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Survival analysis mainly deals with the time to event, including death, onset of disease, and 
bankruptcy. The common characteristic of survival analysis is that it contains “censored” 
data, in which the time to event cannot be completely observed, but instead represents the 
lower bound of the time to event. Only the occurrence of either time to event or censoring 
time is observed. Many traditional statistical methods have been effectively used for ana-
lyzing survival data with censored observations. However, with the development of 
high-throughput technologies for producing “omics” data, more advanced statistical meth-
ods, such as regularization, should be required to construct the predictive survival model 
with high-dimensional genomic data. Furthermore, machine learning approaches have 
been adapted for survival analysis, to fit nonlinear and complex interaction effects be-
tween predictors, and achieve more accurate prediction of individual survival probability. 
Presently, since most clinicians and medical researchers can easily assess statistical pro-
grams for analyzing survival data, a review article is helpful for understanding statistical 
methods used in survival analysis. We review traditional survival methods and regulariza-
tion methods, with various penalty functions, for the analysis of high-dimensional genom-
ics, and describe machine learning techniques that have been adapted to survival analysis. 
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Introduction 

Survival analysis arises in many applied fields such as medicine, biology, engineering, epi-
demiology and economics. Survival time is defined as a time to event of interest such as 
death, relapse of disease, unemployment and completion of a task. The main characteris-
tic of survival time is that it is censored due to the end of study or withdrawal during the 
period of study because we cannot follow-up the exact survival time for those who are 
still alive at the end of the study, or who are lost to follow-up during the period of study. 
However, it is known that the survival time of censored individuals is at least longer than 
the censoring time. There are many different types of censoring such as right-, left-, and 
interval-censoring. The most popular censoring mechanisms are right censoring, in 
which the lower limit of the exact survival time is observed, while the upper limit is ob-
served for left censoring, and both lower and upper limits are used for interval-censoring. 
More details about censoring mechanism are described [1,2]. 

Many statistical methods have been developed for estimating survival functions, com-
paring survival curves between two groups, and modeling the survival data by regression, 
for association with risk factors, such as demographic and clinical predictors. In survival 
analysis, nonparametric statistical inference is more extensively used to estimate the sur-
vival function, and compare survival curves between two or more groups. For example, 

Received: November 19, 2019 
Accepted: November 24, 2019 

*Corresponding author: 
E-mail: leesy@sejong.ac.kr  

eISSN 2234-0742
Genomics Inform 2019;17(4):e41
https://doi.org/10.5808/GI.2019.17.4.e41

Review article

http://crossmark.crossref.org/dialog/?doi=10.5808/GI.2019.17.4.e41&domain=pdf&date_stamp=2019-12-31


both the Kaplan-Meier (KM) estimator [3], for a survivor func-
tion, and a log-rank test [4], for comparison of survivor functions, 
are derived by a nonparametric approach. However, if the appro-
priate distribution for survival data is assumed or pre-specified, the 
parametric approach is more appropriate. When the association of 
survival time with various risk factors is the main interest, the most 
popular model is a Cox regression [5], based on a semiparametric 
approach, since the effect of predictors on the hazard rate is para-
metrically specified, while the baseline hazard function is unspeci-
fied. A variety of parametric approaches are also available under 
the assumed survival distributions, such as an accelerated failure 
time (AFT) model. Overall, all survival analysis approaches 
should take into account a censoring mechanism, when a statistical 
inference is made [1,2]. 

In the early 21st century, DNA microarrays for characterizing 
gene expression patterns have been used to more distinctly classify 
diseases, including cancer subtypes [6,7]. For example, diffuse 
large B-cell lymphoma (DLBCL) is regarded as a clinically hetero-
geneous disease, in which 40% of patients respond well to current 
therapy, having prolonged survival, with the remaining 60% being 
mostly unresponsive, with low survival rates [7]. It was further 
found that DLBCL survival rates differ significantly between ger-
minal center B-like DLBCL and activated B-cell DLBCL. As a re-
sult, genome-scale views of gene expression provide a new ap-
proach for identifying and classifying cancers more clearly, by 
comparing gene-specific survival curves. Since the amount of gene 
expression data is extraordinarily large, relative to sample sizes, sig-
nificance difference testing of gene expression levels between nor-
mal and cancer patients, for a single gene, yields multiple testing 
problems. Early on, Bonferroni correction was applied to address 
the multiple testing problem in most cases, but only a few, among 
thousands, of genes were detected, due to extremely conservative 
Bonferroni correction [8]. Alternatively, the false discovery rate 
[9] was proposed to adjust for multiple testing, using criteria that 
was less conservative than Bonferroni correction. Such large 
amounts of genomic data yielded the problem of “curse of dimen-
sionality,” due to the dimensionality of microarrays being much 
larger than the sample sizes (p >> n), unlike traditional (“pre-ge-
nomic era”) cases (p << n). This translated the analysis of gene ex-
pression data into regression modeling, as related to a variable se-
lection problem in the fields of statistics and bioinformatics. In the 
frame of the regression model, many penalized functions have 
been proposed to fit high-dimensional genomic data, such as lasso 
[10], ridge [11], and elastic-net [12]. 

The human genome was determined to possess a sequence of 3 
billion nucleotides, as determined by Human Genome Project in 
2003 [13]. With the development of high-throughput technolo-

gies, such as microarrays, single nucleotide polymorphism arrays, 
proteomics and RNA sequencing (RNA-seq), biological data col-
lected from the same individual is referred to as ‘omics’ data. Infor-
mation from omics data can be used as diagnostic markers, by 
physicians, to predict the health status of individual patients, and 
the accruement of such data will progressively increase in the fu-
ture. Based on these considerations, it is very important to precise-
ly identify significant disease biomarkers from such huge amounts 
of complex omics data. Machine learning (ML) techniques are 
widely used to model nonlinear and complicated gene-to-gene in-
teractions, and improve predictability, in various practical do-
mains. For survival analysis, ML methods have been adapted to ef-
fectively handle censored information, and accurately construct 
prediction models, using high-dimensional data. 

Since many clinicians can easily assess statistical programs such 
as SAS, SPSS, and R for analyzing survival data, a review article is 
helpful for understanding statistical methods used in survival analy-
sis. We will briefly review the basic concepts and theories in survival 
analysis by explaining a KM estimator for the survival function, a 
log-rank test for comparing two-sample survival curves, and a Cox 
model for studying association with risk factors. Then the most 
widely used regularization methods will be described for high-di-
mensional genomic data analysis. Finally, a comprehensive review 
of omics ML methods will be given, with a short conclusion.  

Traditional Survival Methods  

Basic functions 
Three functions are used to characterize the distribution of sur-
vival time, namely, the survival function, hazard function, and 
probability density function [1,2]. Let T be a non-negative ran-
dom variable representing the survival time, and let f(t) and F(t) 
be the probabilities of density function and cumulative distribu-
tion function of T, respectively. Then, the survival function, S(t), 
the hazard function, h(t), and the cumulative hazard function, 
H(t) are specified as: 

In addition, the following relationship is easily derived, and if 
any one of these functions is known, then the other functions can 
be uniquely determined.
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In survival analysis, h(t) is more useful than f(t) in estimating 
S(t), because it is the conditional probability of experiencing a spe-
cific event instantaneously, given that the survival remains up to 
that time. It also uses information from the censored observations 
by considering the conditional probability that they are survived 
up to that time, through censoring. 

KM estimator 
For estimating the survival function, the KM [3] estimator has 
been most widely used in many clinical studies. The KM estimator 
is a nonparametric estimator, in the sense that no assumption for 
the survival distribution is needed, and uses the conditional prob-
abilities at each distinct death time, given those subjects at risk just 
prior to that time, which include all the information about both 
death and censoring. 

Let T and C be the survival and censoring times, respectively. 
Then, the observed time is defined as                               and an indi-
cator for uncensored observation is δ = I(T ≤ C). The survival data 
are represented as (    i , δi ), i = 1, … , n. Let 0 =  t0 <  t1 <  t2 < … <   
td(d ≤ n) be the ordered distinct death times. Let di be the number 
of deaths at time ti and let Yi be the number of subjects at risk at 
time ti-, which only counts the subjects still surviving to just prior 
to time ti. Suppose that pi denotes the conditional probability that 
a death occurs at time ti, given those still alive just prior to ti. Then 
the estimate of pi is given as               , and the estimator for the con-
ditional survival probability is                              . Using the condition-
al survival probability, the survival function at time ti can be repre-
sented as follows:

From this, the KM estimator is given as                                  , 
which is the sequential product of the reverse hazard function, 
which is easily estimated by       , at each distinct death time. Unlike 
the complete data, the KM estimator is obtained as the product of 
the reverse hazard rates, by taking proper account of censoring into 
the risk set, Yi. Many results about the properties of the KM esti-
mator have been studied, relating to its asymptotic distribution, 
self-consistency, and efficiency [14,15]. 

Log-rank test 
For clinical trials, it is common to assess the efficacy of a new drug 
or treatment compared to a placebo group. If the response variable 
is completely observed, either a t-test or Wilcoxon test is most suit-
able to solve this two-sample testing problem. However, neither of 
these is suitable for censored survival data. A log-rank test was 
originally proposed for one-sample problems [16], but was easily 

extended to the nonparametric two-sample comparisons of cen-
sored data [4,17]. The main idea of the log-rank test is to sum up 
the difference between the observed and expected number of 
deaths, across a time duration, and standardize it by its standard 
deviation. The expected number of deaths is calculated under the 
null hypothesis of equal survival function. The asymptotic distri-
bution of the log-rank test is derived from the conditional distribu-
tion of the occurrence of a death, given that an individual survives 
just prior to each observed time. Under the null hypothesis of 
equal survival functions, this conditional distribution of the occur-
rence of a death is hypergeometric, and its expectation and vari-
ance are easily derived. To calculate the log-rank test, consider a 2 
× 2 table at each distinct death time ti (Table 1 ).  

Here, di and Yi denote the number of deaths and individuals at 
risk at time ti, respectively, and dji and Yji, (j = 1,2) denote the num-
ber of deaths and individuals at risk for the corresponding group, 
respectively. Then, the conditional distribution of d1i, given Yi, is 
hypergeometric, under the null hypothesis of equal survival func-
tions. The log-rank test is then given as follows:  

where d is the total number of distinct deaths from the two 
groups. Assuming the independence of d1i across times, it is known 
that the log-rank test has an asymptotic chi-square distribution, 
with one degree of freedom, under the null hypothesis. As shown 
in the equation above, the log-rank test is powerful when the two 
hazard rates are proportional across times, since it takes the sum of 
the differences between the observed and expected number of 
events. However, if the two hazard rates cross or are not propor-
tional, the log-rank test yields lower power and other tests, such as 
Kolmogorov-Smirnov, Cramer-von Mises type tests, or median 
tests, are preferred [18-20]. 

Cox regression model 
Most statistical methods of survival analysis have focused on find-
ing risk factors among many possible demographic, environmen-
tal, and clinical variables, and predicting the survival probability of 
the patient with a certain disease. For censored survival data, a Cox 

1- =1-

)

Table 1. 2×2 table at time ti for calculating the log-rank test statistic

Group Dead Alive Risk set
Treatment d1i Y1i-d1i Y1i

Placebo d2i Y2i-d2i Y2i

Total di Yi-di Yi

1-

i=1

d

-
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regression model [5] has been most widely used to study the asso-
ciation of risk factors with survival time, in much of clinical and 
biomedical research. It was proposed, on the basis of the hazard 
rates, as follows: h(t│X) =  h0 = (t)exp(xβ)

Here, X represents the vector of risk predictors, and h(t│X) is 
the hazard function with covariate X, while h0(t) is a baseline haz-
ard function with X = 0. By dividing both sides by the baseline haz-
ard function and taking the logarithm, the Cox model can be re-
written as the following linear regression model: log                           

Then, the regression coefficient, β, can be interpreted as the rel-
ative hazard rate between two individuals as one unit of X changes. 
For example, if X = 1, for the treatment group, and X = 0, for the 
placebo group, the hazard rate of those who take treatment is β 
times those in the placebo group. For β < 0, the treatment is con-
sidered beneficial, whereas for β > 0, it is considered deleterious. 

For the estimation of β, the partial likelihood function of a Cox 
model was proposed [21], in which only β is involved in both 
score function and Fisher information, while the unspecified base-
line hazard function is not considered. In other words, the statisti-
cal inference for β is made on the basis of the partial likelihood, re-
gardless of the baseline hazard function. Only when one is interest-
ed in estimating the survival function from a Cox model, should 
we consider the estimation of the baseline hazard function, which 
is described by a Breslow’s estimator [16]. 

Since the log ratio of two hazard rates does not depend on time, 
as shown by the equation above, this derivation is known as a pro-
portional hazards (PH) model. This proportionality between haz-
ard functions is a strong assumption in real-life situations and re-
quires evaluation by a goodness-of-fit test. However, since the Cox 
model is a fundamental basis for association studies in survival 
analysis, it has been further generalized to the stratified Cox model 
and the time-dependent Cox model, in which the proportionality 
assumption is not valid. 

On the other hand, an AFT regression model is also widely used 
to fit the relationship between survival time and risk factors, in 
which the log survival time is specified as linear combinations of 
risk factors, with error random variable. According to the distribu-
tion of the error random variable, the parameters of the AFT mod-
el are estimated by maximum likelihood methods [1]. Compared 
to the parametric AFT model, the Cox model is considered semi-
parametric, as it consists of the baseline hazard function and eXβ, in 
which no specific distribution is assumed for h0(t). The effect of 
the regression coefficient of a Cox model is interpreted as the rela-
tive hazard rate of the corresponding risk factors, whereas the ef-
fect of the regression coefficient of an AFT model is interpreted as 
an accelerated factor of the survival time. Other types of regression 

models include Aalen’s additive model [22], and partly parametric, 
additive risk models [23]. 

Regularization Methods for Analyzing 
Genomic Data 

Penalized Cox models 
Since microarray data is used in association studies with survival 
time, a number of studies have been published regarding solutions 
to high-dimensional problems, in which there are too few observa-
tions for too many variables. To identify significant disease-associ-
ated genes, single-gene approaches were applied to circumvent the 
high-dimensional problem with adjustment of multiple testing 
problem. However, there remain limitations to the single-gene ap-
proach, because it is too simple to explain complex associations 
between genes, environments, and diseases. 

For processing high-dimensional genomic data, one solution is 
to regularize selection of significant variables, via penalized mod-
els. Such regularization may rely on an assumption of sparsity, i.e., 
that only a few genes have significant effects on diseases, among 
thousands of genes [24]. With a Cox regression model, a variety of 
penalized models have been proposed, including lasso-Cox, ridge-
Cox, and elastic-net Cox [10-12] to maximize the partial likeli-
hood under the different penalty functions. The estimates  ^ for 
the regression parameters, of the three models, are obtained by 
minimizing the negative partial log-likelihood function, subject to 
penalties, as follows: 

Here δi is an indicator for the uncensored observation, and λ is 
called a “tuning parameter” that controls the degree of regulariza-
tion. When λ = 0, there is no regularization, whereas when λ→∞, 
the coefficients tend to be more regularized. As shown above, the 
lasso imposes a L1- penalty on the regression coefficients, the ridge 
imposes a L2- penalty, and the elastic-net model combines the two 
penalties. In general, the lasso performs well in selecting significant 
genes, among many thousands, but tends to select only one gene 
from any specific group of genes, and does not care which one is 
selected when pairwise correlations, between genes, are very high. 
Furthermore, for the case of p≫n, the lasso selects at most n vari-
ables, due to the nature of the convex optimization problem. On 
the other hand, the ridge method, originally proposed to solve 

h(t│X)
h0(t) =Xβ.

Xib -log i=1
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multicollinearity between predictors, is not appropriate for the 
variable selection problem. Thus, when the correlation between 
genes is more of interest rather than variable selection, the ridge 
penalty is more appropriate. The elastic-net method takes the 
weighted penalties of both lasso and ridge and performs better 
than the other two methods, in the sense that it selects more vari-
ables than n, even in the instance of p≫n cases, and considers cor-
relations between genes. For example, it was shown in analysis of 
prostate cancer patient data that the elastic-net model had the 
smaller test error, with the same number of variables as the lasso 
[12]. Subsequently, other various modifications relating to regu-
larization have been proposed, such as adaptive lasso-Cox [25], 
fused lasso [26]. and least angle regression elastic net [27]. 

ML Methods for Analyzing Censored Survival 
Data 

Recently, ML techniques have been rapidly adapted to a variety of 
fields, for automatically analyzing huge amounts of data. The ba-
sic concept of ML is to make the computer “learn” from repeated 
input data, and recognize hard-to-discern patterns from large, 
noisy, or complex data. This ML approach is well-suited to con-
struct a predicted model when there are both nonlinear and com-
plex interactions, among several features. Thus, ML has been 
widely applied to cancer prognosis and prediction, for medical 
applications. Predicted survival rates are particularly interesting, 
as they are part of a growing trend toward personalized medicine. 

Although ML techniques have been developed and applied to 
artificial intelligence and data mining [28], these methods have 
also been translated into statistical ML and rapidly adapted to 
many disciplines related to statistical problems [29]. Subsequent-
ly, many good textbooks and website lectures for ML techniques 
have been disseminated [30,31], allowing many researchers to 
understand the fundamental theories and methods of statistical 
ML, as well as easily accessible (e.g., “open source”) programs. 

Many types of ML systems exist, depending on whether they 
are trained with human supervision, such as supervised, unsuper-
vised, semi-supervised, and reinforcement learning. Among 
those, the most interesting one is supervised learning, whose 
main task is classification, and predicting a target variable such as 
survival time. In this review, we will focus on the following ML 
techniques that are adapted to survival data: survival trees, sup-
port vector machines (SVMs), and ensemble methods such as 
bagging survival trees, random survival forests, Cox boosting, and 
artificial neural networks (ANNs). 

Survival trees 
Decision trees have been useful for the classification and predic-
tion of a wide range of applications, because it requires few statisti-
cal assumptions, readily handles various data structures, and pro-
vides easy and meaningful interpretation. Several studies on the 
practical and theoretical aspects of tree-based methods were devel-
oped, and the classification and regression tree (CART) software 
program has made tree-based methods popular, applied statistical 
tools [32]. Regression trees construct an optimal decision tree, by 
partitioning a set of predictors to accurately predict a dichotomous 
outcome. For example, clinicians are often interested in classifying 
small numbers of groups of patients with differing prognostics. 

Survival trees were first proposed by adapting most of the 
CART paradigm for analyzing censored survival data by minimiz-
ing the within-node variabilities in survival time. Alternatively, the 
other approach for survival tree construction has been developed 
by maximizing the difference in survival between “child nodes,” as 
measured by two-sample test statistics, such as a log-rank [33,34]. 

The components of the survival tree algorithm consist of rules 
for growing the tree, pruning the tree, and choosing a tree of the 
appropriate size. The most common rule for growing and pruning 
a tree is a log-rank test, which tests for dissimilarity in survival be-
tween two groups. More properties for measures of splitting have 
been studied in detail [33,34]. Once the tree has been split recur-
sively to pre-specifying nodes, the optimally pruned subtrees are 
found by using a measure of the tree’s performance, such as a 
split-complexity measure. Finally, the optimal tree size is selected 
by resampling or permutation procedures. The software for sur-
vival tree analysis is available at (https://CRAN.R-project.org/
package = rpart). 

Recently, survival trees have been constructed for analyzing 
multivariate survival time data, when the subjects under study are 
either naturally clustered or experience multiple events (namely, 
recurrent times) [35]. A multivariate survival tree constitutes a 
modified CART procedure, to model the correlated survival data 
by using a splitting statistic to handle the dependence between 
survival times. There are two main approaches for analyzing mul-
tivariate survival times; the marginal approach and the frailty mod-
el approach. The marginal approach uses a robust log-rank statis-
tic, while the frailty model approach is based on either the semi-
parametric gamma [36] or parametric exponential frailty models 
[37], which lessen the computational burden. The multivariate 
survival tree can be implemented via (https://CRAN.R-project.
org/package = MST). 

Support vector machines 
SVMs are powerful ML methods, capable of performing linear or 
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nonlinear classification, regression, and outlier detection. SVMs 
were first proposed for binary classification problems, and then 
subsequently extended to regression, clustering, and survival anal-
ysis. The main idea of SVMs is to maximize the margin between 
two classes and find a separating hyperplane that minimizes mis-
classification. The separating SVM hyperplane not only separates 
the two group classes, but also stays as far away from the close ob-
servations possible. The observations located on the edge of the 
separating hyperplane are known as the support vectors that fully 
determine the classification. 

Although linear SVM classifiers are efficient and perform well in 
many cases, high-dimensional datasets are often not separated by a 
linear SVM classifier. To handle both nonlinear and high-dimen-
sional datasets, the SVM classifier uses a high-dimensional kernel 
function to make the original dataset linearly separable. SVMs 
were subsequently extended to regression and censored survival 
data. By considering the penalty for censored observations, the 
SVM method for regression of censored data (namely, SVCR) was 
proposed [38], and shown to have superior performance. When 
SVCR is compared to the classical parametric models, for several 
survival analysis datasets, it has lower value of the average absolute 
errors, and has a computational run time that is favorable to other 
methods. 

The support vector regression for censored data (SVRc) was 
subsequently proposed to take into account an asymmetric penal-
ty (or loss function) for censored and non-censored data. In terms 
of the concordance index and the hazard ratio, SVRc performed 
better than the Cox PH model in five real-life survival analysis 
datasets [39]. The software for survival SVMs is available at 
https://CRAN.R-project.org/web/packages/survivalsvm/. 

Ensemble methods 
Ensemble methods are based on the wisdom of “the crowd,” i.e., a 
new classifier produced by aggregating or voting from a group of 
classifiers. For example, a group of decision tree classifiers can be 
produced from different random subsets of a training set. To make 
a prediction, we may obtain predictions of all the individual deci-
sion tree classifiers, and then predict the class with the most votes. 
Multiple classifiers often predict better than individual classifiers, 
and appropriately weigh several classifiers, to improve predictabili-
ty. In this section, we briefly review three ensemble methods: bag-
ging survival trees, random survival forests, and Cox boosting. 

Bagging survival trees 
The terminology of bagging stands for “bootstrap aggregating,” 
and the random sampling from a training set is performed repeat-
edly, with replacement known as B bootstrap samples. We then 

obtain a set of survival trees, based on B bootstrap samples, and 
define a new predictor by aggregating all predictors from a set of 
survival trees. In general, the new predictor can be a statistical 
mode for classification or an average for regression problem. It is 
known that the ensemble predictor reduces both bias and variance, 
compared to a single predictor. 

For censored survival data, the averaged point predictor, such as 
the mean or median survival time, is of minor interest, compared 
to the predicted conditional survival probability of a new observa-
tion. Based on the bagging survival trees, one single KM curve is 
calculated from the observations identified by the “leaves” of B 
bootstrap survival trees [40]. Although the predicted survival 
probabilities aggregated from multiple survival trees are not easily 
interpreted, they are based on similar observations, classified by 
repetition of learning samples, in the aggregated set. We also note 
that the bagging survival trees depend on both the number of 
bootstrap samples and the size of multiple trees. As usually shown 
in ensemble methods, bagging survival trees results in a condition-
al survival probability prediction that is better than a single surviv-
al tree, in terms of the mean integrated squared errors, even when 
the censoring proportion is 50%. The software for using bagging 
survival trees is available at (https://CRAN.R-project.org/web/
packages/ipred/).  

Random survival forests  
Like bagging survival trees, the random survival forest is based on 
random bootstrap samples from a training set, but also allows extra 
randomness when growing trees. Instead of searching for the same 
set of variables when splitting a node, random survival forests 
search for the best variables among a random subset of variables, 
and these variables are used to split the node by maximizing the 
log-rank statistic. Similar to the classification and regression prob-
lems, random survival forests are an ensemble learner formed by 
averaging a number of base learners. In survival settings, the 
base-learner is a survival tree, and the ensemble is a cumulative haz-
ard function formed by averaging individual tree’s Nelson-Aalen’s 
cumulative hazard function [41]. 

When implementing random survival forests, a primary interest 
is how to select a random subset of variables as candidates for split-
ting a node. The traditional variable selection in random forests is 
based on the variable importance (VIMP), a measurement of the 
increase (or decrease) in prediction error, for the forest ensemble, 
when a variable is randomly ‘noised up’. However, VIMP is based 
on the prediction error, and varies considerably, depending on the 
data with a high- dimensional problem. Alternatively, as described 
in Ishwaran et al.’s study [41], the minimal depth is introduced as a 
new high-dimensional variable selection measure, which assesses 
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the degree of prediction of a variable by its depth, relative to the root 
node of a tree. In a single decision tree, important variables are likely 
to appear closer to a root of the tree, while unimportant variables are 
often closer to leaves. Thus, the variable’s importance can be estimat-
ed by the average depth, at which it appears across all trees in the for-
est. A smaller value of the minimal depth corresponds to a more pre-
dictive variable, and the effective way of using the minimal depth is 
well demonstrated as a high-dimensional survival problem. The 
software for using random survival forests is at https://CRAN.
R-project.org/web/packages/randomSurvivalForest/. 

Cox boosting 
Boosting was originally based on combining multiple weak learn-
ers into one strong learner, as proposed in the ML community, es-
pecially for classification problems [42]. As a useful ensemble, 
boosting has been successfully translated into the field of statistics 
[43], and extended to statistical problems such as regression and 
survival analysis. 

The main idea of boosting is to update the predictors sequen-
tially, which at each iteration, fit a weak predictor of the previous 
version of the data, as updated by minimizing a pre-specified loss 
function. The obtained value provides a small contribution used 
to update a new predictor, and all contributions result in a final 
predictor. Unlike bagging and random survival forests, boosting is 
a sequential learning technique, implying that it cannot be paral-
lelized. Historically, the AdaBoost method was first proposed [42], 
which sequentially adds new predictors to an ensemble, by boost-
ing the misclassified cases and reweighting all the cases, at every it-
eration. This addition stops when the desired number of predic-
tors is reached, or when a perfect predictor is found. On the other 
hand, Gradient Boosting creates a new predictor based on the re-
sidual errors made by the previous predictor, and the small amount 
of updating is added sequentially, to improve prediction. For cop-
ing with the problem of analyzing high-dimensional data, compo-
nent-wise boosting has also been adapted to survival analysis. 

In survival analysis, most boosting methods have focused on the 
Cox model, by using gradient boosting, with a loss function de-
rived from the Cox partial likelihood function, as used in the pop-
ular R-packages mboost and CoxBoost [44]. Both mboost and Cox-
Boost are based on gradient boosting, but differ in the sense that 
mboost is an adaptation of model-based boosting, whereas Cox-
Boost adapts likelihood-based boosting. The mboost algorithm 
computes the direction in which the slope of the partial log-likeli-
hood is steeper, and then estimates an updated parameter, by mini-
mizing the residual sum of squares of the multivariate regression 
model, with shrinking of the penalized parameter. This procedure 
is iteratively performed until the stopping criterion is met. On the 

other hand, the CoxBoost algorithm uses a negative L2- norm pe-
nalized partial log-likelihood, and updates the estimates of the pa-
rameter by maximizing this penalized partial log-likelihood, with a 
tuning penalty. 

Furthermore, to improve the Cox model’s prediction, an off-
set-based boosting approach was adapted to allow for a flexible 
penalty structure, including unpenalized mandatory variables, 
when clinical covariates should be included with high-dimensional 
omics data [45]. Combining clinical and microarray information 
improves the predictive performance of the Cox model, compared 
to a microarray-only model. 

There are two main parameters to be considered in a boosting 
procedure: the first controls the weakness of the estimators, known 
as a penalty or boosting step. The other parameter specifies how 
many boosting iterations should be performed, which is related to 
avoiding overfitting, and in component-wise boosting, controls the 
sparsity of the model. Beside these, other approaches to survival 
analysis include L2 boosting [46], using inverse probability of cen-
soring weighting, and the boosted AFT model [47]. Recently, a 
new boosting method for nonparametric hazard estimation was 
proposed, when time-dependent covariates are present [48]. 

Artificial neural networks 
For specific detection and prediction of breast cancer risk, several 
ANN models have been developed over the last few decades 
[49,50]. Although the ANN method has been long applied to can-
cer prognosis and prediction, it has some drawbacks in that it can-
not be intuitively interpreted, unlike the decision tree. However, 
with the development of computing techniques and the genera-
tion of large amounts of omics data, ANN is becoming more wide-
ly used, and can also be extended to deep neural networks. 

In review of the literature, the ANN method was first applied to 
survival analysis [51], for modeling prostate cancer survival data 
with only four clinical predictors. Subsequently, many other re-
searchers implemented ANN methods to predict patient survival, 
using high-dimensional microarray expression data [52,53]. 

Recently, a neural network extension of the Cox regression mod-
el, “Cox-nnet,” was proposed to predict patient prognosis from 
high-throughput transcriptomics data [54]. Cox-nnet is composed 
of one hidden layer, and the output layer is used to construct the 
Cox regression model, based on the activation levels of the hidden 
layer. In Cox-nnet, high-dimensional genomic data is optimized by 
dropout regularization, and the model is trained by minimizing the 
partial log-likelihood, using back-propagation. Furthermore, Cox-
nnet reveals more information about relevant genes and pathways, 
by computing feature importance scores from the Cox regression 
model. The advantage of Cox-nnet is that it overcomes the weak-
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nesses of the ANN model, which is regarded to be a “black box,” 
with a lack of interpretable relationships between the hidden layers 
and the outcome variable. The code for Cox-nnet is available at 
http://github.com/lanagamire/cox-nnet. 

On the other hand, neural network techniques have been devel-
oped to overcome the PH assumption of the Cox model, to allow 
more general relationships between survival time and high-dimen-
sional omics data. For example, the multi-task logistic regression 
model was developed [55], in which a series of logistic regression 
models were fitted on different time intervals to estimate the sur-
vival function, without any of the aforementioned assumptions. 
However, this multi-task logistic regression model only involved 
linear relationships. Consequently, a neural multi-task logistic re-
gression model was proposed by involving a deep learning archi-
tecture to fit nonlinear dependencies [56]. For implementation of 
this model, the open-source libraries TensorFlow and Keras [31] 
may be used, with many state-of-the-art techniques of deep neural 
network methods, including initialization, optimization, activation 
functions, and miscellaneous operations such as batch normaliza-
tion and dropout regularization. Overall, a deep neural network 
approach would be more useful to cover nonlinear and complex 
dependencies between survival time and high-dimensional omics 
data, without relying on Cox PH  assumptions. However, many is-
sues remain, regarding the choice of schemes and hyper-parame-
ters, which still may yield many possible combinations for fitting 
the target output. 

Analysis of a Real Data Set 

In order to illustrate three different types of methods reviewed, we 
applied these methods to a real dataset from The Cancer Genome 
Atlas (TCGA) Genome Data Commons (GDC) portal (https://
portal.gdc.cancer.gov) [57]. This real dataset consists of 125 pancre-
atic ductal adenocarcinoma (PDAC) with the RNA-seq and clinical 
information. For the RNA-seq data, an Illumina HiSeq instrument 
(San Diego, CA, USA) was used for mRNA profiling. In the sample 
selection procedure, non-PDAC samples were removed and samples 
with a survival time less than 3 months were removed, since the 
cause of death may not be due to PDAC. As a result, we analyzed 
124 PDAC patients, among which there were 61 female and 63 male 
patients. The median survival time was 598 days, and the censoring 
proportion was 41%. The average and standard deviation of age was 
64.56 years and 10.91 years, respectively. 

We applied the preprocessing procedure to RNA-seq data of 
56,716 genes annotated. The relative log expression (RLE) nor-
malization method was adopted to control the gene length bias. 
The RLE method was implemented in R package (v3.5) 

“DESeq2” (v1.22.2) [58]. After RLE normalization, the genes 
with zero proportion larger than 80% were filtered out [59] and 
the number of remaining genes was 37,406. In addition, we fitted a 
Cox model with a single clinical variable and selected only 11 vari-
ables among 40 variables, in which 10 variables have the significant 
p-value less than 0.1 and a variable of sex is included with p-value 
of 0.312 as shown in Table 2. 

First, we applied the traditional method by fitting a Cox model 
with eleven clinical variables, in which five clinical variables were 
selected by 3-fold cross validation as shown in Fig. 1. Secondly, we 
applied the penalization method by using lasso and elastic-net 
penalties with 37,406 RNA-seq data. For the lasso penalization, 
eight genes were selected whereas eleven genes were selected for 
the elastic-net penalization. Thirdly, we applied ML methods such 
as SVMs, random survival forest and Cox boosting with five clini-
cal variables and the selected eight or eleven genes depending on 
either lasso or elastic-net, respectively. The C-index [60] is used to 
evaluate the prediction of each method and presented in Table 3. 

As shown in Tables 3 and 4, the prediction models considering 
both clinical and gene variables have the larger C-index than those 
with either clinical or gene information. Especially when only gene 
information is considered, the value of C-index is lower than the 
model with only clinical variables. When comparing two penalties 
of lasso and elastic-net, the gene variables from the lasso penalty 
seem to be more informative on the prediction of the survival time 
than those from the elastic-net penalty. When comparing the four 
methods of Cox model, SVMs, random survival forest and Cox 
boosting, both the Cox model and Cox boosting have almost iden-
tical C-index values and perform better than SVMs and random 
survival forest. The SVMs seem to be sensitive to the choice of the 
penalty function whereas the random survival forest tends to be 
robust. From this result, the lasso penalty yields better prediction 

Table 2. Result of univariate Cox model for clinical variables

Clinical variable p-valuea

Age at initial pathologic diagnosis 0.103
Maximum tumor dimension 0.001
Sex 0.312
Anatomic neoplasm subdivision 0.017
Surgery performed type <0.001
Residual tumor 0.108
T stage 0.096
N stage 0.053
Radiation therapy 0.004
Postoperative rx tx <0.001
Person neoplasm cancer status <0.001

ap-value from a univariate Cox model.
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the best prediction for all methods. Instead, many possible meth-
ods should be applied to a real data with several penalties to give 
the best prediction. 

Conclusion 

In this article, we reviewed statistical methods for survival analysis, 
focusing on the adaption of traditional methods, regularizations, 
and ML. We introduced how a KM estimator can determine a sur-
vival function, how the log-rank test can compare two survival 
curves, and use of the Cox regression model. Though there are 
many other estimators, tests, and models available for survival 
analysis, the abovementioned methods are the most popularly ap-
plied, and the Cox model in particular, is widely adapted for regu-
larization and ML techniques.  

With development of high-throughput biological data acquisi-
tion, a variety of high-dimensional omics data has rapidly accumu-
lated, allowing for more personalized information used for detec-
tion, and prediction of survival probability. Presently, many ML 
techniques have increasingly been combined with traditional sur-
vival methods, and regularization approaches, to provide more ac-
curate diagnosis and prognostic decision-making, in clinical prac-
tice (i.e., “precision medicine”). We also briefly reviewed more 
useful and applicable ML techniques such as survival trees, SVMs, 

Fig. 1. Clinical variable selection scheme.

Table 3. Comparison of C-index of using clinical and lasso gene 
variables

Method
C-index

Clinical Lasso genes Clinical + Genes
Cox model 0.75 ±  0.06 0.60 ±  0.14 0.84 ±  0.03
SVM 0.65 ±  0.12 0.50 ±  0.03 0.74 ±  0.07
RSF 0.73 ±  0.11 0.56 ±  0.08 0.78 ±  0.08
Cox boosting 0.75 ±  0.06 0.60 ±  0.13 0.84 ±  0.03

Values are presented as mean ± standard deviation.
SVM, support vector machine; RSF, random survival forest.

Table 4. Comparison of C-index using clinical and elastic net gene 
variables

Method
C-index

Clinical E-N gene Clinical + Genes
Cox model 0.75 ±  0.06 0.64 ±  0.09 0.79 ±  0.07
SVM 0.65 ±  0.12 0.54 ±  0.14 0.64 ±  0.16
RSF 0.73 ±  0.11 0.61 ±  0.07 0.77 ±  0.08
Cox boosting 0.75 ±  0.06 0.64 ±  0.09 0.80 ±  0.05

Values are presented as mean ± standard deviation.
SVM, support vector machine; RSF, random survival forest.

with less gene variables than the elastic-net penalty. However, it is 
not possible to find out the optimal penalty which always yields to 
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bagging, random survival forests, Cox boosting, and ANNs. Espe-
cially, ANNs are more powerful when the relationship between 
covariates and the outcomes are not linearly correlated and do not 
restrict any specific functional relationship between covariates and 
outcomes. By allowing more hidden layers and a variety of flexible 
open-source deep learning techniques, ANNs are increasingly 
used for detection and prediction, in biomedical fields. 

As described in this article, the classical statistical methods in 
survival analysis have been well adapted to the ML techniques, to 
improve survival predictability. This trend will continue to be sub-
stantially expanded, in conjunction with deep learning techniques, 
which are now explosively utilized in many domains (including ar-
tificial intelligence). 
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