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Thromboprophylaxis with argatroban in critically ill patients

with sepsis: a review
Mirjam Bachlera,b, Lars M. Asmisc, Jürgen Koscielnyd, Thomas Lange,

Hartmuth Nowakf, Patrick Paulusg, Jens-Christian Scheweh,

Christian von Heymanni and Dietmar Friesb
During sepsis, an initial prothrombotic shift takes place, in

which coagulatory acute-phase proteins are increased,

while anticoagulatory factors and platelet count decrease.

Further on, the fibrinolytic system becomes impaired, which

contributes to disease severity. At a later stage in sepsis,

coagulation factors may become depleted, and sepsis

patients may shift into a hypo-coagulable state with an

increased bleeding risk. During the pro-coagulatory shift,

critically ill patients have an increased thrombosis risk that

ranges from developing micro-thromboses that impair

organ function to life-threatening thromboembolic events.

Here, thrombin plays a key role in coagulation as well as in

inflammation. For thromboprophylaxis, low molecular

weight heparins (LMWH) and unfractionated heparins

(UFHs) are recommended. Nevertheless, there are

conditions such as heparin resistance or heparin-induced

thrombocytopenia (HIT), wherein heparin becomes

ineffective or even puts the patient at an increased

prothrombotic risk. In these cases, argatroban, a direct

thrombin inhibitor (DTI), might be a potential alternative

anticoagulatory strategy. Yet, caution is advised with regard

to dosing of argatroban especially in sepsis. Therefore, the

starting dose of argatroban is recommended to be low and

should be titrated to the targeted anticoagulation level and

be closely monitored in the further course of treatment. The

authors of this review recommend using DTIs such as

argatroban as an alternative anticoagulant in critically ill
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Sepsis
The number of patients hospitalized for sepsis has been

increasing worldwide for decades [1–4]. Sepsis is the

most common cause of death in hospitalized patients.

In Germany, the incidence of sepsis increased by 5.7%

from 2007 to 2013 [5]. Although the overall mortality

rate among patients with sepsis is declining [1–5],

an increase in severe sepsis with organ failure can

be observed [2,6,7]. Since 2016, organ failure has been

a mandatory component of the new sepsis definition

[8].

Sepsis is characterized by a dysregulated host response to

pathogen-associatedmolecularpatterns (PAMPs)andhost-

derived damage-associated molecular patterns (DAMPs)

triggering the proinflammatory response [9]. This leads

to severe organ dysfunction, whereby inflammation and

coagulation interact in a complex way [10], leading to an

exaggeration of both systems. When immune response
and coagulation become exaggerated during sepsis, tissue

and organ damage can occur [8].

After the initial shift to a pro-coagulatory state character-

ized by tissue factor (TF)-mediated endothelial dysfunc-

tion, activation of the coagulation system and fibrin

deposition in the microcirculation [11], later stages of

the disease-related interplay between coagulation and

immune response to inflammation may lead to consump-

tion of platelets and coagulation factors associated with

coagulopathy and a strong tendency to overt bleeding

[12]. Sepsis is the most common clinical picture associat-

ed with coagulopathy in critical care medicine and sepsis

involving the coagulation system is associated with a

worse prognosis for the patient [13,14].

Recently, high mortality and its relationship with throm-

boembolic diseases in COVID-19 have been reported

[15–17]. Despite the limited knowledge of this disease,
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the characteristics of COVID-19-associated coagulopathy

are distinct from those seen in DIC [18]. Whereas DIC in

bacterial sepsis is characterized by a more thrombotic

phenotype in the earlier and a hypocoagulability with

decreased clot firmness in viscoelastic tests and low

antithrombin activity in the later course of the disease

[19,20], COVID-19-associated coagulopathy is character-

ized by hypercoagulability as indicated by increased clot

firmness in viscoelastic tests and normal antithrombin

activity [21–23]. Both conditions are characterized by

impaired fibrinolysis or even fibrinolytic shutdown in

severe cases [21,24,25].

Coagulation in sepsis
The pro-coagulant shift in sepsis initially comprises high

levels of fibrinogen and FVIII as acute reactant [26,27]

and complement-mediated endothelial damage charac-

terized by elevated von Willebrand factor concentrations

with ultra-large multimers [11,28,29] due to decreased

ADAMTS13 levels [30,31]. High levels of ultra-large

VWF multimers in combination with low ADAMTS13

activity are associated with disease severity and with

parameters of inflammation and disseminated intravas-

cular coagulation [32–34].

Both coagulation pathways, theTF pathway as well as the

contact pathway, play an important role in the pathogen-

esis of sepsis. Activated FXII activates FXI and vice versa.
The FXII pathway is activated via platelets, immune

cells or their microparticles [35]. Although total FXI

levels appear to be decreased in sepsis, the reduced form

of FXI, modified by cleavage of disulphide bonds, is

increased in patients with sepsis and correlates with

disease severity and platelet count as a marker of sep-

sis-induced DIC [36].

TF also plays a crucial role in the pro-coagulatory shift

during sepsis and contributes to disease severity, as this

factor is not only presented on cells of subendothelial

tissue, but also on activated platelets, endothelial cells

and immune cells [37]. Notably, TF expression on

circulating cells (monocytes) and microparticles can

be measured by NATEM CT and is associated with

increased mortality [37–39]. Therefore, gene polymor-

phisms regarding TF expression, for example of the NF-

kappa B promotor gene, play an important role in sepsis

[39].

Concurrent with these coagulation deficiencies, levels of

coagulation inhibitors such as antithrombin [26,40] and

protein C [41,42] may be decreased, which is explained

by consumption due to increased activation of the coag-

ulation system. Furthermore, serum thrombomodulin, a

biomarker of endothelial dysfunction, is increased during

sepsis [42,43]. These factors are all associated with sepsis

severity, organ failure and outcome [40–43].

The mechanism of procoagulant response in sepsis is com-

plex and often accompanied by a decrease in the platelet
count [26,27] that is attributed to the formation of fibrin-

platelet- thrombi, platelet-neutrophil aggregates, neutro-

phil extracellular traps (NETs) in themicrovasculature and

a dysregulated balance of platelet formation in the bone

marrow and an increased consumption by the infectious

condition [44]. The extent of thrombocytopenia is asso-

ciated with increased mortality [26,27,45], especially

when thrombocytopenia is persistent [46,47]. In addi-

tion, the proportion of immature platelets increases in

sepsis [48].

Reports about platelet function in sepsis are conflicting.

On the one hand, increased platelet activation may

initially occur during sepsis [49–52], whereas vWF-de-

pendent platelet adhesion seems to be impaired [51].

Also, platelet surfaces and their granule content provide a

substrate for plasmatic coagulation activation via, for

example, polyphosphates that activate the contact path-

way [53]. In addition, the platelet-derived extracellular

vesicles (PEVs) or microparticles (PMPs) provide such a

pro-coagulatory surface [35] and enhance the procoagu-

lant response in sepsis.

On the other hand, flow cytometry shows a change in

platelet receptor patterns, whole blood impedance aggre-

gometry demonstrates early platelet dysfunction in sepsis

[54–57]. Furthermore, bacterial toxins seem to result in

desialylation of platelet glycoproteins and accelerated

platelet clearance by hepatic Ashwell-Morel receptors,

which play an important role in bacterial sepsis [58,59].

Here, the P2Y12 receptor inhibitor ticagrelor and the

antiinfluenza sialidase inhibitor oseltamivir have shown

some therapeutic benefits [60,61].

Platelets are also involved in immune response and

therefore interact with various immune cells [62]. For

example, platelets bind to neutrophils and initiate the

formation of NETs, a host defense mechanism [63].

Furthermore, they bind to monocytes and form aggre-

gates, which increases the inflammatory response [64].

Thrombin, on the contrary, also plays a crucial role in the

initiation of endothelial dysfunction, which is a charac-

teristic disease during sepsis and especially septic shock

[65]. During septic shock, large amounts of thrombin are

generated via various mechanisms. Although longer lag

times in thrombin generation have been observed during

sepsis, the thrombin is formed with higher-velocity indi-

ces during thrombin generation [66]. In sepsis the high

thrombin levels lead to direct disruption of the endothe-

lial barrier mainly via PAR-1, thus unravelling the basal

membrane, a subcellular structure that is highly pro-

coagulant [67], and resulting in the formation of micro-

vessel thrombi that impair microcirculation and oxygen

supply to the tissue. The latter enhances a vicious circle

by induction of hypoxia, which stimulates hypoxia-in-

ducible factor (HIF)-1, which in turn enhances PAR-1

[68] expression and also endothelial disruption via the

formation of VEGF [69].
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Another shift to pro-coagulation is the ‘fibrinolytic shut-

down’. It becomes important once thromboses have

formed. Although tissue-derived plasminogen activators

(t-PA) are elevated during sepsis, fibrinolysis inhibitors,

plasminogen activator inhibitor 1 (PAI-1) and thrombin-

activatable fibrinolysis inhibitor (TAFI) increase as well

[25,70]. The increase in PAI-1 levels consequently affects

fibrinolysis more than does t-PA [70], and the higher the

PAI-1 levels are during sepsis, the worse the outcome is,

as seen in a study where PAI-1 levels were significantly

higher in deceased patients [71]. In short, impaired

fibrinolysis and fibrinolytic shut-down are not only asso-

ciated with sepsis severity and mortality [70], but can also

be used to discriminate between sepsis and SIRS in

critically ill patients [72,73]. Furthermore, impaired fibri-

nolysis and fibrinolytic shut-down are also associated with

increased markers of cellular damage and morbidity [74].

From an evolutionary point of view, this pro-coagulatory

shift must have an advantage. This can be seen from the

fact that septic patients who have shifted into a hypo-

coagulable state present increased mortality [75]. One

can speculate that the advantage produced by the pro-

coagulatory state is most likely due to the coagulation

system being a part of host defense and inflammation.

Recent studies have revealed that each of the coagulation

factors plays a role in host defense and inflammation. For

instance, FXII and plasma prekallikrein reciprocally ac-

tivate each other and result in the release of bradykinin.

There are also hints that both FXII and FXIIa upregulate

neutrophil functions, contribute to macrophage polariza-

tion and induce T-cell differentiation [76]. Moreover,

complement factors are more correlated to coagulation

factors than to inflammation [77]. The extent of comple-

ment activation is related to DIC, sepsis severity and

outcome during sepsis [78].

Not only do the individual coagulation factors function as

part of the immune system, but activation of the coagu-

lation system also leads to fibrin formation and thus also

functions as part of the immune system. High fibrinogen

levels during sepsis are associated with increased survival

[26,27,79].

The reason why fibrinogen has a positive effect on

survival during sepsis could be that it helps the immune

system limit bacterial growth and enhance bacterial

clearance [80]. The fibrin net captures and immobilizes

invasive bacteria [81], thus restricting local spreading

[81,82]. Once fibrinolysis sets in, plasminogen releases

fibrinogen-derived so-called AMPs (antimicrobial pep-

tides), thus creating an antimicrobial environment in the

clot. Such a peptide is the Bß15–42 fragment and an

unambiguous antimicrobial effect of this protein was

already proven by Staphylococcus aureus, group A strepto-

cocci (GAS) and group B streptococci (GBS) [83]. In

addition, this peptide binds to the vascular endothelial

cadherin (VE cadherin) of the endothelial cells and
thereby reinforcing the tight junctions, which has a

positive effect on organ failure and survival of sepsis

[84,85]. The importance of fibrinogen, fibrinolysis, and

the consequently released peptides during sepsis and

their beneficial impact on infection, multiple-organ dys-

function and reduced mortality have already been proven

in several clinical studies [86–88]. Thrombosis as host

defense during infection and inflammation is also called

‘immuno-thrombosis’ [89].

Although a pro-coagulatory state in sepsis is associated

with better outcome regarding survival and organ func-

tion [90], when coagulation becomes exaggerated, it

contributes significantly to organ dysfunction and higher

mortality from sepsis [91]. Furthermore, thrombin itself

has proinflammatory properties [92], which are attenuat-

ed when direct thrombin inhibitors (DTIs) are used

[93,94]. In this context, thrombin plays a significant role,

as it is the direct driver of fibrin formation as well as

inflammation and is therefore a critical factor for the

development of thrombosis and inflammation.

Summary
During sepsis, an initial pro-coagulatory shift takes place,

in which both coagulation pathways, the TF as well as the

contact pathway, are involved. Acute phase proteins such

as fibrinogen, FVIII and vWF are increased. At the same

time, anticoagulatory factor deficiencies occur, while

biomarkers of endothelial dysfunction are elevated. An-

other mechanism of the pro-coagulatory shift of the

coagulation system is the fibrinolytic shut-down that

contributes to disease severity.

At a later stage in sepsis, coagulation factors are depleted

as a result of synthesis impairment or consumption or

both, and sepsis patients shift into a hypo-coagulable

state, which can be associated with an even worse

outcome.

The reason for the initial pro-coagulatory shift in sepsis

patients could be that platelets and coagulation factors

dependent thrombosis play a crucial role in the patient’s

immune response; both act as direct host defense and

limit pathogen dissemination or modulate inflammation

via, for example, binding to immune cells. At any stage,

when coagulation becomes exaggerated, it is associated

with adverse outcome during sepsis. In this context,

thrombin plays a significant role since it is the direct

driver of fibrin formation and is therefore a critical factor

for the development of thrombosis.

Thrombosis risk in critically ill patients
Due to systemic inflammation and the pro-coagulatory

shift as host responses, critically ill patients are at an

increased risk for developing thrombosis. These throm-

boses comprise a whole clinical spectrum ranging from

micro-thrombosis that impair organ function to directly

life-threatening events such as pulmonary embolism or
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disseminated intravascular coagulation with early broad

microvessel thrombosis and later, after broad consump-

tion of coagulation factors, a severe bleeding state with

life-threatening bleeding complications.

The incidence of deep vein thrombosis (DVT) is about

10–30% in critically ill patients who receive no throm-

bosis prophylaxis [7]. The rate of DVT is even higher in

posttraumatic patients, namely up to 60% in the first 2

weeks after trauma. When an acute spinal cord injury is

involved, the incidence of DVT increases up to 80% [95].

The administration of thrombosis prophylaxis reduces

the incidence of thrombotic events in critically ill

patients. The administration of heparin halved the risk

of thrombotic events in medical-surgical critically ill [96]

as well as trauma patients [95]. This might also influence

mortality rates. Themortality rate in patients with throm-

boprophylaxis decreased significantly compared with that

in patients not receiving prophylaxis, with the exception

of patients with ischemic stroke [97].

Despite appropriate thrombosis prophylaxis, the rate of

thrombotic events in critically ill patients remains high.

Patients receiving thromboprophylaxis with heparins af-

ter acute ischemic stroke showed smaller rates of DVT

and pulmonary embolism, but thrombotic events could

not be completely prevented [98]. The overall incidence

of DVT in medical and postsurgical critically ill patients

despite receiving thrombosis prophylaxis is still between

7.5 and 12% [99–101]. In severely injured trauma

patients, namely the patient population with the highest

risk for thrombosis, the incidence of DVT is still about

15–22% [102–104] and the rate of pulmonary embolism

in these patients is between 3 and 6% [103,105]. In

critically ill patients with sepsis, the incidence of throm-

botic events is also very high, ranging from 10.8 to 16.9%

[26,106]. Clinically, the administration of unfractionated

heparin, as for example in ECMO patients, is also chal-

lenging, as it is difficult to achieve the aPTT target range

because the effect of heparin is dependent on many

factors such as antithrombin, plasma protein concentra-

tion and so on. Therefore, a substance that is clinically

easier to handle is of great interest in septic patients with

unfractionated heparin therapy.

Summary
Due to systemic inflammation and the pro-coagulatory

shift, critically ill patients have an increased thrombosis

risk that ranges from developing micro-thromboses that

impair organ function to life-threatening thromboembol-

ic events. Depending on the underlying disease, the rate

can be up to 80% in patients, when not anticoagulated.

Even in anticoagulated patients, the incidence of throm-

bosis remains relatively high, especially in trauma

patients and patients with systemic inflammation

or sepsis.
Thrombin and protease-activated receptors
Thrombin activates several cell types such as platelets,

immune cells, vascular smooth muscle cells or endothe-

lial cells via the protease-activated receptors (PARs) with

the exception of PAR2, although transactivation of PAR2

by cleaved PAR1 can happen in endothelial cells, espe-

cially when PAR-1 signalling is inhibited [107]. In

humans, certain types of PARs depend on the cell type.

For instance, in platelets, only PAR1 and PAR4 are

expressed [108–110].

When thrombin activates PARs, the concentration of

thrombin determines which type of receptor will be

activated. PAR1 exclusively signals low thrombin con-

centrations, while PAR4 becomes the dominant player

when high levels of thrombin are present [111,112].

PARs play a crucial role in coagulation, inflammation,

embryogenesis, wound healing and cancer growth [113].

Apart from thrombin, these receptors have many differ-

ent endogenous as well as exogenous ligands that induce

different signalling pathways, especially regarding in-

flammation and activation and aggregation of platelets

[114].

PAR1 has a critical role in maintaining the platelet

activation induced by ADP [115]. Furthermore, binding

and signalling via PAR1 requires the participation of

GPIba and ADP to amplify the PAR1 responses, while

PAR4 is activated independently of GPIba and ADP

[111]. Binding to GPIba and PAR4 leads to the formation

of thrombin-induced reactive oxygen species (ROS)

[116]. ROS are known to be necessary for intra-platelet

signalling and subsequently for further platelet activa-

tion. A further pro-coagulatory role of thrombin binding

to platelets via PAR1 is the release of heparanase. Hepar-

anase itself forms a procoagulant active complex with TF

and thus enhances coagulation via the TF pathway. The

same happens when thrombin binds to the PARs of

granulocytes, for example, neutrophils [117].

Due to the net pro-coagulatory role of PAR signalling, the

blocking of the thrombin receptors has become of clinical

interest in reducing atherothrombotic events. One ap-

proach is the blocking of PAR1 or PAR4. A PAR4 blocker

is under development [118] and vorapaxar, a PAR1

inhibitor, already has market authorization for the pre-

vention of recurrent ischemic events in patients with

prior myocardial infarction or peripheral artery disease

[119]. The PAR1 inhibitor is not only effective, but also

associated with an increased risk of bleeding [120–123],

which therefore may limit its use in critically ill patients

and especially patients suffering from sepsis.

Inhibition of these thrombin receptors is not only interest-

ing with regard to prevention of thromboembolic events,

but also because PARs play a role in cancer genesis as

a result of their role in angiogenesis. Stimulation of

PAR1 and PAR4 in platelets mediates angiogenesis via
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the secretion of vascular endothelial growth factor (VEGF)

[124]. Furthermore, PAR-1 activation on endothelial pro-

genitor cells promotes cell proliferation and contributes to

neo-angiogenesis [125].

As thrombin binds to PAR and promotes angiogenesis, it

makes a crucial contribution to regulating wound healing

or tumour spread. Thrombin binding to PAR1 in glioma

cells participates in malignancy and glioblastoma neo-

angiogenesis [126], resulting in glioma growth [127].

The PARs also play an important role in inflammatory

processes. PAR4 is responsible for platelet and CD4þ T-

cell recruitment induced by hepatic reperfusion injury

[128]. Also, immune cells such as peripheral blood mono-

nuclear cells (PBMCs) are activated by thrombin via the

PAR1. Upon thrombin stimulation, the PBMCs release

pro-inflammatory cytokines such as IL-1b and IL-6 and

also their cell proliferation is increased [129]. When

binding to PARs, thrombin is involved in the regulation

of monocyte differentiation for scar tissue formation after

injury [130].

Especially the binding of thrombin to endothelial cells is a

crucial step during disease. Thrombin is believed to partic-

ipate in the regulationofbloodpressurebybinding toPAR1

and thus influences vasoconstriction as shown in microves-

sels [131] in pulmonary arterial hypertension [132].

Thrombin also regulates endothelial permeability and is

therefore responsible for the development of oedema. An

animal study showed that PAR1 activation increased

vascular permeability mainly via mast cell degranulation,

which led to oedema formation [133]. Thrombin binding

to PAR1 of endothelial cells in an in-vitro and an animal

study led to an enhancement of chemotaxis for the

leukocytes and so increased leukocyte recruitment

[134]. In microvascular endothelial cells of rat brains,

thrombin induces inflammatory processes by binding

to PAR1 that disrupt the tight junctions and increases

the permeability of the blood–brain barrier (BBB) [135].

Also in the lung, PAR1 expression was increased during

pneumonia due to Streptococcus pneumoniae infection and

mediated neutrophil recruitment, thus leading to in-

creased alveolar leakage, both of which were attenuated

with a PAR1 inhibitor in mice [136].

The importance of thrombin-induced PAR activation in

the host response to infection is supported by the fact that

some pathogens have developed defense mechanisms by

cleaving these types of receptors. For example, strepto-

coccal virulence factor SpeB is able to cleave PAR1 and

thus makes the endothelial cells unresponsive to throm-

bin and prevents human platelets from thrombin-induced

aggregation [137].

Inhibitionof thePARs isnotonlyof interest for antiplatelet

therapy, but also for inflammation. Blocking PAR1 with

vorapaxar showed some anti-inflammatory effects [138],

for example by maintaining the endothelial barrier and
proliferation of endothelial cells and thus protecting the

endothelial cells [139]. During endotoxemia, PAR-1 inhi-

bition decreased inflammation and endothelial activation

[140]. However, the increased bleeding risk due to PAR1

inhibition [120–123] means this strategy is rather not an

option for critically ill patients, who nevertheless suffer

froman increasedbleeding risk as a result of theunderlying

diseases, stageof sepsis or intensive careprocedures aswell

as surgical interventions. Therefore, the inhibition of

thrombin might be more advantageous than PAR inhibi-

tion, as thrombin directly and indirectly mediates many

inflammatory processes during sepsis, as schematically

illustrated in Fig. 1.

Summary
Thrombin not only contributes to clot formation, but also

binds to various cell types including platelets, immune

cells and the endothelium via the PARs. PARs play a

crucial role in coagulation, inflammation, embryogenesis,

wound healingand cancer growth.

When thrombin binds to platelets via PAR1, it makes a

critical contribution to maintaining and amplifying plate-

let activation. It also induces the release of heparanase,

which forms a procoagulant active complex with TF.

This complex is also formed when thrombin binds to

PAR1 on granulocytes, for example neutrophils. Further-

more, because thrombin binds to PARs and thus pro-

motes angiogenesis, it plays an important role in

regulating wound healing or tumour spread.

PAR activation via thrombin is also a critical mechanism

in inflammatory processes. Immune cells such as PBMCs

are activated by thrombin via the PAR1 and subsequently

release pro-inflammatory cytokines. Thrombin, when

binding to the PARs of monocytes, is involved in the

regulation of differentiation for scar tissue formation

after injury.

Thrombin also regulates endothelial permeability via

PAR binding and is therefore responsible for the devel-

opment of oedema via the enhancement of leukocyte

recruitment andmigration and therefore disruption of the

tight junctions.

PAR inhibition not only showed anticoagulatory and anti-

inflammatory effects, but also increased bleeding events.

As critically ill patients nevertheless suffer from an in-

creased potential bleeding risk, because of the underly-

ing diseases, stage of sepsis or intensive care procedures

as well as surgical interventions, PAR inhibition might

lead to an increase in adverse side effects. Therefore, the

inhibition of thrombin might be a more suitable option to

prevent the activation of PARs via thrombin.

Thrombosis prophylaxis in critically ill patients with
sepsis
The need for effective thrombosis prophylaxis in criti-

cally ill patients, especially when they suffer from sepsis,
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Fig. 1

The role of thrombin in coagulation and inflammation. aPC, activated protein C; C3, complement factor 3; C5, complement factor 5; EPCR,
endothelial protein C receptor; NETs, neutrophil extracellular traps; PARs, protease-activated receptors; TAFI, thrombin activatable fibrinolysis
inhibitor; vWF, von Willebrand factor.
cannot be denied. The sepsis guideline recommends a

pharmacologic prophylaxis for venous thromboembolism

with unfractionated heparin (UFH) or low-molecular-

weight heparin (LMWH) [141]. This guideline also

favours LMWH rather than UFH [141], although a look

into the rationale for this recommendation shows that

only studies comparing LMWH with subcutaneous ad-

ministration of UFH twice daily were used in medical

and postsurgical patients [96] as well as in trauma patients

[142]. Contrary to these results, a meta-analysis of 12

trials observed comparable efficacies of UFH adminis-

tered subcutaneously twice daily and LMWH, whereas

UFH showed a tendency to a decreased incidence of

major bleeding as compared with LMWH [143]. In a

more recent neurosurgical meta-analysis, the rates of

venous thromboembolism, postoperative blood transfu-

sion and haemorrhagic stroke were equivalent for pro-

phylactic LMWH and subcutaneous UFH administered

twice a day [144]. Overall, LMWH is increasingly used in

critically ill patients, although no difference was observed

in venous thromboembolism between patients predomi-

nantly treated with LMWH or UFH [145].

It was shown that intravenous administration of UFH is

superior to subcutaneous administration in preventing
venous thrombotic events (VTEs) [146]. A retrospective

review did not find a significant difference between

LMWH and heparin infusion with respect to haemor-

rhagic and general complication rates [147]. Notable in

the setting of critical care patients is that the resorption of

subcutaneous drugs may be impaired [148,149]. Thus, it

may be advisable to make adjustments in monitoring and

drugs also when administering heparin subcutaneously in

critically ill patients [150].

The advantages of intravenous administration of heparin

are obvious. Dose adjustments can be performed quickly,

thereby personalizing therapy. Furthermore, an antidote

is available for UFH, which is necessary, as this patient

population is not only susceptible to thrombosis but also

to bleeding.

Despite pharmacological thromboprophylaxis, thrombo-

sis rates in critically ill patients are still high. Therefore,

more potent prophylaxis options other than unfractio-

nated or LMWHs may be necessary, especially because

heparin administration might become ineffective, which

is called heparin resistance, or because it could lead to an

even increased thrombosis risk due to the induction of

NET formation [151] or to the development of heparin-

induced thrombocytopenia (HIT).
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Summary
Due to the high thrombosis risk in sepsis patients, the

sepsis guidelines recommend pharmacologic prophylaxis

for venous thromboembolism with UFH or LMWH.

LMWH is recommended over subcutaneous UFH. Here,

it is important to note that data comparing continuous

intravenous administration of UFH and LMWH are rare,

but studies indicate that intravenous administration of

UFH is superior to subcutaneous administration in pre-

venting VTEs and that intravenous UFH is as well

tolerated as LMWH. The advantage of continuous infu-

sion of UFH is the fast dose adjustment option needed in

critically ill patients, who are at risk for developing

thrombosis and also bleeding. Nevertheless, the risk

for developing heparin-induced thrombocytopenia

(HIT) should not remain unmentioned.

Direct thrombin inhibitors in critically ill patients
In critically ill patients, two DTIs for intravenous admin-

istration are predominantly used, argatroban and bivalir-

udin. Bivalirudin is mainly used and approved for

patients with cardiac interventions, but its availability

is restricted in, for example, Europe, whereas argatroban

is widely available and there is a high level of experience

with its administration in critically ill patients. Argatroban

is a synthetic DTI with a low molecular weight [152]. It is

an L-arginine derivative that binds exclusively to the

catalytic site of thrombin and inhibits its ability to cleave

fibrinogen. Argatroban consequently prevents thrombus

formation in a dose-dependent way. Argatroban is me-

tabolized and eliminated by hepatic metabolism. The

elimination half-life of argatroban in healthy subjects is

about 50min. Because of the hepatic metabolism, dosing

precautions are recommended in patients with hepatic

dysfunction, but it can be used without restriction in

patients with renal dysfunction [152]. Currently, no anti-

dote is available.

Argatroban has marketing authorization for thrombopro-

phylaxis in patients with induced thrombocytopenia

(HIT) for most countries. In Japan, for instance, arga-

troban is approved for several indications, for example

thromboprophylaxis in patients with extracorporeal

circuits with antithrombin deficiency. Furthermore,

argatroban is used off-label in patients with heparin

resistance [153].

Several studies in patients with HIT have confirmed

the efficacy of argatroban and showed that it improved

patient outcome with regard to thrombotic events

and thrombosis-associated mortality [154–158] and also

increased platelet count [159].

In critically ill patients, the summary of product char-

acteristics (SmPC) recommends an argatroban starting

dose of 0.5mg/kg/min and that the activated (a)PTT

assay be used to monitor its efficacy [152], although some

studies indicate that lower doses might be sufficient in
critically ill patients [160–163]. Critically ill patients are

composed by different heterogeneous patient populations

who require individualized treatment.Depending on their

disease andcomorbidities, somepatientsareat ahigher risk

for thrombosis than other patients and some need lower

argatroban doses than other patients. These lower doses in

critically ill patientsmightbedue toprolongedclearanceof

argatroban [164], as these patients often have impaired

liver function. In critically ill cardiac surgery patients,

median argatroban plasma half-life was 2.7h, and patient

age and serum albumin concentration contributed signifi-

cantly to the prolonged half-life [165]. In addition, arga-

troban is known to bind to several plasma proteins, mainly

to albumin and a1 acid glycoprotein, which may influence

the drug’s distribution and plasma half-life.

As argatroban has to be given continuously intravenously,

it is advantageous for continuous gavages such as, for

example, for renal replacement therapies (RRTs),

patients on ECMO therapy or patients in high oedema-

tous septic stages, wherein LMWH is not sufficiently

resorbed. In patients receiving RRT, argatroban was

shown to be well tolerated with regard to bleeding

complications and to provide effective anticoagulation

[166–168]. Even in patients at high haemorrhagic risk, it

was shown to be feasible, although the higher starting

dose and the small sample size mean the rate of compli-

cation might be overrepresented in this particular study

[169]. When monitoring is close and dose titration is

strict, argatroban is well tolerated regardless of disease

severity or impaired hepatic function [166].

There are indications that critically ill patients with

multiple-organ dysfunction syndrome (MODS) require

even lower doses of argatroban than recommended in the

SmPC [160,161] and very low dosing when hepatic

impairment contributes to MODS [160]. A retrospective

analysis regarding MODS in critically ill patients

revealed that a well tolerated dosage for anticoagulation

with argatroban depends on the number of failing organs

[170]. It was shown that there is an inverse relationship

between the Sequential Organ Failure Assessment (SO-

FA) Score and the required argatroban dose [171]. In

most critically ill patients, a starting dose of 0.2mg/kg/min

over 4 h is effective to provide sufficient anticoagulation

without bleeding complications [161,163,172].

In some dedicated centres, argatroban is widely adminis-

tered in patients on extracorporeal circuits, for example

extracorporeal membrane oxygenation (ECMO), with

suspected or confirmed HIT. In acute respiratory distress

syndrome (ARDS), patients requiring ECMO, argatroban

was shown to be as effective and well tolerated as UFH

with regard to bleeding and the need for transfusions

[162], but was administered also at low maintenance

doses of 0.15–0.26mg/kg/min [162,163] and without put-

ting patients at risk for HIT. The risk for HIT can be as

high as 3.7% in this patient population [173].
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Summary
Argatroban is a DTI that is continuously intravenously

administered and has a short half-life of 50min. Arga-

troban holds marketing authorization for parenteral

antithrombotic therapy in patients with HIT. Argatroban

is proven to be effective in preventing thrombosis in HIT

patients in various clinical situations. In addition, in

patients with thrombocytopenia, the platelet number

may recover during argatroban administration.

In critically ill patients, the starting dose of argatroban has

to be low and should be titrated to the targeted antic-

oagulation level. Some studies indicate an even lower

starting dose than recommended in the current SmPCs. It

seems that the greater the extent of organ dysfunction is,

the lower the required starting and maintenance dose is.

When adhering to this, argatroban was shown to be well

tolerated even in patients needing extracorporeal circuit

treatment such as ECMO.

Evidence FOR the usefulness of argatroban in sepsis
Studies in larger patient populations dealing with the

efficacy and safety of argatroban in critically ill patients,

especially those with sepsis with and without HIT, are

mainly of a retrospective nature.

In comparison to other DTIs such as bivalirudin and

lepirudin, the literature also reports conflicting results,

particularly regarding effectiveness and safety. Two stud-

ies have shown the superiority of argatroban as compared

to bivalirudin in terms of the time needed to reach the

targeted anticoagulation goal [174,175], while another

demonstrated that bivalirudin performed better [176].

In the latter study, bivalirudin had the lowest bleeding

rate in patients being treated for HIT, followed by

argatroban, whereas lepirudin had the highest bleeding

rate, although the patient groups were barely comparable

due to their heterogeneity [176].

However, a meta-analysis of largely retrospective studies

in mainly critically ill patients demonstrates that the

effectiveness of argatroban is similar to that of lepirudin

or bivalirudin in patients with HIT and also that the

incidence of bleeding was not significantly different

[177]. Importantly, whenHITwas associated with throm-

bosis, argatroban seemed to be superior to bivalirudin, as

the incidence of thrombosis was lower in patients treated

with argatroban [177]. A recently published Bayesian

network meta-analysis of retrospective as well as pro-

spective studies with very heterogeneous patient popula-

tions with and without HIT seems to confirm this result.

This analysis demonstrates that the argatroban patients

had the shortest hospitalization and lowest rate of hae-

morrhage, thromboembolism and mortality as compared

to bivalirudin, lepirudin, desirudin and danaparoid [178].

In comparison with heparins such as LMWH or UFH, a

retrospective study in critically ill patients diagnosed

with HIT showed that argatroban used at doses less than
0.4mg/kg/min was not associated with an increase in

transfusion requirement and furthermore was associated

with reduced overall treatment cost as compared to

heparin [179]. Although risk factors for bleeding during

argatroban are known [180], several retrospective studies

have demonstrated that argatroban is well tolerated with

bleeding rates comparable to those of heparin in critically

ill patients suffering from various diseases other than

HIT [181–184].

Not only safety, but also the efficacy of argatroban has

been investigated in critically ill patients without HIT.

For example, in heparin-resistant critically ill postsurgical

patients, in whom the rate of heparin resistance is high

probably due to the acute phase reaction [185–188], a

retrospective analysis demonstrated that argatroban is an

effective alternative prophylactic anticoagulation [189].

There are also some retrospective studies available that

deal with the use of argatroban in extracorporeal circuits

such as ECMO or RRT. Importantly, it seems that there

is no difference in the argatroban dose needed to reach a

particular anticoagulation level [190].

In patients with ECMO, argatroban was comparable to

UFH with regard to bleeding and thromboembolic com-

plication rates [191]. A propensity score matched study in

patients on ECMOwithout HIT confirmed these results,

namely that argatroban was comparable to UFH concern-

ing the occurrence of technical complications, bleeding,

thrombosis and costs, but that analysis also demonstrated

that argatroban has a platelet-preserving effect [192].

In this study, it was noticed that argatroban doses had

to be increased when sepsis improves [192]. Further-

more, several studies in ECMO patients, also in patients

with COVID-19 sepsis, showed argatroban to be similar

with regard to thrombotic complications and bleeding

[162,193,194].

In patients requiring RRT, for instance following cardiac

surgery, the effectiveness and safety of argatroban were

comparable to those of heparin when argatroban was

closely monitored and carefully titrated, regardless of

disease severity or impaired hepatic function [166]. In

critically ill COVID-19 patients in whom UFH failed to

prevent early clotting of the dialysis circuit, LMWH and

argatroban were compared and the use of LMWH

resulted in the longest circuit life spans, although the

sample size was probably too small to permit a solid

conclusion to be drawn [195].

In actual fact, there are almost no clinical trials that

investigate the effectiveness of argatroban in patients

with or without HIT in a solely septic patient population.

There is one prospective randomized controlled clinical

trial in heparin-resistant critically ill, mainly sepsis

patients without HIT that demonstrates the superiority

of argatroban over an increased UFH dose with regard

to effectiveness as measured by reaching the targeted

aPTT range [153]. Also, regarding safety, no significant
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difference in the bleeding incidence was seen between

argatroban and UFH [153].

In critically ill patients, regardless of sepsis but with HIT,

a multicentre clinical trial proved that the platelet count

recovered rapidly after argatroban initiation and that

argatroban is a well tolerated therapeutic option in

HIT patients at high haemorrhagic risk and with renal

failure [169]. It is important to know that in patients with

HIT and thromboembolic events a delay of one or more

days in the administration of argatroban was accompanied

by a significant increase in the incidence of further

thromboembolic complications [196].

Summary
Several retrospective and some prospective studies have

demonstrated the efficacy and safety of argatroban in

critically ill patients with and without HIT in comparison

to heparins. Also, in patients on extracorporeal circuits,

such as RRT or ECMO, the use of argatroban seems to be

comparable to heparins regarding efficacy and safety.

Studies in solely septic patient populations that investigate

different anticoagulatory strategies with clinical outcomes

such as thromboembolic rate or bleeding complication

are missing.

Bleeding risk during argatroban treatment
The bleeding risk associated with argatroban needs to be

addressed, as there is no antidote available. However, in

the case of UFH, for example ECMO therapy and

subsequent bleeding, the use of heparin’s antagonist

protamine is also very critical. Thus, the bleeding risk

for argatroban might be relative. When compared to other

anticoagulatory therapies in HIT patients, most studies

did not show patients receiving argatroban to have an

increased bleeding risk [162,166–169] and in some set-

tings even showed a decreased bleeding risk [158,197].

During therapy of arterial thrombi in rats with LMWH,

the bleeding risk was actually higher than with argatroban

[198]. In humans, a similar situation was observed in

patients undergoing elective percutaneous coronary

interventions (PCIs), wherein major bleeding was pres-

ent only in patients receiving UFH (3.0%) [197]. In

patients with stroke, the occurrence of haemorrhagic

complications did not differ significantly between the

argatroban and the control group, which was defined as

patients receiving any other anticoagulatory therapy

[199].

The bleeding risk on argatroban therapy is increased

when, for example major surgery is performed prior to

or during argatroban therapy, especially when at the same

time, the dosage is adapted to a body weight of more than

90 kg, bilirubin levels are elevated (>3mg/dl), or when

thrombocytopenia (�70G/l) is present at the start of

argatroban therapy [180].
If bleeding occurs when on argatroban and acute reversal

of argatroban is necessary, treatment with prothrombin

complex concentrate (PCC) might reverse the anticoag-

ulant effect of argatroban [200].

Summary
As with every anticoagulatory drug, there is a certain

bleeding risk, although studies have indicated that the

bleeding risk is not higher than for other anticoagulation

substances. Nevertheless, caution is advised with regard

to dosing, as some risk factors that could be present,

especially in critically ill patients, can increase the bleed-

ing rate. Close monitoring of argatroban with an appro-

priate method can reduce the bleeding risk.

Argatroban monitoring
Administration of argatroban in patients with critical

illness, increased bleeding risk or increased potential

need for urgent procedures requires close monitoring.

In patients with moderate or severe hepatic dysfunction

(Child-Pugh Classes B and C), it is advisable to start

treatment with a reduced dose. The activated partial

thromboplastin time (aPTT) is the most widely available

monitoring assay for measurement of the anticoagulatory

effect of argatroban [201–203]. Whether the aPTT assay

is the appropriate tool for monitoring, argatroban treat-

ment is the subject of considerable controversy [204–

206]. Furthermore, studies indicate that the aPTT does

not correlate well with plasma levels in critically ill

patients [207,208]. Also, close aPTT monitoring might

be challenging in daily ICU routine [209].

Especially in critically ill patients, confounding factors

can cause the aPTT to be prolonged without there being

any real clinical bleeding tendency. Prolongation of the

aPPTmay lead to inadequate thrombo-prophylactic drug

dosing, or in the worst case to the administration of no

anticoagulation therapy at all [210]. For instance, the

aPTT of patients with lupus anticoagulants overesti-

mates the argatroban concentration [211].

In general, increased aPTT is sensitive to decreased

levels of FVIII, FIX, FXI and FXII as well as to the

intake of anticoagulants, antiphospholipid antibodies and

von Willebrand disease [212–214]. As aPTT measure-

ment is often misused as a predictor for bleeding in

critically ill patients [215], the detection of prolongation

may lead to insufficient or no antithrombotic therapy or

even result in the indiscriminate use of coagulation

factors or blood products, especially fresh frozen plasma

(FFP). Moreover, it may even cause urgently required

surgical interventions to be postponed [216,217].

Major problems in critically ill patients are the presence

of lupus anticoagulants or contact pathway factor defi-

ciencies, such as prekallikrein or FXII deficiency without

any increased risk for bleeding [217–219], which may

prolong the aPTT. A study revealed that FXII levels
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below 42.5% are most likely to confound the aPTT assay,

resulting in a prolongation of aPTT, and this extent of

FXII deficiency was seen quite frequently in critically ill

patients [220].

Therefore, the aPTT might not be the best tool for

monitoring DTIs such as argatroban in critically ill

patients. Other global coagulation assays are available

and may be more suitable for monitoring anticoagulation.

Thrombin time (TT) adds a certain amount of thrombin

to measure the time needed for plasma clot formation.

When DTIs are present, thrombin clotting time is pro-

longed. When a high level of anticoagulation is required,

this lies outside the measurable range of the TT assay, as

the TT is very sensitive to small concentrations of DTI.

For this situation, a modified or diluted TT (dTT) is

more practical [207].

A similar test is the ecarin-activated clotting time (ECT)

or ecarin-activated chromogenic assay (ECA), which uses

the snake venom ecarin from Echis carinatus to convert

prothrombin to fibrinogen-activating meizothrombin.

Similar to thrombin, meizothrombin is also inhibited

by DTIs.

Indeed, the aPTT showed discordance with an ECA and

dTT [221]. The TT has a linear dose–response profile

[222] and, contrary to the aPTT, a strong correlation to

the plasma concentrations of argatroban in critically ill

patients [207].

Anti-IIa assays are based on either modified or dTT

assays or ECT, wherein the time until clot formation

is converted to concentration units of argatroban (mg/ml).

When comparing the results, it is important to know

which type of anti-IIa, namely based on TT or ECT,

was used, as both tests are not superimposable [223].

The advantage of these thrombin-based tests is that they

activate the clotting cascade at the level of thrombin

generation and none of these tests contain phospholipids.

Therefore, neither antiphospholipid antibodies nor kal-

likrein deficiency, nor FXII deficiency confounds these

tests. Their disadvantage is that they have a lack of

defined prophylactic and therapeutic target ranges.

Colucci et al. [224] investigated a small patient series with

HIT and showed that a median aPTT of 44.2–59.7 s,

which is often used as a prophylactic range, is equivalent

to a median of 0.2–0.67mg/ml argatroban as measured

with an anti-IIa assay developed in-house, while thera-

peutic aPTTs of 64.6 and 70.4 s were equal to 0.88 and

1.01mg/ml argatroban levels, respectively. The authors

pointed out that each hospital has to define its own target

ranges based on the type of assay being used, for example

their in-house target anti-IIa therapeutic range was set at

0.4–0.8mg/ml [224].

The fact that many hospital laboratories do not provide

anti-IIa assays required for proper argatroban monitoring
is a problem. Here, the possible monitoring tools are the

viscoelastic tests such as TEG, ROTEM or ClotPro.

Viscoelastic tests give more detailed information about

the functional formation of the clot, interaction and total

sum effects of different aspects of the coagulation system

such as clot firmness and clot lysis. These tests are

conducted with whole blood, which also gives informa-

tion on the involvement of blood cells, especially plate-

lets. Whereas ECATEM, EXTEM and FIBTEM CT

correlate very well with plasma concentrations of DTIs

such as hirudin, argatroban and bivalirudin, INTEM and

HEPTEMCT show a weaker correlation [207,225–229].

Therefore, EXTEM, FIBTEM or ECATEMCT should

be preferred. Especially the commercially available Clot-

Pro ECA test (ecarin-based assay) appears to be a prom-

ising argatroban bedside monitoring tool. However, here,

too, well defined prophylactic and therapeutic-targeted

ranges are lacking and further studies are needed.

Summary
For effective and well tolerated use of argatroban, the

anticoagulatory status must be properly monitored. The

aPTT is recommended for monitoring and is still widely

used, although the aPTT does not correlate well with

argatroban plasma levels in critically ill patients. In

addition, this particular patient population develops con-

tact pathway factor deficiencies such as FXII deficiency

or also lupus anticoagulants, which confounds the aPTT

assays and can result in prolongation.

Some tests are available that are not confounded by these

factors, as they directly activate thrombin, and the time of

fibrin formation is converted into plasma argatroban

levels. These so-called anti-IIa tests are based on either

dTT or ecarin time (ECT). If these tests are not per-

formed in a hospital laboratory, confounding factors of the

aPTT need to be considered and the results should be

carefully interpreted.

Argatroban and platelet aggregation
Argatroban appears to be superior to other anticoagulants

in the therapy of arterial thrombotic events. Argatroban

binds monovalently to the active centre of thrombin,

although, for example, bivalirudin additionally bivalently

binds to the fibrin binding site of thrombin. Consequent-

ly, contrary to argatroban, bivalirudin cannot bind to

fibrin-bound thrombin. Thus, argatroban is able to inhibit

clot- or fibrin-bound thrombin better than hirudins or

heparins [230]. Consequently, it can attenuate thrombin-

induced platelet aggregation of the clot or fibrin network

better than can hirudin or LMWH [231].

Even when platelets are activated by means of collagen,

argatroban can attenuate platelet aggregation more effec-

tively because it inhibits thrombin-induced enhance-

ment of platelet activation [232,233]. Furthermore,

argatroban reduces thrombin-induced P-selectin expres-

sion on platelets [234]. These thrombin-mediated effects
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of argatroban on platelets contribute to the superior

efficacy of argatroban over that of heparin in the treat-

ment of arterial thrombi, which are generally platelet-rich

thrombi. This inhibition of thrombin-induced platelet

activation and aggregation is a feature of the therapeutic

doses of argatroban [235].

The superior role of argatroban in the therapy of arterial

thrombi was confirmed in an animal experiment showing

that argatroban is more effective in treating arterial

thrombosis than is UFH [236], whereas LMWH and

argatroban were similarly effective in treating venous

thrombi [198]. Furthermore, argatroban inhibited the

formation of microthrombi in a rat model [237], whereby

such thrombi are formed by both plasmatic coagulation

and platelet aggregation initiated by TF expressing

PBMCs [238]. Not only platelet aggregation might be

inhibited by argatroban, but also neutrophil migration

[239], which, inter alia, can lead to improved microcircu-

lation [240].

Summary
Argatroban inhibits fibrin-bound thrombin. In compari-

son to other anticoagulants, argatroban binds monova-

lently to the active site of thrombin. For this reason,

argatroban can attenuate further platelet aggregation in

an already formed clot. This makes argatroban an effec-

tive anticoagulation therapy option in patients with

thrombosis.

Argatroban and beyond anticoagulation
Because it inhibits thrombin, argatroban also has anti-

inflammatory properties. It has been shown that thrombin

only in low concentrations protects from endothelial

barrier disruption and also attenuates the expression of

cell adhesion molecules on endothelial cells and there-

fore inhibits leukocyte migration and adhesion to the

endothelium [241]. Furthermore, the production of pro-

inflammatory cytokines such as TNF-a and IL-6 may be

inhibited [241].

Therefore, argatroban can reduce thrombin-induced in-

flammatory reactions. Here, it must be stated that throm-

bin is a very potent pro-inflammatory substance, being

much more pro-inflammatory than, for example, classical

pro-inflammatory substances such as LPS. Thus, arga-

troban may have potent anti-inflammatory properties, not

only caused by the indirect inhibition of, that is, IL-6, but

mainly by direct thrombin inhibition. Such antiinflam-

mation properties of argatroban were proven in synovial

cells obtained from patients with osteoarthritis and rheu-

matoid arthritis [242]. In animal studies, argatroban was

seen to attenuate diabetic cardiomyopathy (DCM) in

chronic diabetes [243] or reduce hepatic inflammation

with established fatty liver disease in mice [93].

Furthermore, argatroban prevents injuries caused by

thrombin on endothelial cells [244] and it attenuates
reperfusion injuries by reducing thrombin-induced inter-

actions between leukocytes, platelets and endothelial

cells [245]. In an experimental sepsis model in rats,

the use of argatroban was able to improve intestinal

microcirculation by preserving functional capillary den-

sity (an indicator of microvascular perfusion) and by

reducing leukocyte adherence to the endothelium in

submucosal venules [246].

However, a comparison of argatroban and heparin in

patients undergoing percutaneous transluminal coronary

angioplasty with stable angina pectoris showed no differ-

ence with regard to the inflammatory, haemostatic and

endothelium-derived markers [247].

It is also known that argatroban has neuroprotective

properties [248,249] and this appears to result from

attenuation of the PAR1-dependent VEGF secretion

[250], as argatroban seems to inhibit not only thrombin,

but also the expression of PAR1 itself [243,251]. Throm-

bin not only influences VEGF secretion, but also has a

positive feedback-loop to express TF. In synovial cells,

the expression of TF and VEGF as well as IL-6 and

MMP-3 secretion was reduced by argatroban [242].

As PARs and VEGF play a role in cancer, argatroban

might inhibit thrombin-supported tumour growth. This

has already been proven in studies where argatroban

attenuated tumour cell migration, which resulted in

reduced melanoma-derived metastases [252] and inhib-

ited the spread of bone metastases in breast cancer [251].

The systemic use of argatroban even reduced tumour

mass and neurological deficits while also prolonging

survival in rats with glioma [253].

One disadvantage could be that anticoagulation promotes

bacteria dissemination by inhibiting immunothrombosis,

but studies have shown that argatroban is even able to

reduce the number of bacteria in the spleen, while the

amount of bacteria were at least not increased in the liver

or lung [254], although the mechanism needs further

study.

In summary, argatroban is a well established, highly

effective and well tolerated anticoagulant for HIT in

the critical care setting. Beyond this, the inhibition of

thrombin also has anti-inflammatory effects including

endothelial protecting effects that might contribute to

an attenuation of complement activation as well as organ

dysfunction. Consequently, argatroban might be a suit-

able anticoagulation agent for sepsis patients with con-

firmed or suspected HIT.

Summary
Because it inhibits thrombin and subsequently attenuates

thrombin binding to PARs, argatroban also has anti-

inflammatory properties. Animal models have shown

that argatroban attenuates endothelial barrier disruption

and leukocyte migration as well as the release of
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pro-inflammatory cytokines. Furthermore, argatroban

was able to protect against reperfusion injury and im-

proved microvascular perfusion during sepsis in animal

experiments. The net anti-inflammatory effect is still not

proven in humans because there has been a lack of

studies in critically ill patients with and without sepsis.

Concomitant anti-inflammatory properties of antithrom-

botic drugs should be further investigated and not

neglected, especially in critically ill patients.

Conclusion
In inflammatory diseases, such as sepsis or COVID-19,

coagulation and inflammation interact closely mutually

reinforcing each other. Here, thrombin plays a key role

since thrombin is not only a main driver for clot forma-

tion, but also acts as a strong pro-inflammatory trigger by

activating different cell types such as platelets, leuko-

cytes and endothelial cells via PAR-binding.

For both highly pro-inflammatory and pro-coagulatory

diseases, sepsis and COVID-19, LMWHs or UFHs are

recommended for thromboprophylaxis. However, in

these particular diseases, conditions can occur that re-

quire enhanced anticoagulation. Such conditions can

be HIT, HIT-like conditions such as vaccine-induced

immune thrombotic thrombocytopenia (VITT), platelet-

activating effect of heparin and subsequent platelet con-

sumption, recurrent clotting of extracorporeal circuits and

heparin resistance. Especially in critically ill patients with

COVID-19, heparin resistance is a common problem that

ICU physicians have to deal with. Therefore, a switch to

DTIs should be considered in patients suffering from one

of these conditions.

DTIs do not only efficiently inhibit thrombin generation

and fibrin-bound thrombin, and also improve fibrinolysis,

but they also influence inflammation and protect endo-

thelial integrity, as thrombin can no longer bind to

PAR receptors.

A further advantage of DTIs is the monitoring of these

substances via different anti-IIa assays such as dTT,

ECT or ECAs, which is simpler than, for example, for

heparins as the thrombin-inhibiting action cannot be

measured by anti-Xa assays, which are the state-of-the-

art methods for heparins.

However, clinicians should be aware that argatroban is an

effective anticoagulant, which may induce a bleeding

tendency, among other mechanisms, by inactivating

clot-bound thrombin. Cautious, closely monitored and

titrating dose escalation is recommended.

In conclusion, the authors of this review recommend

enhanced anticoagulation with DTIs as possible throm-

boprophylactic substance in sepsis and COVID-19

patients with suspected or confirmed HIT, HIT-like

conditions, low platelet counts due to heparin use,
impaired fibrinolysis, as well as in patients on extracor-

poreal circuits and patients with heparin resistance.
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20 Sivula M, Pettilä V, Niemi TT, Varpula M, Kuitunen AH.
Thromboelastometry in patients with severe sepsis and
disseminated intravascular coagulation. Blood Coagul Fibrinolysis
2009; 20:419–426.

21 Kruse JM, Magomedov A, Kurreck A, Münch FH, Koerner R, Kamhieh-Milz
J, et al. Thromboembolic complications in critically ill COVID-19 patients
are associated with impaired fibrinolysis. Crit Care 2020; 24:676.

22 Görlinger K, Almutawah H, Almutawaa F, Alwabari M, Alsultan Z,
Almajed J, et al. The role of rotational thromboelastometry during the
COVID-19 pandemic: a narrative review. Korean J Anesthesiol 2021;
74:91–102.

23 Boss K, Kribben A, Tyczynski B. Pathological findings in rotation
thromboelastometry associated with thromboembolic events in COVID-
19 patients. Thromb J 2021; 19:10.
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