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Abstract

The CD8+ T-cell is a key mediator of antiviral immunity, potentially contributing to control of pathogenic lentiviral infection
through both innate and adaptive mechanisms. We studied viral dynamics during antiretroviral treatment of simian
immunodeficiency virus (SIV) infected rhesus macaques following CD8+ T-cell depletion to test the importance of adaptive
cytotoxic effects in clearance of cells productively infected with SIV. As previously described, plasma viral load (VL) increased
following CD8+ T-cell depletion and was proportional to the magnitude of CD8+ T-cell depletion in the GALT, confirming a
direct relationship between CD8+ T-cell loss and viral replication. Surprisingly, first phase plasma virus decay following
administration of antiretroviral drugs was not slower in CD8+ T-cell depleted animals compared with controls indicating
that the short lifespan of the average productively infected cell is not a reflection of cytotoxic T-lymphocyte (CTL) killing.
Our findings support a dominant role for non-cytotoxic effects of CD8+ T-cells on control of pathogenic lentiviral infection
and suggest that cytotoxic effects, if present, are limited to early, pre-productive stages of the viral life cycle. These
observations have important implications for future strategies to augment immune control of HIV.
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Introduction

The capacity and limits of host immunity in containing lentiviral

infection are fundamental to the understanding of Human

Immunodeficiency Virus (HIV) and SIV pathogenesis yet are

incompletely understood. Previous studies support effects of host

immunity in modulating HIV disease progression [1,2,3,4] and in

driving viral evolution and escape. Concurrent with the appearance

of HIV specific CD8+ T-cells following either acute HIV or SIV

infection, plasma viral load falls abruptly [4], indirectly supporting a

role for adaptive, cytotoxic lymphocyte responses in the control of

viral replication. However, this evidence is circumstantial and

inconclusive, since in most cases of natural infection, several HIV

specific immune parameters vary in tandem [3,5].

The most direct evidence for the antiviral effects of CD8+ T-

cells have come from the observation of profound elevations in

viral load following the depletion of CD8+ T-cells from SIV

infected macaques through the use of anti-CD8 monoclonal

antibodies. These studies reveal an approximate ten-fold increase

in plasma VL concurrent with CD8+ T-cell depletion [6,7,8]. In

contrast, similar maneuvers that deplete the CD20+ cells central to

humoral immune responses fail to produce comparable effects on

viremia [9]. Although a favored interpretation of the CD8+ T-cell

depletion experiments attributes the rise in VL to loss of CTL

killing [10,11], this has not been directly demonstrated and the

contribution of non-cytotoxic effects of CD8+ T-cells including the

production of chemokines that block new infectious events or the

elaboration of soluble factors that attenuate viral production from

infected cells remain as possible alternative mechanisms [7,12].

In classic studies of viral dynamics performed by perturbing the

VL steady state using antiretroviral drugs that inhibit HIV

replication, cell free virus and the infected cells producing HIV

were shown to have a very short lifespan [13,14,15]. While the

models used to explain these dynamics invoke clearance and death

of productively infected cells with a half-life of only a day [16], the

mechanism responsible for this rapid elimination has yet to be

elucidated.

In this study, we measured VL decay during the initiation of

antiretroviral therapy in SIV-infected macaques with or without

depletion of CD8+ T-cells to assess whether the rise in VL upon

CD8+ T-cell depletion was accompanied by an increase in the life

span of productively infected cells and, conversely, to determine

whether CTL killing is responsible for the short half-life of

productively infected cells in vivo. Indirect evidence for immune

selective pressure by CTL was assessed by comparing sequence

variation in a representative early (nef) and late (gag) viral genes

from samples collected immediately before and right after CD8+
T-cell depletion.
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Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and local animal

welfare bodies and all animal work was approved by the UC Davis

Institutional Animal Care and Use Committee (IACUC).

Infection of rhesus macaques and overview of study
Animal studies were conducted in accordance with UC Davis

IACUC approved protocols at the California National Primate

Center. 8 healthy junvenile rhesus macaques were infected

intravenously with 1000 TCID of SIVmac251 at time zero (D0).

Viral load testing and immunophenotyping were performed as

shown (Figure 1). At week 12 (D84), animals received mAb cMT-

807, control antibody or no mAb. At week 13 (D91), animals were

started on combination antitretroviral therapy consisting of PMPA

(30 mg/Kg per day) and FTC (8 mg/Kg per day) given

intramuscularly (IM) daily.

CD8+ T-cell depletion
12 weeks post-infection (D84), 3 animals received full depleting

doses of monoclonal antibody (mAb) cMT-807, a mouse/human

chimeric monoclonal antibody, administered IM (Centocor,

Horsham, PA) on D84, D87 and D91, 2 animals received partial

depleting treatment with a single dose of cMT-807 followed by

control antibody and 3 control animals received a series of control

antibody injections (1) or no antibody treatment (2) (Figure 1).

Viral load testing and immuno-phenotyping
VL testing was performed on peripheral blood plasma using a

real time PCR assay detecting a sequence in SIV gag as previously

described [17,18]. Immuno-phenotyping was performed as

previously described. To assess whether the effect of epitope

masking by cMT-807 might contribute to the measured depletion

of CD8+ cells, a second staining mAb CD25 (DAKO, Carpinteria,

CA) was used to corroborate the depletion achieved in two CD8-

depleted animals and changes in proportions of CD4/CD8 double

negative populations before and after treatment with cMT-807

were sought [7].

Endoscopy and gut biopsy
Jejunal pinch biopsy samples were incubated in RPMI 1640

(Gibco/Invitrogen, Carlsbad, CA) and collagenase (Sigma, St.

Louis, MO) at 37uC and rapidly shaken for 45 minutes and then

subjected to Percoll (Sigma, St. Louis, MO) density gradient

centrifugation to enrich for T-cells and eliminate tissue debris [19].

Author Summary

The recognition and elimination of infected host cells by
CD8+ T-lymphocytes is held to be a key component of the
immune response against viral pathogens. However, this
basic tenet of viral immunology may not hold true for HIV
and the related SIV. In the current work, we eliminated
CD8+ T-cells by treating simian immunodeficiency virus
(SIV) infected macaques with a CD8-depleting monoclonal
antibody then treated the animals with antiretroviral drugs
and measured virus levels. Viral levels fell just as fast for
the animals with or without CD8+ T-cells, implying that
survival of infected cells producing SIV was not impacted
by the presence or absence of CD8+ T-cells. Virus obtained
after CD8+ T-cell depletion showed changes in the types of
sequences in a viral protein (Nef) that is expressed early
after infection of a cell but not in a viral protein (Gag) that
is expressed later. These findings suggest CD8+ T-cells
have a limited ability to kill cells already expressing SIV but
instead may be restricted to non-killing mechanisms or to
targeting cells during earlier stages of infection before
virus production begins. Understanding and overcoming
the factors that prevent CD8+ T-cells from effectively
eliminating infected cells producing virus could advance
HIV vaccine efforts.

Figure 1. Timeline of experiments. Plasma SIV RNA levels, immunophenotyping, GI biopsy and antibody treatment according to treatment group
is shown. D = day post infection. Treatment phase with PMPA/FTC is indicated by the horizontal block-arrow in the right upper hand corner.
doi:10.1371/journal.ppat.1000748.g001

Limits of CTL Revealed by Viral Dynamics
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Cells were then washed with phosphate buffered saline (PBS)

(Gibco/Invitrogen, Carlsbad, CA) and allowed to equilibrate over

night at 37uC and 5% CO2 in complete RPMI 1640 (containing

10% fetal calf sera, penicillin and streptomyicin). PBMC were

isolated by density centrifugation over Lymphocyte Separation

Media (LSM) (Organon-Technica, Durham, NC). Aliquots of

freshly isolated cells were then stained with fluorescently labeled

antibodies for flow cytometric analysis.

Antiretroviral therapy
On D91, all animals initiated daily intramuscular injections of

30mg/kg/day of PMPA (Gilead, Foster City, CA) and 8mg/kg/

day of FTC (Gilead, Foster City, CA) [19] until they were

euthanized and necropsied at week 15.

Modeling viral dynamics
We based our estimates for clearance of productively infected

cells on first-phase plasma virus clearance rates as proposed by Ho

et al and Wei et al [13,15]. The model employed was a basic

model proposed by Perelson et al [14].

We used Maximum likelihood fits of our measured data

during the first week on ART to estimate the clearance rate ‘‘d’’

[14] and the calculated half life (t1/2) of productively infected

cells: t1/2 = ln(2)/d. The baseline timepoint was excluded from

these fits to exclude the effect of the rapid elimination of cell-free

plasma virus from the blood compartment (t1/2,1 hr.) on viral

decay. We chose to limit the data for the inclusion in calculation

of the first phase decay to those prior to 7 days (between 0.5 to 5

days inclusive) in order to avoid any possibility that recovery of

CD8+ T-cells could affect the decay estimates. For the same

reason, we have not attempted to model second phase decay.

The difference in cell death rates between animals with and

without depletion of CD8+ T-cells provides a measure of the

effect that CTL killing has on shortening the lifespan of

productively infected cells. Correlation between measures of

CD8 T-cell depletion and either viral load rebound rate or death

rate of productively infected cells (d), was assessed by a

Spearman rank-correlation test.

Sequencing and sequence analysis of partial gag and nef
RNA was extracted from 140ml of plasma using the Qiagen

QIAamp Viral RNA Kit according to the manufacturer’s protocol.

cDNA was prepared using random decamers and Ambion

RETROscriptTM Kit (Ambion, Austin TX). Quadruplicate nested

PCRs were carried out for nef using primers SIV nef59out

(TGACCTACCTACAATATGGGTG) and SIV nef39out (TCC-

CCTTGTGGAAAGTCCCTGCT) and SIV nef59in (CGTG-

GRGAGACTTATGGGAGACT) and SIV nef39in (AAGGCC-

TCTTGCGGTTAGCCTTC). For the gag region, quadruplicate

PCRs were carried out using primers SIVgag1151F (AGGAAC-

CAACCACGACGGAG) and SIVgag2445R (AAAGGGATTGG-

CACTGGTGCGAGG). SuperTaqTM from Ambion (Ambion,

Austin, TX) was used for all the PCR reactions. Products were

proportionately pooled then cloned using the TOPO TA cloning

kit. The gag PCR product was gel purified using Qiagen QIAex Gel

Extraction Kit prior to being used for cloning. Clones were picked

and plasmids prepared using the Qiagen Plasmid Mini Kit (Qiagen,

Chatsworth CA) according to the manufacturer’s protocol. Plasmids

were sequenced using SIVgag1151F and SIVGag1826R (CCT-

GGCACTACTTCTGCTCC) as sequencing primers for gag and

SIV nef59in and SIV nef39in for nef. Big Dye Terminator v3.1

(Applied Biosystems, Foster City, CA) sequencing mix. Sequences

were aligned and edited using clustalW as executed in Sequencher

and and subsequent manual editing was performed in Se-Al.

Estimates of genetic diversity were calculated using Dnadist within

the PHYLIP 3.6 software suite [20]. Selection intensity and dN/dS

ratios were evaluated using the Synonymous-Nonsynonymous

Analysis Program (SNAP), based on the methodology of Nei and

Gojobori [21]. A Fisher’s Exact test was used to compare site-specifc

amino acid composition between timepoints. Sequences are

available through GenBank, accession numbers GU366223 to

GU366660.

Results

Dynamics of acute SIV infection and establishment of
cellular and viral load steady state

The SIVmac251 infection of rhesus macaques was chosen as the

experimental model because viral dynamics studies in this model

of AIDS have been well described [22] and the monoclonal

antibody cMT-807 is effective in eliminating CD8+ T-cells in

rhesus macaques [6,23]. The overall experimental plan is shown in

Figure 1. All animals were infected with 1000 TCID50 of

SIVmac251 by intravenous injection and were longitudinally

monitored as shown. At Week 12 (D84) post infection, 3 animals

were assigned to the ‘‘full depletion group’’ and received 3 doses of

cMT-807 at approximately twice the dosage previously used by

Schmitz et al [6] in order to achieve more sustained CD8+ T-cell

depletion, 2 animals received only a single dose of cMT-807

(partial treatment group) and 1 control animal received three doses

of an isotypic control antibody while 2 control animals received no

control antibody injections [6].

Viral infection phase
Animals exhibited high plasma viral loads in the first weeks

following infection that peaked prior to D28 and declined to a

‘‘steady state’’ set point determined by viral and host factors

including host immune responses [3,4,22]. The overall pattern

appeared consistent with previously published data following acute

infection with either SIV or HIV (Figure S1). VL set points prior

to D84 were estimated to be 3.8 to 6.6 logs for the 8 animals

(Figure 2 and Table 1).

After 12 weeks of SIV infection, CD4 T-cell counts in whole

blood declined from a median of 807 to 693 cells/mm3 and CD8+
T-cells rose from 612 to 1247 cells/mm3 (Figures 3, 4). There were

no significant differences between control and study animals in set

point VL, CD4% and CD8% prior to administration of the CD8+
T-cell depleting antibody (Table 1). To the degree that these

parameters reflected the equilibrium between pathologic effects of

viral replication and effects of host immune response, the animals

in the control and treatment arms of the study appeared

comparable.

CD8+ T-cell depletion phase
Frequencies of CD8+ T-cells dropped precipitously with

administration of cMT-807 in the full depletion animals, reaching

undetectable levels by D91 in all 3 animals (Figure 3). This was

accompanied by a 0.7 to 1.9 log10 rise in viral loads that appeared

sustained, representing a new pseudo-steady state as previously

described [6,7] (Figure 2A). In the partial depletion animals,

CD8+ T-cells fell initially but became detectable again by D96

(Figure 3). One partial depletion animal experienced an increase

in viral load approximately 1 log above pre-antibody adminis-

tration-set point at D91 (week 13) (Figure 2B). In the second

partially depleted animal, plasma viral loads were unchanged

between D84 (week 12) and D91 (week 13) timepoints. No

consistent change in CD8+ T-cell counts was experienced by any

of the three control animals including the animal receiving the

Limits of CTL Revealed by Viral Dynamics
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isotype control antibody. CD4 numbers in the treated groups

showed a mild gradual decease following administration of cMT-

807 but this was also seen to a lesser extent in the control group

(Figure 4).

To exclude epitope masking as a cause for the absence of

detectable CD8+ T-cells in the peripheral blood by flow

cytometry, data were examined for levels of CD3+ CD4/CD8

double negative cells pre and post antibody administration for

each CD8+ T- cell-depleted animals as previously performed by

Jin et al [7] and independent FACS was performed with DAKO

clone DK25 antibody in 2 full depletion animals with sufficient

sample for parallel analysis. CD3+ CD4/CD8 double-negative

cells were not more frequent after CD8+ T-cell depletion nor were

CD8+ T-cells detectable using the second staining antibody (data

not shown).

While depletion of CD8+ T-cells in peripheral blood appeared

complete in the ‘‘full depletion’’ group of animals, CD8+ T-cell

depletion in GALT at week 13 (D91) was less extensive but

nonetheless reflected a median reduction of 66% in the animals

that received the full depletion protocol. In contrast, median

reduction in CD8% was 30% in partial depletion animals and 0%

in control animals. These findings are in keeping with the

experience of other investigators that appear to confirm extensive

depletion of CD8+ T-cells in peripheral blood and central

lymphoid tissues, while CD8+ T-cell depletion in the GALT can

be substantial but less complete.

Correlation of CD8+ T-cell depletion in GALT with the
increase in plasma VL

We exploited variability in CD8+ T-cell depletion in GALT

resulting from our use of complete and partial depletion protocols

and from biologic variability between animals as a way to gauge a

‘‘dose response’’ between CD8+ T-cell depletion and extent of

viral load increase between D84 and D91. The residual CD8%

(reflecting extent of depletion) in both peripheral blood and lamina

propria lymphocytes (LPL) inversely correlated with the rise in VL

observed during treatment with cMT-807 (Spearman r = 20.759,

p = 0.036 and r = 20.881, p = 0.0072 respectively), as represented

by the slope of the exponential rise in VL between D84 and D91

(viral rebound rate) (Table 1, Figure 5A,B). Because most SIV (and

HIV) infection events are thought to take place in lymphoid

tissues, the stronger correlation between CD8% of LPL and viral

rebound is not surprising. These observations are consistent with a

direct effect of CD8 cells in controlling HIV replication but they

do not distinguish antiviral effects based on preventing new

infection, CTL killing of productively infected cells or inhibition of

viral transcription.

Decay in plasma viremia with combination antiretroviral
therapy

At Week 13 (D91), all animals received (30 mg/Kg) PMPA and

(8 mg/Kg) FTC after establishment of the new VL steady state

resulting from CD8+ T-cell depletion. Previous studies have

established that this drug combination results in potent suppres-

sion of viral replication in SIV infected macaques as reflected in

the prompt fall in plasma viremia (Figure 2). First phase plasma

viral decay computed from plasma RNA measurements following

initiation of PMPA/FTC was used to estimate t1/2 of produc-

tively infected cells. We used data between 0.5 and 5 days after

starting antiretroviral drugs to calculate the first phase decay of

plasma viremia to allow for a pharmacologic delay and to avoid

potential confounding effects from CD8+ T-cell recovery however,

using data including day 7 or day 10 did not change the overall

observation of very similar decay characteristics between groups.

The median calculated half-life for each of the three groups

(Table 1) approximated the half-lives of 0.7 to 1.4 days previously

reported by Nowak [22]. Unlike the significant correlation

between the slope of increase in VL with extent of CD8+ T-cell

depletion in blood and LPL, no similar correlation was found

between extent of CD8+ T-cell depletion and clearance of

productively infected cells, d (Figure 5C, 5D). Similarly, half-life

was not correlated with CD4% or VL prior to antiretroviral

therapy (data not shown).

Figure 2. Plasma SIV RNA prior to, following treatment with
cMT-807 antibody and over the first week after starting PMPA/
FTC. Data shown are grouped according to treatment group with fit
lines for the period pre cMT-807 administration, during cMT-807
administration and during antiretroviral therapy shown as the solid line
segments. Note that for the tick marks on the X-axis prior to Day 84
(Week 12) is by 21 day (3 week) increments while after Day 84, the
timescale is in 4 day increments.
doi:10.1371/journal.ppat.1000748.g002

Limits of CTL Revealed by Viral Dynamics
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Evolution of SIV gag and nef before and after CD8+ T-cell
depletion

As an independent probe for potential suppressive effects of

CTL on SIV infected cells, we next examined changes in the

distribution of viral variants reflected in clonal gag sequences (as a

representative ‘‘late’’ structural gene) and clonal nef sequences

(representing early, regulatory and accessory genes). Others have

demonstrated that the pace of evolution of SIV immune escape

epitopes in macaques following acute infection is altered by CD8+
T-cell depletion [24]. If the approximate 1 log rise in viral load

was related to removal of suppressive effects of CTL clones

targeting specific SIV epitopes in either Gag or Nef, we

hypothesized that sequences would show evidence of positive

selection (typically associated with CTL pressure) and a change in

distribution of viral variants would occur after CD8+ T-cell

depletion. We analyzed partial amino acid sequences of Gag and

Nef that were comparable in length from CD8+ T-cell depleted

and non-depleted control animals.

The distribution of Gag sequence variants remained consistent

pre and post CD8+ T-cell depletion for all animals (Figure S2). In

contrast, several positions in Nef exhibited statistically significant

differences in amino acid composition, possibly reflecting release

from Nef-specific CTL pressure during the CD8+ T-cell depletion

period (Figure 6A). Accordingly, Nef sequences from control

animals failed to show any significant redistribution of variants

during this period (Figure 7A). An excess of nonsynonymous over

synonymous nucleotide substitution was observed across regions of

nef, in all depleted animals (Figure 6B) and 1 of 2 control animals

(Figure 7B), indicative of positive selection consistent with positive

or diversifying selection typically associated with CTL pressure.

Ratios of nonsynonymous to synonymous substitution (dN/dS)

(Figures 6B, 7B and S3) and nucleotide sequence diversity (as

represented by pairwise genetic distance) were consistently higher

in nef clones than in gag clones both pre and post CD8+ T-cell

depletion (data not shown). We did not have sufficient viable cell

samples to directly test for the presence or absence of epitope

specific CTL clones to explain the change in distribution of viral

variants following CD8+ T-cell depletion. Nevertheless, although

stronger functional constraints on Gag may play a role, these

sequence findings are compatible with CTL activity dispropor-

tionately targeting Nef and are consistent with the observation of

O’Connor that CTL driven viral evolution may be greater for

early viral genes such as tat and nef.

Discussion

The limited success of recent HIV vaccine trials designed to

elicit CTL responses to protect at risk subjects from infection

underscores the need to reexamine the relative roles of adaptive

and innate immunity in the control of HIV infection [25]. The

current study was designed to investigate how CD8+ T-cells work

to contain pathogenic lentiviral infection in vivo by examining

changes to the lifespan of productively infected cells inferred from

viral dynamics during antiretroviral therapy with or without CD8+
T-cell depletion using the anti-CD8 monoclonal antibody cMT-

807. While our data confirmed the importance of CD8+ T-cells in

viral control by demonstrating a rapid increase in VL resulting

from CD8+ T-cell elimination, they unexpectedly revealed that

the rate of clearance of productively infected cells is independent

of the extent of CD8+ T-cell depletion. This latter finding

challenges the conventional view that the principal contribution of

CD8+ T-cells to antiviral immunity is through their function as

CTL’s that recognize and kill productively infected cells. The

suppressive effects of CD8+ T-cells may instead be exerted

through non-cytotoxic effects such as those affecting viral

expression/production (as might be mediated by the non-cytotoxic

antiviral factor described by Walker [26,27]) or infectivity (such as

chemokines that block infection [28]). Alternatively, CD8+ T-cells

may suppress viral replication via CTL killing of infected cells but

this may be confined to a narrow window in the pre-productive

stages of infection [29]. The study by Klatt and colleagues

published in this issue of PLoS Pathogens, using a different

experimental protocol to deplete CD8+ T-cells reached similar

conclusions [30].

We confirmed earlier studies reporting a rapid rise in VL

following administration of cMT-807 coincident with elimination

of CD8+ T-cells. The CD8+ T-cell depletion maneuver could

Table 1. Summary of viral load dynamics and correlation to CD8 T-cell depletion.

Animal

Peak
viral
load

Set point
(week
7–12)

After Ab
treatment

Exponential
Fit Parameter
(w12–13)**

Half-life
Est (d)*

Viral load
drop in 1st
week of ART

Viral load
drop in
2nd week

%CD8 cells
in peripheral
blood at
week 13

% CD8 cells
in Lamina
Propria at
week 13

MMU27562 (Full) 7.1 5.6 6.4{ 0.32 1.8 (0.8,3.5) 2.2 .3.0 0 11.1

MMU32906 (Full) 7.5 6.6 7.4{ 0.35 1.8 (0.9,3.5) 0.9 1.9 0 18.9

MMU33580 (Full) 6.1 3.8 5.6{ 0.55 0.6 (0.5,1.0) 2.2 3.2 0.65 32.5

MMU30549 (Partial) 6.2 4.9 5.7{ 0.0021 0.7 (0.5,1.1) 2.7 4.1 13.2 48.5

MMU31340 (Partial) 6.5 5.9 6.1 2.070 0.8 (0.5,2.2) 2.6 1.8 1.81 52.1

MMU28889 (control) 6.8 5.9 5.0 2.448 1.5 (0.6, 2.9) 0.5 1.1 19 52.3

MMU27988 (control) 6.9 4.9 4.4 2.419 4.3 (1.0, ‘) 0.7 2.0 46.1 61.3

MMU34149 (control) 6.9 6.1 6.6 0.0052 1.1 (0.9,1.8) 2.1 2.1 19 33.1

There were no significant differences between the depleted and control animals in peak viral load, set point, or SIV RNA half-life on antiretroviral therapy.
Viral load set points were computed by averaging all available logarithmic viral loads for each animal between weeks 7 and 12 of the study. After Ab treatment VL were
computed by averaging D89, D90, D91 VL. The exponential fit parameter (week 12–13) is the slope of the rise in log viral load during the depletion phase of study. The
half-life of productively infected cells was estimated from plasma decay during the first week on ART.
**Rise in viral load during depletion phase was significantly correlated with CD8% in peripheral blood and lamina propria. Spearman Rank Correlation p#0.04 and

p#0.007 respectively.
*Half life of productively infected cells was not correlated with CD8%/depletion.
{Viral load increased significantly following administration of antibody (p,0.05 by Wilcoxon test).
doi:10.1371/journal.ppat.1000748.t001

Limits of CTL Revealed by Viral Dynamics
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result in several indirect effects that might influence viral

replication that deserve consideration. Homeostatic mechanisms

that regulate total T-lymphocyte number could result in

compensatory increases in CD4+ T-cell numbers. Alternatively,

administration of large doses of exogenous antibody with massive

cellular depletion could result in generalized T-cell activation and

could increase the infectability of target cells without increasing

absolute CD4+ T-cell numbers. Earlier studies observed that

treatment with anti-CD8 antibodies had little effect on the

availability of total CD4 T-cells [6,7]. We observed moderate

reductions in CD4+ T-cell counts in all 3 groups rather than

increases in CD4+ T-cell numbers. Finally, Okoye recently

demonstrated that the heightened tempo of SIV infection

following CD8+ T-cell depletion occurred independently of

increases in either absolute CD4+ T-cell number or their

activation status [31]. Moreover, the finding that there was a

strong correlation between the extent of CD8+ T-cell depletion at

the putative sites of SIV replication in GALT and the rate of rise in

VL after cMT-807 administration provides additional support that

it is CD8+ T-cell depletion and not administration of exogenous

antibody per se that was responsible for heightened viral

replication. Finally, cMT-807 used in these experiments targets

the CD8 molecule expressed on both CD8+ T-cells and some NK

cells (CD8+, CD32). Thus, the viral load increases following

treatment with cMT-807 could have resulted from both CD8+ T-

cell and partial NK cell depletion.

Figure 3. CD8 T-cell concentrations before, following treatment with cMT-807 antibody and after starting PMPA/FTC. Results are
displayed separately for full depletion, partial depletion and control animals. Time scales differ for each epoch shown and the x-axes are not to scale.
doi:10.1371/journal.ppat.1000748.g003
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The observation that first phase decay of plasma viremia during

treatment with potent inhibitors of viral replication is not affected

by depletion of CD8+ T-cells suggests that CTL killing is not

necessary to effect the rapid turnover of productively infected cells

seen in this and many previous viral dynamic studies (nor does it

seem that CD8+, CD32 NK cells would be required although this

was not specifically evaluated). It should be noted that the

productively infected cell half-life inferred from these data

represents the ‘‘functional’’ half-life rather than a ‘‘chronological’’

half-life. If for example, the average productively infected cell

exhibits an exponential increase in viral transcription between

days 1 and 3 post-infection, a slight shortening of the chronological

lifespan of the cell could have a disproportionately large effect on

viral production (burst size). However, such an effect would in fact

be perceived in the model used here as a relatively large change in

the functional productive lifespan of the infected cell and would be

expected to alter first phase plasma RNA kinetics.

The observed one log increase of VL following CD8+ T-cell

depletion would require, to first approximation in the timescale

studied, a 10-fold increase in productive cell lifespan for the

mathematical model used here. Such a change in lifespan is

unlikely to be missed even with the study of relatively few animals.

To illustrate, we can approximate the most optimistic estimate for

the CTL effect on clearance of productively infected cells by

determining the difference between the geometric mean of the

upper bounds of the 95% confidence intervals for the death rate of

Figure 4. CD4 T-cell concentrations before, following treatment with cMT-807 antibody and after starting PMPA/FTC. Results are
displayed separately for full depletion, partial depletion and control animals. Time scales differ for each epoch shown and the x-axes are not drawn to
scale.
doi:10.1371/journal.ppat.1000748.g004
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the control animals (20.796 day21) and the geometric mean for

the lower bounds of the 95% CI for death rate among the depleted

animals (2.30 day21). The mean t1/2 for the depleted animal

group of 1.24 day would decrease to 0.66 day if we add the

calculated upper limit of the CTL effect of 20.496 day21.

However, this approximate two-fold change in t1/2 should only

account for a two-fold rise in VL following depletion and not the

observed 10-fold change.

A limited role for CTL killing of productively infected cells,

although at first surprising, is further supported by several

intriguing published observations. For example, first phase plasma

HIV RNA decay has been noted to be relatively invariant whether

HIV+ patients were treated during early or late stage disease when

immune responses would be expected to be robust and waning,

respectively [32,33]. Correspondingly, following structured treat-

ment interruption of HIV suppressive antiretroviral treatment,

viral rebound rates do not correlate with the magnitude of HIV

specific CD8+ T-cell responses [34]. A final set of observations in

accord with the current result is the similarity of viral kinetics of

SIVsm following treatment of infected sooty mangabeys and

macaques [35] even though in the former, the SIV specific-

immune responses tend to be low [36] and CD8 T-cell depletion

of sooty mangabeys does not elicit increases in viral load

comparable to that seen in macaques [37].

The simultaneous conclusions that CD8+ T-cells exert strong

antiviral effects in vivo but that the mechanism of viral control is not

through the recognition and killing of productively infected cells

raises obvious questions about the nature of the CD8+ T-cell

antiviral effect(s). In the earlier study by Jin, very frequent plasma

sampling immediately after administration of the CD8+ T-cell

depleting antibody in two animals allowed the authors to detail the

kinetics of increase in SIV VL [7]. The rapid increases in VL were

found to be compatible with CD8+ T-cell effects that prevented

new infections as might be expected from the elaboration of

infection-blocking chemokines or effects that impaired SIV

transcription as might be expected with the cell antiviral factor

(CAF) [27] but not with CTL effects alone. Because we focused

our study on obtaining frequent viral load measurements at week

13 and beyond to accurately define first phase plasma virus decay,

we did not have the ability to perform similar immediate post-

depletion analyses. Further studies are needed to better charac-

terize and quantify these non-lytic antiviral effects.

Figure 5. Correlation between viral rebound rate and death rate d and % CD8 remaining in peripheral blood (PBMC) and lamina
propria lymphocytes (LPL). Error bars are shown for estimates. Significant negative correlations were found for viral rebound rates and CD8% in
PBMC (5A, Spearman r 20.76, p = 0.036,) and CD8% in LPL (5B, Spearman r 20.88, p = 0.0072,) but not for death rate of productively infected cells, d,
and CD8% in either PBMC (5C, Spearman r = 2.12, p = 0.79) or LPL (5D, Spearman r = 0.07, p = 0.88). The fit lines shown are simple regression lines and
do not directly correspond to the non-parametric, Spearman correlation.
doi:10.1371/journal.ppat.1000748.g005
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Figure 6. SIV nef evolution in CD8-depleted animals. Data from 3 fully depleted animals are shown. A) Sequence alignments of SIVmac251 Nef
region demonstrating greatest diversity and evolution during the depletion period (amino acids 141–210). Dashes indicate identity to SIVmac251
inoculum consensus sequence, asterisks indicate premature stop codons, and question marks represent unresolvable sites (due to nucleotide
ambiguity). Blue bars highlight positions with statistically significant differences in amino acid distribution between day 84 and day 91 (based on
Fisher’s Exact, p,0.05). Numbers of sampled clones associated with each predicted protein sequence are listed on right. B) Cumulative behavior of
synonymous and nonsynonymous substitutions across nef sequence. Green lines = nonsynonymous mutations, red lines = synonymous substitutions;
area between dashed lines represents region displayed in panel A.
doi:10.1371/journal.ppat.1000748.g006
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The conclusion that CTL activity does not substantially

contribute to the clearance of productively infected cells does

not imply that CTL activity is irrelevant to viral control. We

surveyed viral gene sequences for other markers of CTL effects

that might distinguish CTL recognition and killing of infected cells

prior to or during viral production. The observation of positive

selection pressure acting on nef but not gag is in alignment with the

lack of impact of CD8+ T-cell depletion on first phase plasma virus

decay. Because the model used here to describe viral dynamics

relates plasma viral decay to the turnover of cells already

Figure 7. SIV nef evolution in control animals. Data from 2 non-depleted control animals are shown. A) Sequence alignments of SIVmac251 Nef
region demonstrating greatest diversity and evolution in depleted animals (amino acids 141–210). Dashes indicate identity to SIVmac251 inoculum
consensus sequence, asterisks indicate premature stop codons, and question marks represent unresolvable sites (due to nucleotide ambiguity). There
were no positions with statistically significant differences in amino acid distribution between day 84 and day 91 (based on Fisher’s Exact test).
Numbers of sampled clones associated with each predicted protein sequence listed on right. B) Cumulative behavior of synonymous and
nonsynonymous substitutions across nef sequence. Green lines = nonsynonymous mutations, red lines = synonymous substitutions; area between
dashed lines represents region displayed in panel A.
doi:10.1371/journal.ppat.1000748.g007
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producing HIV virions, the half-life of productive cells need not

change if CTL killing occurred through targeting of Nef (or

another early HIV gene product) expressing cells prior to virion

production [38,39]. In contrast, CTL targeting Gag epitopes

would be expected to affect measured half-life of productively

infected cells to a greater degree. The ability of Nef to

downregulate MHC class I provides one possible explanation for

why the vulnerability of SIV (and HIV) infected cells to CTL

attack is restricted to the early steps of the viral lifecycle (prior to

production of threshold levels of Nef needed to downregulate class

I and before Gag expression and virion production commence)

[40,41]. Such infected cells expressing Nef could be recognized

and cleared by CTL but, because they do not yet contribute to

viral production, clearance of these cells would not be reflected in

the clearance/death rate (d) of productively infected cells

calculated from first phase plasma virus decay. Instead, the effect

of removing these cells would be likened to a reduction in the

infection rate. Recent observations that a large proportion of HIV

production by infected T-lymphocytes occurs in the subset of

CD42 CD82 double negative cells is also compatible with the

hypothesis that by the time virion production commences, CD4

and by inference MHC I downregulation has already occurred

[42]. Parenthetically, it appears that, in all three cases, the Nef

variants that increased in proportion following CD8 T-cell

depletion were variants that differed from the consensus sequence

of the inoculum (Figure 4). While this suggests that the CTL

selective pressure may have been greater against these earlier CTL

escape forms than against the inoculum consensus strain, the lack

of functional immunologic assays limits our ability to confirm this.

These results and the questions they raise point to a need for

more work to be done to better understand the full spectrum of

CD8+ T-cell-mediated antiviral effects and the factors that limit

CTL capable of targeting the productive stages of the viral life-

cycle. As these data argue against CD8+ T-cell-mediated cytolytic

activity as the likely mechanism for clearance of productively

infected cells, one is left to speculate that viral production by an

infected cell is limited by viral cytopathic effects or by as yet

unappreciated or unrecognized innate or humoral immune

mechanisms that either kill infected cells or drastically down-

modulate viral transcription [43,44]. Refinement of present

models of viral and cellular dynamics together with focused

research to track the fate of infected cells in vivo may provide new

insights into these cryptic antiviral mechanisms that could be

exploited to treat and prevent HIV disease in the future.

Supporting Information

Figure S1 Median, plasma SIV RNA (Log copies/ml) over the

course of the experiment for all animals. A heavy black arrow

marks spontaneous peak VL following primary infection, light

arrow indicates start of cM-T807 depletion, hatched horizontal

bar shows period of treatment with PMPA FTC. Whiskers show

range of values.

Found at: doi:10.1371/journal.ppat.1000748.s001 (0.09 MB

TIF)

Figure S2 Evolution of SIV Gag post depletion of CD8+ cells.

Data from 3 fully depleted animals (27562, 32906, 33580) and 2

non-depleted control animals (27988, 28889) are shown. Sequence

alignments of SIV Gag sequences (SIVmac251 positions 1–150);

sequence names contain animal identity, days post-infection (dp)

and arbitrary clone designation. Dashes indicate identity to

autologous consensus sequence, asterisks indicate premature stop

codons, dots symbolize gaps (deletions), and question marks

represent unresolvable sites (due to nucleotide ambiguity). There

were no positions in Gag with statistically significant differences in

amino acid distribution between day 84 and day 91 (based on a

Fisher’s Exact Test).

Found at: doi:10.1371/journal.ppat.1000748.s002 (0.11 MB

DOC)

Figure S3 Cumulative behavior of synonymous and nonsynon-

ymous substitutions across gag sequence. A) Data from 3 fully

depleted animals. B) Data from 2 non-depleted control animals.

Green lines = nonsynonymous mutations, red lines = synonymous

substitutions.

Found at: doi:10.1371/journal.ppat.1000748.s003 (0.79 MB TIF)
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