and their 
products and the molecular mechanisms of this interaction 
will be important. Other factors that change the gut micro-
biome may also significantly impact intestinal and hepatic 
drug metabolism. Understanding these contributions to 
overall drug bioavailability brings us closer to optimal drug 
utilization and discovery.

Supporting Information. Supplementary information accompa-
nies this paper on the Clinical and Translational Science website (www.
cts-journal.com).
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