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Abstract
A large-scale statistical analysis of hit rates of extensively assayed compounds
is presented to provide a basis for a further assessment of assay interference
potential and multi-target activities. A special feature of this investigation has
been the inclusion of compound series information in activity analysis and the
characterization of analog series using different parameters derived from assay
statistics. No prior knowledge of compounds or targets was taken into
consideration in the data-driven study of analog series. It was anticipated that
taking large volumes of activity data, assay frequency, and assay overlap
information into account would lead to statistically sound and chemically
meaningful results. More than 6000 unique series of analogs with high hit rates
were identified, more than 5000 of which did not contain known interference
candidates, hence providing ample opportunities for follow-up analyses from a
medicinal chemistry perspective.
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Introduction
Compounds with false-positive signals in biological assays  
cause substantial problems for biological screening and medici-
nal chemistry1. Assay artifacts often remain undetected or are  
unveiled only at later stages of compound development efforts, 
leading to substantial loss of time and resources. Moreover, once 
published, artificial activities spread through the scientific litera-
ture and potentially cause even more harm by inspiring follow-up 
investigations that are doomed to fail. Known assay interference 
compounds include colloidal aggregators2–7 and many other com-
pound classes that can react in different ways or are fluorescent 
under assay conditions6–15. Systematic efforts to identify inter-
ference compounds include the compilation of aggregators2–4  
and pan-assay interference compounds (PAINS)8,9. The latter 
comprise a set of 480 classes of compounds originally identi-
fied in AlphaScreen assays8. PAINS are typically contained as  
substructures in larger compounds. However, the assessment and 
prediction of assay interference is far from being a trivial exer-
cise. For example, analysis of screening data from PubChem16 
has revealed that many compounds containing PAINS, includ-
ing most reactive chemical entities, have very different hit rates 
or might be consistently inactive17,18. Moreover, analogs or dif-
ferent series of analogs containing the same PAINS substruc-
ture often have distinct activity profiles and are active against 
different targets19. Thus, interference characteristics of related  
compounds frequently differ and a substructure with interference 
potential does not necessarily give rise to false-positive assay  
signals. To further complicate matters, promiscuous compounds 
may also have true multi-target activities20 that are relevant for 
polypharmacology20–22. Moreover, even highly promiscuous  
screening hits include molecules with no apparent liabilities, in 
addition to obvious interference compounds12.

Without doubt, judging assay interference and candidate com-
pounds requires profound chemical knowledge and experience.  
It is equally relevant, however, to strive for a data-driven assess-
ment of promiscuity by exploring compound activity data on a  
large scale20, aiming to identify compounds with interference  
potential for further analysis. Previously, we have determined 
that increasing assay frequency of pairs of structural ana-
logs did not correlate with differences in promiscuity23. The 
current analysis was focused on hit rates of individual com-
pounds that were extensively assayed to identify the overall 

most active chemical entities. Therefore, we have carried out a  
statistical analysis of hit rates of compounds that were exten-
sively tested in screening assays. These compounds were evalu-
ated in on average 411 assays (with a median value of 437 
assays per compound). A special feature of this study has been 
its focus on pairs or larger series of analogs, rather than single  
compounds, which provides additional confidence criteria for 
activity assessment and further increases the information con-
tent of activity data analysis. Many series of analogs with much  
higher than typically observed hit rates and largely consistent  
activity profiles across many different assays were identified.  
This collection of series provides a basis for further investigat-
ing compounds with interference potential or true multi-target  
activities.

Methods
Compounds
From the PubChem BioAssay database16, 437,257 com-
pounds were pre-selected that were tested in both primary and  
confirmatory assays, representing extensively assayed screening  
compounds23. Approximately 95% of these compounds were 
evaluated in more than 50 primary and/or confirmatory assays23.  
Primary PubChem assays report compound activity (e.g.,  
percentage activity) for a single dose, while confirmatory assays 
are dose-response assays yielding titration curves and IC

50
 values. 

Our current analysis focused on primary assays, for which much 
larger data volumes were available than for confirmatory assay.  
Primary assays also included assays for which no target was  
specified (such as cell-based assays). In addition to larger volumes, 
primary assays are more prone to false-positives than confirma-
tory assays, thus providing an upper-level estimate of compound 
promiscuity consistent with the goals of our analysis. Assignments 
of active compounds were taken from each individual assay as 
reported. Screening parameters such as compound concentration 
and activity criteria were assay-dependent. For pre-selected com-
pounds, hit rate statistics were determined.

Matched molecular pairs and series
A matched molecular pair (MMP) is a pair of compounds that are 
only distinguished by a chemical change at a single site24, termed 
a chemical transformation25. As an extension of the MMP concept, 
a matched molecular series (MMS) was defined as the union of all 
MMP compounds that are only distinguished by chemical modifi-
cations at a given site26. Accordingly, an MMS represents a series of 
analogs sharing a single substitution site. To generate MMPs, exo-
cyclic single bonds in screening compounds were systematically  
fragmented25 following retrosynthetic fragmentation rules27,  
yielding so-called RECAP-MMPs28. These MMPs were sub-
ject to transformation size restrictions in order to limit chemical 
changes to modifications typically observed in series of analogs29. 
An MMS was designated as redundant if it was a subset of a  
larger MMS or if there was another MMS representing the  
same series of analogs but having a larger MMP core. For screen-
ing compounds with high hit rates, non-redundant MMS were  
systematically determined.

MMS parameters
For each MMS, three parameters were calculated. First, the MMS 
hit rate (HR) was obtained from the union of all assays (i.e., the 
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number of unique assays in which one or more analogs were  
tested in) and assays with activity signals (active assays, i.e., the 
number of unique assays in which one or more analogs were  
found to be active). Second, assay overlap was determined as the 
proportion of assays in which all MMS compounds were tested 
in (shared assays, i.e., the intersection of assays) relative to the  
union of assays. Third, from assay overlap, assays with  
inconsistent activity were calculated as the proportion of shared 
assays in which different MMS compounds were active or  
inactive.

All calculations were carried out using in-house Java scripts and 
KNIME30 protocols with the aid of the OpenEye31 chemistry 
toolkit.

Results and discussion
Study design
A statistical analysis of hit rates of extensively tested screen-
ing compounds is presented taking assay frequency into account.  
On the basis of the hit rate distribution, ranges of unusually  
high hit rates were determined. Since the majority of compounds 
that were active in primary assays were also active in confirma-
tory assays, a high level of consistency in the assignments of 
active compounds was observed. From compounds with high hit 
rates, analog series with single substitution sites (MMSs), i.e., 
“minimal” chemical modifications within series, were system-
atically extracted, which provided structural context information 
and hit rate controls for closely related compounds. For MMSs,  
different parameters were calculated, making it possible to  
compare and prioritize these series. The collection of MMSs with 
high hit rates provides a basis for investigating assay interference 
candidates, as well as chemical entities with potential multi-target 
activities.

Figure 1. Assay frequency distribution. The frequency distribution of primary assays is shown in a boxplot format for 437,257 pre-selected 
PubChem compounds and a subset of 327,532 compounds. The plot gives the smallest number of primary assays (lower whisker), first 
quartile (lower boundary of the box), median value (thick line), third quartile (upper boundary of the box), and largest number of assays 
(upper whisker). Outliers are not displayed. The dashed blue line indicates the selection criterion for the compound subset (i.e., tested in 
more than 257 primary assays).

Source compounds and assay distribution
Figure 1 (boxplot on the left) shows the global distribution  
of primary assays for 437,257 extensively tested PubChem  
compounds, with a median value of 347 assays per compound. 
From these, a subset of 327,532 compounds was selected that 
were tested in more than 257 primary assays, corresponding to the  
lower quartile boundary of the global distribution. For this subset, 
the assay distribution was separately monitored (Figure 1, boxplot 
on the right), yielding a median of 426 (and a maximum of 626) 
assays per compound. Hence, half of these compounds were tested 
in more than 426 primary assays.

Hit rate distribution
For 327,532 compounds tested in more than 257 assays, hit 
rates were determined. The distribution is reported in Figure 2  
(boxplot on the left), resulting in a median hit rate of 0.4%. The 
lower quartile boundary and lower whisker of the boxplot were 
identical and represented consistently inactive compounds, which 
were not of interest for our current analysis. On the basis of  
the distribution, the interval of “bulk hit rates” (b_hr) for these 
extensively assayed PubChem compounds was defined as  
0% < b_hr ≤ 1.0%, covering the lower quartile, median, and 
upper quartile (and hence the “bulk” of the distribution). There 
were 80,495 compounds with hit rates ≥ 1.0%. The hit rate  
distribution of this compound subset is shown in Figure 2  
(middle), yielding a median of 1.8%. This value was set as the  
hit rate threshold for most active screening compounds. The  
threshold was exceeded by 41,609 compounds, representing  
12.7% of the initial compound pool. The hit rate distribution of  
these compounds is reported in Figure 2 (right), resulting in a 
median of 2.9%. We determined that 93.1% of the compounds with 
hit rates greater than 1.8% in primary assays were also active in 
confirmatory assays (yielding IC

50
 values). Hence, their activity 

was not confined to primary assays.
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Figure 2. Hit rate distribution. For three different subsets of PubChem compounds, hit rate distributions are shown in boxplots according to 
Figure 1. The subsets are characterized by increasing hit rates (marked by dashed blue lines).

Compound series and parameters
From the 41,609 compounds with highest hit rates, MMSs 
were systematically extracted on the basis of RECAP-MMPs. 
After removal of redundant MMSs (see Methods), 6941 unique  
MMSs were obtained comprising 14,646 compounds, which  
represented our final hit rate- and series-based selection set.  
Table 1 reports the size distribution of the MMSs, ranging from 
two to 17 analogs per series. With 6111 instances, compound 
pairs and triplets dominated the distribution, but more than  
800 larger MMSs were also obtained. Increasing size of MMSs 
may lead to higher hit rates, variations in assay overlap, and 
more assays with inconsistent activity. As further discussed 
below, compound pairs and triplets already provide informative  
controls for activity analysis and enable a more confident assess-
ment compared to the analysis of individual compounds. This  
was a major motivation for focusing the analysis on MMSs.

Figure 3a illustrates the derivation of three parameters for the 
characterization and comparison of MMSs (rationalized in the  
Methods section). The cumulative MMS hit rate is a direct  
measure for the activity of a series. In addition, assay overlap  
represents a confidence criterion for MMS assessment, i.e., large 
assay overlap of compounds comprising a series assigns high  
confidence to hit rate comparisons. By contrast, the proportion 
of assays with inconsistent activity should best be minimal to 
draw firm conclusions. Figure 3b reports the distribution of these  
three parameters for the 6941 MMSs. Assay overlap (upper left 
plot) and MMS hit rates (lower left) were generally high, with 
median values of 79.3% and 5.8%, respectively. By contrast, the 
proportion of inconsistent assays (upper right) was overall low, 
with a median of only 3.7%. Thus, the distributions of MMS  
parameters indicated that the set of MMSs was suitable for  
the analysis of series-based hit rates and hit rate comparison of 

compounds comprising individual MMSs. We note that MMSs  
can be ranked in the order of decreasing assay overlap and  
MMS hit rates and increasing inconsistent assays and prioritized, 
for example, on the basis of rank fusion calculations.

Table 1. Size distribution 
of matched molecular 
series (MMSs). The 
distribution of 6941 
frequently active MMSs 
(#MMSs) over increasing 
numbers of compounds 
(#CPDs) is reported.

#CPDs #MMSs

2 4965

3 1156

4 435

5 190

6 70

7 48

8 22

9 21

10 11

11 12

12 3

13 4

14 2

15 1

17 1

Page 5 of 16

F1000Research 2017, 6(Chem Inf Sci):1505 Last updated: 10 OCT 2017



Figure 3. Characterization of matched molecular series (MMSs). (a) An exemplary MMS comprising three analogs is shown. The MMS core 
and varying substituents are colored in black and orange, respectively. For each compound, the number of assays it was tested and active in 
is reported, respectively. Furthermore, the assay union, intersection, and MMS hit rate (purple) are given. From these data, the assay overlap 
(green) of MMS analogs was determined as well as the proportion of assays with consistent activity, inactivity, and inconsistent activity (blue). 
(b) Boxplots are shown reporting the distribution of assay overlap, assays with inconsistent activity as well as assay- or target-based MMS hit 
rates for PubChem compounds with greater than 1.8% hit rate.
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Target distribution in primary assays
Our analysis was intentionally focused on hit rates over assays  
(i.e., assay promiscuity) to take as many activity readouts as  
possible into account. Therefore, as a control, assay- and target-
based hit rates were also compared. Compounds forming the 
6941 MMS were evaluated in a total of 1213 assays. For 255 of 
these assays, no individual target was specified. The remaining  
958 assays covered 426 different targets. Figure 3b reports the  
distributions of MMS hit rates over assays (lower left plot) and 
targets (lower right). The distributions were overall similar, 
with median values of assay- and target-based hit rates of 5.8%  
and 4.9%, respectively. Hence, despite the presence of multiple 
assays for a subset of targets, assay-based hit rates were only  
slightly higher than target-based rates, indicating that corre-
sponding conclusions would be drawn from the analysis of these  
distributions.

Known interference candidates
The computational aggregation advisor4 and compound strings 
taken from PAINS filters32,33 (http://www.rdkit.org) were used 
to search the MMSs for known assay interference candidates. 
The 14,646 MMS compounds contained 783 aggregators (on the 
basis of 100% similarity) and 2381 compounds with PAINS sub-
structures. There were 611 MMSs with one or more aggregators, 
1139 MMSs with one or more PAINS, and 126 MMSs including 
aggregators and PAINS. However, 5065 MMSs with high hit rates 
did not contain known compounds with aggregation potential or  
PAINS substructures. Thus, the MMSs provide a large source of 
analogs for the exploration of other interference candidates, as  
well as compounds with true multi-assay/target activities.

Exemplary series
Figure 4 shows exemplary compound pairs and triplets with high 
assay promiscuity. The two analogs in Figure 4a were tested in 
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Figure 4. Exemplary matched molecular series (MMSs). (a–d) Four exemplary MMSs (core, black; substituents, orange) are shown and 
the MMS hit rate, assay overlap, and proportion of assays with inconsistent activity are reported. In addition, for each individual analog, its 
assay frequency and hit rate are provided.

more than 380 assays with 93.5% assay overlap and only 1.6% 
inconsistent assays, yielding comparable hit rates of 2.8% and 
3.2%, respectively, resulting in an MMS hit rate of 4.5%. These ana-
logs contained a classical PAINS substructure (ene_rhodanine)8,9.  
Furthermore, compounds in Figure 4b were analogs of a  
molecule with aggregation potential4. They were tested in more 
than 300 and 400 assays, respectively, yielding a relatively  
low assay overlap of 59%, and had hit rates of 2.2% and 2.6%, 
respectively, resulting in a low MMS hit rate of 2.9%. Thus, these 

analogs were far from being consistently active, as one might 
assume for strong aggregators. In Figure 4c, a pair of thieno[2,3-
d]pyrimidine-2-acetic acid ethyl ester analogs is shown that 
were tested in 442 assays with large overlap. These compounds  
had high hit rates of 5.9% and 7.9%, respectively, resulting in 
a high MMS hit rate of 9.8%. Moreover, Figure 4d shows a  
triplet of sulfonylpyrimidines that were tested in 357–361 assays 
with 89.7% overlap, having very high hit rates of 8.7% (one  
analog) and more than 13% (two analogs). The analogs in  
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Figure 4c and Figure 4d have previously not been classified 
as interference candidates. The interference potential of sulfo-
nylpyrimidines was assessed via a SciFinder substructure search 
for 2-[(phenylmethyl)sulfonyl]-pyrimidine. This substructure 
appeared in more than 100 publications related to biological 
studies and more than 1000 chemical reactions. Although the 
potential of sulfonylpyrimidines to undergo nucleophilic aro-
matic substitutions in organic synthesis is well established in 
the literature34,35, reactivities under assay conditions remain to 
be confirmed experimentally. Compounds forming each of the 
MMSs in Figure 4 displayed consistent hit rate characteristics, 
hence assigning confidence to their observed activity phenotype.   
Taken together, these examples of analog pairs and triplets  
(i.e., minimally sized MMSs) are indicative of the potential of 
well characterized MMSs for follow-up investigations focusing on  
assay interference and multi-target activities.

Conclusions
Herein, a detailed analysis of hit rates of nearly 440,000  
extensively assayed screening compounds has been presented. 
On the basis of hit rate distributions, 12.7% of the compounds 
with highest hit rates were selected. From these compounds, 
analog series with single substitution sites were systemati-
cally extracted to complement hit rate statistics with the assess-
ment of structural relationships between active compounds. 
A total of 6941 unique MMSs were obtained comprising  
14,646 compounds. These MMSs were characterized using  
different parameters prioritizing high-confidence series for activ-
ity analysis. A major goal of our study has been the data-driven 
generation of a pool of analog series for the evaluation of assay 

interference potential and multi-target activities. More than 5000 
MMSs did not contain known interference candidates, provid-
ing an opportunity to evaluate compounds with interference  
potential on a large scale. In the next step, analog series will be 
evaluated from a medicinal chemistry perspective to complement 
and further extend statistical considerations. Annotated series  
and associated assay/target information will then be made freely 
available. The statistics and selection steps reported herein also 
make it possible to regenerate compound subsets at different hit 
rate levels and subject them to further analysis. In addition, large  
numbers of compounds with high hit rates that were not part of 
MMSs are also available. For reasons discussed, our preferred 
approach is taking compound series information into account when 
judging assay promiscuity.

Data availability
The data sets used in this study are freely available in PubChem 
and can be generated following the selection protocol reported in 
the Methods.
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This is an excellent manuscript that will certainly help researchers further understand the liabilities of
"good-actors"; compounds that provide structure-interference relationships (SIR) that may not be
pertinent to the biology being studied.

Notes:
Inconsistent is misspelled in Panel B of Figure 3.
 
Though this will need to be experimentally-verified, the sulfonylpyrimidines are almost certainly
interfering by SnAr reactions. A literature search to gauge this potential reactivity of the core
structure retrieved >100 articles and >1000 reactions. This group is certainly not in the PAINS
definitions, but its assay interference potential can readily be ascertained by a quick reaction
substructure search. Most importantly, this observation reinforces that lack of PAINS "flagging" is
not sufficient to ensure that compounds don't have assay interference potential. The authors may
wish to highlight this in their discussion.
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The manuscript addresses a timely topic and is part of an effort to understand the multitarget activities of
small molecules and their potential utility or drawbacks for drug discovery.

Using the MMs formalism, the authors developed a protocol to identify analog series with high hit rates.
The MMs approach responds to the need to generate SAR information of interference compounds. This
approach allows for more reliable evaluation compared to the analysis of individual compounds.

The analogue series identified with data from PubChem should be useful for medicinal chemistry
programs. Similarly, the protocol developed in this work using MMPs should be useful to mine other large
screening data sources (either public or proprietary data sets).

Minor suggestions to further improve the quality of the manuscript:
Comment on the manuscript the effect of the compound concentration that is used to define a “hit”
compound in a given assay. In other words, since it is unlikely that the same compound
concentration is used across all assays, how this variable influences the “hit rates” and conclusions
of the study?
 
The current analysis is made based primarily in primary assays in PubChem. In the Methods
authors justify that there are larger data volumes for primary assays. We agree but would be nice to
see in the manuscript a comment regarding the balance between volume vs. quality of the data.
 
We found it very pertinent that the study focused on compounds with high rates in primary assays,
since more than 90% of these compounds are also active in confirmatory trials. It is interesting to
comment how the hit rate is related to the quality of the data.
 
An earlier study   mentions that the assay frequency is not correlated with increased promiscuity. It
is desirable to include a commentary in the manuscript when discussing the frequency of the test
distribution and the generation of the first subset of 327,532 compounds.
Three parameters for the characterization and comparison of MMSs were determined (hit rate
(HR), assay overlap, assays with inconsistent activity). Does the MMS size affect these
determinations?

Other suggestions (per section):
Introduction, last paragraph:  briefly summarize the major findings of previous works related to this
study (e.g., refs. 18, 19, 23) and emphasize the novelty of this work.
 
Shorten the title (and include the concept of MMPs).
 
In the Introduction (last paragraph), include figure numbers for expressions such as “extensively”,
“larger’, “many”, “much higher”. For instance, when the authors mention “extensively tested” in the
title and through the manuscript, they mean “>10,000”, “>100,000”, “>400,000”, etc.
 
Methods: elaborate a bit more on the in-house scripts, e.g., the program language.
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This article makes an important contribution to addressing a serious complication in screening for new
biological activity, especially in the context of new drug discovery.  Several researchers continue to point
out the waste of time and money in following up on false positive hits from biological screening programs. 
While paradigms to filter out false positives, such as aggregators or other “frequent hitters” such as
PAINs, are becoming mainstream techniques, these may not be sufficient, either because they miss some
false positives or because they mistakenly classify legitimate hits as false positives.  By carrying out a
statistical analysis of a large set of screening data for hit rates using matched molecular pairs and series,
this article offers a valuable perspective on this issue.
 
There are several aspects of this article that are particularly valuable.  For example, Figure 3b is an
important control showing that using assay hit rate does not overstate promiscuity, in that target hit rate is
similar, linking the results to a biological mechanism of action.  In Figures 4c and 4d, the exemplified
compounds appear to be Michael acceptors, and could react with Cys residues covalently, or sequester
thiol reagents used in the assay, which could explain their promiscuity.  It is worth pointing these out, as
they would not be picked up in PAINs filters and only by a knowledgeable chemist.  Overall, this work is as
important contribution to the ongoing effort to reduce the occurrence of false positive hits serving as
starting points for discovery programs.
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, LIMES Program Chem. Biol. & Med. Chem, University of Bonn, GermanyJürgen Bajorath

Thank you for your comment and interest. We are still investigating the systematic extraction of analog
series from data sets of any composition and size and intend finalizing this methodological work before
addressing code release issues. For the time being, the interested reader is referred to a variety of partly
related implementations we have made freely available on the Zenodo open access platform.
On a more general note, although we are among the computational groups promoting open science by
public release of many in-house generated data sets and software tools, our experiences with free data
and tool sharing have not been entirely positive; another point of consideration going forward. Perhaps it
might make sense to (re-)consider other collaborative models and release procedures.      
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The approach for identifying chemical series in an automated and computationally efficient manner is an
interesting one and I could imagine it being useful to other researchers. It's a challenging problem that
comes up pretty frequently and for which no great solutions are available. The MMS-identification
algorithm could be an interesting contribution on its own.

Is there any chance that the authors would be willing to make the code for doing the MMS identification
available?
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