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Abstract

Endocannabinoids are naturally occurring lipid-like molecules that bind to cannabinoid re-

ceptors (CB1 and CB2) and regulate many of human bodily functions via the endocannabi-

noid system. There is a tremendous interest in developing selective drugs that target the CB

receptors. However, the biophysical mechanisms responsible for the subtype selectivity for

endocannbinoids have not been established. Recent experimental structures of CB receptors

show that endocannbinoids potentially bind via membrane using the lipid access channel in

the transmembrane region of the receptors. Furthermore, the N-terminus of the receptor
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could move in and out of the binding pocket thereby modulating both the pocket volume

and its residue composition. On the basis of these observations, we propose two hypothesis

to explain the selectivity of the endocannabinoid, anandamide for CB1 receptor. First, the

selectivity arises from distinct enthalpic ligand-protein interactions along the ligand binding

pathway formed due to the movement of N-terminus and subsequent shifts in the binding

pocket composition. Second, selectivity arises from the volumetric differences in the bind-

ing pocket allowing for differences in ligand conformational entropy. To quantitatively test

these hypothesis, we perform extensive molecular dynamics simulations (∼0.9 milliseconds)

along with Markov state modeling and deep learning-based VAMPnets to provide an inter-

pretable characterization of the anandamide binding process to cannabinoid receptors and

explain its selectivity for CB1. Our findings reveal that the distinct N-terminus positions

along lipid access channels between TM1 and TM7 lead to different binding mechanisms and

interactions between anandamide and the binding pocket residues. To validate the critical

stabilizing interactions along the binding pathway, relative free energy calculations of anan-

damide analogs are used. Moreover, the larger CB2 pocket volume increases the entropic

effects of ligand binding by allowing higher ligand fluctuations but reduced stable interac-

tions. Therefore, the opposing enthalpy and entropy effects between the receptors shape the

endocannabinoid selectivity. Overall, the CB1 selectivity of anandamide is explained by the

dominant enthalpy contributions due to ligand-protein interactions in stable binding poses.

This study shed lights on potential selectivity mechanisms for endocannabinoids that would

aid in the discovery of CB selective drugs.
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Introduction

The discovery of cannabinoid receptors (CBRs) busted the myth of “membrane-mediated

signaling” of lipid-like cannabinoid molecules.1 Two types of cannabinoid receptors have

been confirmed: Cannabinoid receptor 1 (CB1) and 2 (CB2).
2 CB1 is majorly expressed in

central nervous systems, whereas CB2 is primarily expressed in the immune system.3,4 The

discoveries of CBRs established a complex signaling system named the endocannabinoid

system (ECS).5,6 The ECS consists of neurotransmitter endocannabinoids, enzymes that

help produce or degrade endocannabinoids, and receptors where the endocannabinoids bind

to modulate downstream signaling.7 This complex system maintains homeostasis in neuronal

signaling and has been targeted for different physiological and psychological disorders such

as obesity, pain, and inflammation.8

Unlike other neurotransmitters, which are stored for future usage, endocannabinoids are

produced in demand from the membranes of postsynaptic neurons due to an increase in

calcium ion concentration.9 These molecules travel to the presynaptic neuron via a retro-

grade signaling system to bind CBRs.10 Binding of endocannabinoid leads to downstream

signaling by G-protein and β-arrestin.11–13 Enzymes that are part of ECS finally degrade

these molecules in presynaptic neurons.14

Two well-known endocannabinoids are anandamide (N-Arachidonoylethanolamine) and

2-AG (2-arachidonoylglycerol) (Figure 1A).17,18 These molecules have four pharmacophore

groups: a polar head group, a propyl linker, a polyene linker, and an alkyl tail. Although

both molecules are precursors of arachidonic acid, they are produced via distinct enzymatic

mechanisms.19,20 Anandamide is a partial agonist for both CB1 and CB2, whereas 2-AG is

a full agonist for both receptors.21 As full agonists of CBRs are associated with higher side

effects, anandamide has gained more attention in drug design due to its partial agonistic

properties like ∆9-THC.22–24

GPCRs belonging to the same subfamily share high sequence and structural similarities.25

Consequently, most designed drugs bind to all receptors from the same subfamily, causing
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Figure 1: (A) Structures of the two well-known endocannabinoids: anandamide and 2-AG. Four
pharmacophore groups of each endocannabinoid are represented in different colors. The carbon
atom numbering of anandamide is shown. (B) Superposition of inactive CB1 (PDB: 5TGZ;15

color: orange) and CB2 (PDB: 5ZTY;16 color: green) are shown as cartoon representations with
structural differences along the lipid access channel highlighted in separate panels.

off-target side effects. CB1 and CB2 share a 44% total sequence identity and 68% sequence

homology in the transmembrane regions.26 Previous experiments have shown anandamide

to be selective towards CB1 (Ki: 61-543 nM) as compared to CB2 (Ki: 279-1940 nM).18,21

Several anandamide analogs designed to study the structure-activity relationship have been

shown to retain or increase ligand selectivity for CB1.
27–29 Therefore, anandamide and its

analogs provide an avenue to design subtype-selective ligands for CB1, which is an important

issue not just for CBRs but for all Class A GPCRs.30–32
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This study proposes two hypotheses to provide mechanistic explanation of endocannabi-

noid subtype selectivity. The first hypothesis focuses on the influence of structural changes

along the endocannabinoid binding pathway within the receptors. The second hypothesis

explores the role of entropy in the binding process.

Previous studies suggested that endocannabinoids, due to their lipidic nature, bind to the

CBRs from the membrane-accessible transmembrane regions via lateral diffusion.33,34 This

proposition was supported by the recent discoveries of experimentally determined structures

that show a lipid accession channel between TM1 and TM7 for CB1.
22,35 Additionally, mu-

tagenesis and molecular dynamics (MD) studies on cannabinoid receptors provide further

evidence for this ligand binding pathway.33,36,37 However, comparison of the lipid access

channel of CB1 and CB2 inactive structures shows major structural differences (Figure 1B).

Membrane-proximal N-terminus remains inside the orthosteric pocket for CB1 inactive struc-

ture.15,38 Agonist binding moves the N-terminus out of the pocket in order to bind in the

agonist-like pose.23,35 Conversely, the downward N-terminus creates a large space between

TM2 and TM7 for CB1 compared to CB2, which might facilitate the entrance of the agonists

in the pocket (Figure 1B). These structural differences might influence endocannabinoid

binding mechanism and ligand interactions in bound pose within each receptor. Thus, in

our first hypothesis, we propose the distinct interactions formed by the ligand and receptors

lead to differential enthalpy contributions to binding affinity making anandamide subtype

selective.

The second hypothesis is based on the volumetric differences in cannabinoid receptors’

binding pocket.38 CB1 and CB2 binding pockets have been shown to accommodate much

bulkier ligands compared to the long-chain endocannabinoids with an abundance of sp3 hy-

bridized carbon atoms.15,35 Flexible endocannabinoids may obtain multiple reversible stable

poses inside large pocket of CBRs, which increases the importance of entropy contribution in

ligand binding. Recent experimental studies have also revealed that entropy plays a major

role in determining subtype selectivity of CBRs.39 Therefore, we propose that distinct pocket
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volumes of CBRs leads to dissimilar entropy contribution in binding free energy, causing sub-

type selective behavior of anandamide. Hence, to investigate whether distinct ligand-protein

interactions or ligand flexibility effects determine ligand selectivity, we compared the binding

of the endocannabinoid anandamide to cannabinoids using atomistic MD simulations.

Extensive ∼ 900µs of unbiased molecular dynamics were performed for the exploration

of binding pathways and interaction sites of anandamide for CB1 and CB2. The thermody-

namics and kinetics of these processes were estimated using Markov state models (MSM).40

Deep learning based VAMPnets was used to identify intermediate states along the pathway.41

Binding simulations reveal that anandamide can diffuse through the membrane to bind to

CB1 and CB2 from the lipid access channel of TM1 and TM7 confirming previous observa-

tions. A significant conformational change in membrane-proximal N-terminus of CB1 during

ligand binding suggests an induced fit binding mechanism. Conversely, anandamide binding

to CB2 does not lead to a major conformational change in the binding pocket, aligning with a

conformational selection mechanism. Unbiased MD simulations also detect a non-canonical

transmembrane pathway only for CB2 (between TM5 and TM6), which converges to the

orthosteric binding pocket similar to the canonical pathway but appears less favorable for

ligand binding. This difference in binding mechanisms contributes to varying interactions

within the binding pockets of CB1 and CB2. These interaction differences were validated by

relative binding free energy (RBFE) calculations for anandamide analogs, which show con-

sistent trends with experimental binding affinity. Further analyses reveal that anandamide

interacts strongly with the displaced N-terminus in the orthosteric pocket of CB1, increas-

ing enthalpy contribution to binding free energy compared to CB2, where the N-terminus

remains outside the pocket. Additionally, larger volume of orthosteric binding pocket of

CB2 allow more flexibility for the anandamide compared to CB1 in the ligand bound state.

This increased flexibility leads to a higher entropy contribution towards ligand binding free

energy for CB2. Comparing these opposing entropy and enthalpy contributions reveals that

the enthalpic contributions are dominant and facilitate more selective ligand binding in CB1.
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Overall, this study provides a detailed quantitative evaluation of mechanistic hypothesis for

understanding of endocannabinoid subtype selectivity, which will aid in the discovery of

selective drugs targeting cannabinoid receptors.

Results and Discussion

Anandamide binds to cannabinoid receptors via the lipid access channels in be-

tween transmembrane helices. Approximately ∼ 423 and 483 µs of atomistic molecular

dynamics simulations were performed for CB1 and CB2 to capture the anandamide bind-

ing. Realistic membrane compositions were used to accurately estimate thermodynamics

and kinetics as the ligand binding happens via the membrane bilayer.42,43 Average brain

membrane composition was used for CB1 as these receptors are majorly expressed in the

central nervous system (Table S1). In contrast, average eukaryotic membrane composition

was used for CB2 as they are expressed in immune cells (Table S2). Anandamide was ini-

tially placed in the extracellular region and was observed to diffuse to the membrane bilayer

for both CB1 and CB2 during the simulation. The higher probability density of the ligand

in the membrane bilayer compared to the salt solution is consistent with the lipidic nature

of anandamide (Figure S1). The frames where ligand stays in the membrane bilayer were

selected to characterize its transmembrane diffusion and binding pathway to the receptors.

Markov State Models were used to obtain the unbiased free energy estimates of the ligand

binding process. MSM-weighted free energy landscape between x and y components of the

center of mass of anandamide reveal a binding pathway for cannabinoid receptors (CB1 and

CB2) from the lipid access channel between TM1 and TM7 (Figure 2A and 2B). A separate

binding pathway was also observed in between TM5 and TM6 for CB2, which converges to

the similar bound pose inside the pocket (Figure 2B).

Characterization of the binding process was done using VAMPnets, which cluster the

simulation ensemble into different macrostates. VAMPnets use deep learning architecture
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Figure 2: MSM weighted free energy landscapes are projected between x and y coordinates of center
of mass of anandamide for CB1 (A) and CB2 (B). Macrostates obtained by training the VAMPnets
are plotted as scatter plots between x and y coordinates of the center of mass of anandamide for
CB1 (C) and CB2 (D). Frames from the transmembrane region are only shown in the above plots.
The extracellular residue of each helix is shown as a star marker to show its position. Macrostate
names A, U, I, and B represent anandmide in allosterically bound, unbound, intermediate and
orthosterically bound state in the receptors. Superscript in the intermediate macrostate stands for
the ligand binding pathway between transmembrane helices.

to divide the ensemble into macrostates, where intrastate conformational changes are faster

compared to interstate transitions.41 The optimal number of macrostates were selected for

CB1 (six) and CB2 (six) with the criteria of minimizing the error in implied timescale and

state populations (Figures S2, S3, S4, and S5). Relative positions of the macrostates are

shown as scatter plots based on the x and y components of the ligand center of mass of

frames where anandamide stay inside membrane-bilayer or protein (Figures 2C and 2D).

The agonist bound pose in CB1 and CB2 are characterized by the macrostate BPro
CB1 and

BPro
CB2, respectively. Two intermediate states (I1TM17

CB1 , I2TM17
CB1 ) mark the anandamide binding

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.25.620304doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.620304
http://creativecommons.org/licenses/by-nc-nd/4.0/


pathway in between TM1 and TM7 for CB1 before the ligand reach bound state from the

bulk membrane. In contrast, one intermediate state (ITM17
CB2 ) was observed along the similar

pathway for CB2. An alternate pathway was also observed for CB2 in between TM5 and

TM6 was characterized by two intermediate states (I1TM56
CB2 , I2TM56

CB2 ). Detailed description of

each pathway and its role in determining selectivity are explained in the subsequent sections.

Induced-fit binding of anandamide to CB1 via the lipid access channel of

TM1 and TM7. Ligand diffuse from the bulk membrane to the metastable minima at the

membrane exposed interface of TM1 and TM7 before anandamide binds inside the pocket

(Figure 2A). This stable region of the landscape is represented as Macrostate I1TM17
CB1 (Figure

2C). The timescale for ligand diffusion from the bulk of the membrane was determined using

mean free passage time (MFPT) calculation. MFPT was calculated from transition path

theory, which estimates the timescale from the transition probability matrix as determined

by MSM. MFPT calculation shows that the ligand can diffuse from bulk to macrostate

I1TM17
CB1 within a sub-microsecond timescale (0.6± 0.1µs).

In this metastable macrostate I1TM17
CB1 , the ligand is stabilized in the protein-membrane

surface while maintaining contact with the lipid molecules (Figures 3A and 3B). Protein

and lipid exposed surface area calculation of anandamide in macrostate I1TM17
CB1 shows that

more than 50% of average area maintains contact with protein, depicting a stable interac-

tion between the ligand and protein (Figure S6). The protein-ligand contact probabilities

and interaction energies were calculated to identify the residues important for anandamide

stabilization at the receptor surface (Figure 4A). These calculations reveal that the ligand

form major interactions with N-terminus (F108N−term, M109N−term) and TM7 (F3817.37,

M3847.40) residues (Figure 3C). The most frequent and stable interaction is the polar hy-

drogen bond interaction between the nitrogen group of anandamide and backbone oxygen

of the N-terminus F108N−term residue. Contact probability calculations were also performed

to capture major interactions of anandamide pharmacophore groups with different lipids

(Figure 3B). The lipids in the membrane were classified based on the eight different head
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groups. The analysis results reveal that major interactions with the ligand are observed with

phosphatidylcholine (PC), sphingolipids (SM), and cholesterol (CHL). Furthermore, stable

lipid contacts are majorly formed with the polyene linker and polar headgroups, while the

propyl chain and hydrophobic tail form weaker interactions (Figure 3B). Due to the stable

interactions, the probability density plot for ligand RMSD reveals only one major confor-

mation of anandamide, where the ligand is parallel to the protein helices (Figures 3C and

S7).

From macrostate I1TM17
CB1 , anandamide moves inside the binding pocket between the space

formed by TM1, TM2, and TM7. Conformational ensemble of anandamide in this posi-

tion was represented by macrostate I2TM17
CB1 . The binding position of anandamide in this

macrostate is similar to the experimentally determined antagonist-bound pose (Figure S8).

Contact probability and interaction energy calculations reveal that major ligand-protein in-

teractions are formed between the polar group of the ligand with TM2 (F1742.61, F1772.64,

and H1782.65) and N-terminus (M109N−term) of the protein (Figures 3A and 3C). Previ-

ous experiments have shown that these interacting residues in TM2 have major effects on

the ligand binding and potency for CB1.
15,44 Few lipid interactions are also present in the

macrostate I2TM17
CB1 (Figure 3B). The polar part of the ligand still maintains contact with

cholesterol (CHL) and sphingolipids (SM). Although macrostate I2TM17
CB1 has more protein

interactions than macrostate I1TM17
CB1 , it was observed from the free energy landscape that

macrostate I2TM17
CB1 is comparatively less stable than macrostate I1TM17

CB1 (Figure 2A). This

observation shows the importance of lipid interactions in stabilizing anandamide in the pro-

tein interface. As the ligand moves from a low to high energy macrostate, kinetically, this

transition is slower (29.0± 3.8µs) compared to the reverse transition (0.5± 0.1µs).

The binding of the ligand to the protein leads to the conformational change. K-L di-

vergence analysis was performed between the different macrostates to highlight the regions

of the protein conformational differences. Comparing the K-L divergence between these

macrostates, a major conformational change was observed in the extracellular TM1, TM2,
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Figure 3: (A) Contact probability (color: Blue) and interaction energy (color: Orange) calculations
between anandamide and CB1 in different macrostates in the binding pathway. Residues that main-
tain at least 50% contact probabilities in one of the macrostates are shown in the figure. (B) Lipid
contact probabilities in different macrostates of CB1 with anandamide are shown as a heatmap.
(C) A representative frame from each of the macrostates is shown. CB1 (color: Orange) is shown
as a cartoon representation with transparent TM6 and TM7. Anandamide (color: Purple) and
the four highest interacting residues (color: Cyan) are represented as sticks. (D) K-L divergences
between two macrostates are shown in color and thickness gradients. Thickness gradients are shown
as moving averages.
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and N-terminus, confirming that the ligand binding is leading local conformational changes in

the binding pocket (Figure 3D). Within the local conformational changes, specific movements

are found to facilitate the ligand binding: upward movement of N-terminus and F1742.61.

To capture these changes, the N-terminus (M103N−term) distance from D1632.50 was plotted

against the sidechain dihedral (χ1) of F174
2.61 as MSM weighted free energy landscape (Fig-

ures S9A and S9B). We observed that macrostate I1TM17
CB1 to macrostate I2TM17

CB1 transition

leads to the shift in the population distribution of the χ1 angle of F1742.61. The binding of

the macrostate I2TM17
CB1 also partially shifts the N-terminus in the extracellular direction to

accommodate the ligand (Figure S9A).

From macrostate I2TM17
CB1 , anandamide moves further deep in the pocket to macrostate

BPro
CB1, which represents the agonist binding pocket (Figure 3C). The major interactions

are still maintained between the polar group of anandamide and TM2 in this macrostate

(Figure 3A). K-L divergence calculation between these macrostates also shows the major

conformational change associated with the N-terminus (Figure 3D). MSM weighted free

energy landscape also points out the population shift of N-terminus away from the binding

pocket (Figures S9A and S9B). This required large conformational change of the N-terminus

in the binding pocket makes transition from I2TM17
CB1 to BPro

CB1 order of magnitude slower

compared to previous transitions along this pathway.

These significant conformational changes in the N-terminus alter the shape of the bind-

ing pocket. Further analyses reveal changes in the pocket volume during ligand binding

(Figure S10). These observations suggest that anandamide binds to CB1 via an induced

fit mechanism, where the binding of anandamide induces a conformational change in the

N-terminus.

Conformational selection mechanism dominates anandamide binding to CB2

via TM1-TM7 lipid access channel. Mutagenesis experiment and MD simulation have

also shown similar ligand binding pathway in between TM1 and TM7 for CB2. However,

the N-terminus of CB2 remain above the orthosteric pocket and far from this pathway.
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Figure 4: (A) Contact probability (color: Blue) and interaction energy (color: Orange) calcula-
tions between anandamide and CB1 in different macrostates in the binding pathway. Residues
which maintain atleast 50% contact probabilities in one of the macrostates are shown in the fig-
ure. (B) Lipid contact probabilities in different macrostates of CB1 with anandamide are shown
as a heatmap. (C) Representative frame from the each of the macrostate is shown. CB1 (color:
Green) are shown as a cartoon representation with transparent TM6 and TM7. Anandamide (color:
Purple) and four highest interacting residues (color: Cyan) are represented as sticks. (D) K-L di-
vergences between two macrostates are shown color and thickness gradients. Thickness gradients
are shown as moving average.
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Simulations show this structural distinction causes major difference in the pathway. VAMP-

nets analysis captures one intermediate macrostate ITM17
CB2 near the protein surface between

TM1 and TM7 before anandamide binds to agonist-like poses in the orthosteric pocket.

Spontaneous transition to this macrostate from membrane-bilayer was observed within the

microsecond timescale (8.7 ± 1.2µs). Contrasting to CB1, this macrostate does not repre-

sent a metastable minima in the protein surface between TM1 and TM7, which depicts less

stable interactions with the protein surface (Figure 2B). The less stability of the ligand in

this receptor surface can be explained by the lack of stable contact in the surface (Figures

4A). A lesser ratio of protein and lipid accessible surface area of anandamide compared to

the Macrostate I1TM17
CB1 further validates this phenomena (Figure S6). Major interaction

differences between CB1 and CB2 for anandamide was observed at the N-terminus. Due to

lack of N-terminus interaction, highest protein-ligand interactions in CB2 macrostate ITM17
CB2

are observed in TM1 (Q321.31) and TM7 (K2797.33, F2837.37, M2867.40). The anandamide

also forms interactions with transmembrane lipids (phosphatidylcholine (PC), sphingolipids

(SM), and cholesterol (CHL)) similar to the CB1 (Figures 4B).

Anandamide moves to the bound pose BPro
CB2 from macrostate ITM17

CB2 (Figure 4C). In the

macrostate, the major interactions with anandamide were observed with aromatic residues in

TM2 (F912.61, F942.64), TM7 (F2817.35) and ECL2 (F183ECL2) (Figure 4C). K-L divergence

analysis shows that this binding from macrostate ITM17
CB2 to BPro

CB2 leads to the higher residue

fluctuation in the N-terminus, extracellular TM1, and TM2 as ligand binds from the region

(Figure 4D). Comparison of inactive structure of CB1 and CB2 points out less space between

the TM2 and TM7 for CB2 along this pathway. To characterize major conformational

changes in anandamide binding, F912.61 χ1 dihedral angle and TM2 (F912.61) - TM7 (S2857.39)

distance were plotted against each other (Figure S11A). MSM weighted free energy landscape

reveal that F912.61 χ1 angle ensemble average does not change as the ligand moves from

macrostate ITM17
CB2 to BPro

CB2. However, the TM2 and TM7 distance increases to facilitate

the anandamide binding (Figures S11A and S11B). Comparison of similar distances for CB1
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shows that TM2 and TM7 remain far away to be affected by ligand binding (Figure S12).

Angle rotation of F1742.61 is enough for anandamide to move inside the pocket (Figure

S12). As the helical movement is needed for CB2, the kinetic transition from macrostate

ITM17
CB2 to BPro

CB2 is much slower (300.2±99.8µs) compared to the equivalent transition in CB1

(macrostate I1TM17
CB1 to I2TM17

CB1 : 29.0± 3.8µs) (Figures 3C and 4C).

These analyses highlight the differences in the binding mechanisms of anandamide to CB1

and CB2 despite of binding from same the lipid access channel between TM1 and TM7. In

CB1, the binding pocket shape changes during ligand binding due to the repositioning of the

N-terminus, indicating an induced fit mechanism. Conversely, in CB2, the shape of binding

pocket remains largely unchanged, suggesting a conformation selection mechanism. This

demonstrates that endocannabinoids can utilize different binding mechanisms even when

interacting with receptors from the same subfamily.

Alternative anandamide binding pathway for CB2 in between TM5 and TM6.

Another membrane-embedded ligand-binding pathway was detected for CB2 between TM5

and TM6. VAMPnets analysis shows two macrostates along this pathway before it converges

back to the bound state (Figure 4C). In the macrostate closer to the membrane bilayer, the

ligand is stabilized between the surface of TM5 and TM6. Diffusion from the membrane

bilayer to I1TM56
CB2 is also relatively fast (3.4 ± 0.4µs). This macrostate also represents a

metastable region as the ligand is stabilized by the residues in TM5 (L1955.44) and TM6

(W2586.48, M2656.55, L2596.59) surface (Figures 4A and 4C). In previous experimentally de-

termined structures, long chain lipid molecules were found to be bound to TM5 and TM6

surface, supporting our observation16,45 (Figure S13). The ratio of the protein and lipid

surface area calculations indicates stronger interactions with CB2 surface as more than 80%

of the ensemble averaged surface area embedded to the protein (Figure S6). Lipid inter-

actions in this macrostate are limited to the polar head group of the anandamide as the

hydrophobic tail remains inside the receptor (Figure 4B). K-L divergence analysis compared

to macrostate I1TM56
CB2 shows a higher divergence in TM5 and TM6 surface to accommodate
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the tail of anandamide (Figure S14). Further analysis reveal that the pocket volume between

the TM5 and TM6 interface of the CB2 increases as the ligand diffuses from the membrane

to this intersurface (Figure S15).

Anandamide moves inside the receptor to macrostate I2TM56
CB2 from macrostate I1TM56

CB2 .

Lack of lipid interactions confirms the ligand position inside the protein in this macrostate

(Figure 4B). However, the ligand pose is different than compared to macrostate BPro
CB2. The

major protein-ligand interactions were observed between the TM3 (I1103.29, T1143.33), TM5

(W1945.43), TM6 (W2586.48) (Figures 4A and 4C). Due to the stable interactions, RMSD

calculations show that the ligand stabilizes in one stable pose in this macrostate (Figures

4C and S16). K-L divergence analysis shows that the major fluctuation happens in the TM6

due to the transition between macrostate I1TM56
CB2 to I2TM56

CB2 (Figure 4D). Major dynamic

change was observed in the angle distribution of F2025.51 rotational movement to create

space between TM3, TM5, and TM6 for the ligand. Anandamide bound in this macrostate

increases the population of F2025.51 in the outward facing direction (Figure S17). Interstate

transition further in the pocket between macrostate I2TM56
CB2 and BPro

CB2 was also observed.

Although anandamide binding is possible from both the lipid access channels for CB2, kinetic

comparison between the pathways shows that pathway between TM1 and TM7 is kinetically

more favorable (Figure 4C).

MD simulations were able to capture anandamide TM5 and TM6 for CB1, however, no

metastable minima or ligand binding pathway were observed from this lipid access channel

(Figure 2A). We explained this difference between CB1 and CB2 by calculating the lipid

accessible surface area for the membrane-facing residues in the TM5 and TM6 surfaces

(Figures S18A). Higher accessible surface area would increase the contact probability between

anandamide and receptor to stabilize the ligand on the surface. For CB2, area per residue is

much higher compared to the CB1 (Figure S18B). Less per residue surface area for CB1 can

be attributed to bulky F3686.60 residue in the protein surface instead of the A2706.60 in CB2

(Figure S18A). This decreasing surface area implies that the anandamide cannot reach the
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groove between TM5 and TM6, decreasing stable interactions between the ligand and CB1.

Distinct binding pocket interactions contributes to anandamide selectivity.

Difference in the binding mechanism leads to dissimilar binding poses and interactions of

anandamide inside the pocket. Recently, cryo-EM structure of anandamide analog (AMG315)

bound CB1 was determined in the active state with downstream G-protein.46 AMG315 is

functionally a full agonist and is observed in the canonical agonist-bound pose in the cyro-

EM structure. Comparison of AMG315 bound structure with MD sampled structures of the

bound poses shows that MD simulations are able to capture the experimentally determined

ligand pose for both CB1 and CB2 (Figures S19A and S19B). However, distance RMSD

calculations of anandamide in bound poses show that the canonical agonist bound confor-

mation is not the most stable conformation for anandamide in the pocket (Figures S19C and

S19D). We performed relative binding free energy (RBFE) calculation with respect to anan-

damide analogs with known experimental binding affinity to computationally validate these

obtained distinct poses. One major drawback of this method of validation is that RBFE

calculation depends on the reference ligand’s pose. However, anandamide shows significant

flexibility inside the pocket for both receptors. There is high enough probability that ligand

can obtain other poses in the receptor, which can affect the calculated ∆∆G. Hence, instead

of the quantitative agreement, we focus on the qualitative trend of ∆∆G with respect to

most stable pose of anandamide.

The analogs that we are studying are the ones where scaffold changes have been focused

on the polar group of the anandamide, as polar groups form the most stable interactions

in the pocket (Figure S20A). The selected analogs were classified into three categories to

better understand the effect of scaffold change: (1) addition of alkyl groups in C1’ and

C2’. It has been shown that adding an alkyl group in this position makes the ligand more

resistant to hydrolysis by degrading enzymes, increasing its apparent binding affinity.47 (2)

removal of terminal hydroxyl group. Previous studies have shown that the hydroxyl group

is not essential for binding.27 (3) substitution of hydroxyl group with fluorine group. These
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analogs increase the CB1 and CB2 affinity.27 Estimated ∆∆G reveals that binding affinity

increases for CB1 and CB2 for all three categories of the analogs and magnitudes of the ∆∆G

also remain within the realistic limits (Figure S20B). Considering the assumption of RBFE

calculations, these calculations validate the binding pose obtained from the simulations.

These distinct binding poses and differences in the receptors’ conformation due to ligand

binding lead to difference of ligand interaction with receptors. To observe these differences,

we compared the interactions of anandamide with equivalent loops and helices surrounding

orthosteric pocket of receptors. Interaction energies were calculated using LIE method for

1000 representative structures from bound state of each receptor, which were selected based

on their MSM probabilities. Ligand interaction energy calculations in these structures show

major differences in N-terminus region of the two receptors (Figure 5A). In spite of extra-

cellular motion, stronger interactions with N-terminus hydrophobic residues were observed

for CB1 compared to CB2. Furthermore, overall comparison of enthalpy contribution due to

protein and ligand interactions indicate higher enthalpy contribution for CB1. This makes

the anandamide binding more enthalpically favorable to CB1.

Explanation of CB1 selectivity of anandamide. Although there are conflicting

reports on the binding affinities of anandamide, the general consensus is that anandamide

is more selective towards CB1 compared to CB2.
18 We showed that the ligand binding is

enthalpically favorable to CB1. However, significant ligand dynamics inside the pocket due

to large pocket volume of receptors and plethora of sp3 hybridized carbon atoms may lead

to a significant entropy effect in the binding free energy. (Figures S19C and S19D).

To compare the anandamide dynamics inside CB1 and CB2 pocket, we calculated angle

between carbon atoms at three different parts of ligand: tail (C16), polyene linker (C11),

and propyl linker (C3) group (Figure 5B). This analysis shows that anandamide is stabilized

in one conformation for majority of the population in BPro
CB1. In contrast, the ligand has

much higher divergence in angle distribution for CB2 with multiple equally probable angular

conformations (Figure 5B). This higher conformational divergence in macrostate BPro
CB2 can
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Figure 5: (A) Anandamide interaction energies of different structural elements of cannabinoid
receptors in the bound states. (B) Probability density plot of three sp3 carbons of anandamide
representing hydrophobic tail (C16), polyene linker (C11), and propyl linker (C3) for BPro

CB1 (color:
orange) and BPro

CB2 (color: green). (C) Probability density plot of binding volume calculation of
orthosteric binding pocket for BPro

CB1 (color: orange) and BPro
CB2 (color: green). Error in angle

and pocket volume distributions were calculated from on 3 bootstrap samples where each sample
contains 1000 frames obtained from macrostate based on MSM weighted probability. (D) Bar
plot represents the differences of enthalpy (color: blue) and entropy (color: magenta) contribution
between the BPro

CB1 and BPro
CB2.

be explained by the binding pocket volume calculations (Figure 5C). These calculations show

that anandamide has larger accessible volume to move in CB2 compared to the CB1, which
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matches with our previous observations.38 Therefore, in CB1, degrees of freedom for the

movement of sp3 hybridized carbons are restricted compared to CB2. The higher fluctuation

in ligand due to larger volume in CB2 leads to higher entropic contribution in free energy

(Figure 5D). Estimation of Gibbs entropy (∆S = −
∑

i kBpiln(pi)) show higher entropic

contribution for anandamide binding in CB2, which contradicts with the higher enthalpic

effects in CB1. Comparison of these contrasting effects of enthalpy and entropy between

two receptors, enthalpy contribution to free energy dominates in the ligand binding process

(Figure 5D). Hence, anandamide binds favorably to CB1 than CB2.

Conclusions

Endocannabinoids are lipid-like long-chain molecules that bind to cannabinoid receptors

to transduce intracellular signaling. One of the endocannabinoids, anandamide, has gar-

nered significant attention due to its partial agonistic nature and CB1 selectivity. Designing

analogs of anandamide as CB1 selective drugs necessitates a deep understanding of its bind-

ing mechanisms. In this study, we developed two hypotheses to elucidate the CB1 selectivity

of anandamide.

First, we proposed that structural differences along the ligand-binding pathway lead to

distinct bound poses and the resulting enthalpy contributions to the ligand-binding free

energy. Second, we suggested that the distinct pocket volumes of CB1 and CB2 lead to

differences in ligand dynamics, influencing the entropy contributions to free energy. To test

these hypotheses, we conducted unbiased extensive MD simulations of anandamide binding

to CB1 and CB2.

Our MD simulations reveal mechanistic differences in anandamide binding between CB1

and CB2 via the pathway between TM1 and TM7. Binding to CB1 is characterized by

an induced fit mechanism, where the ligand displaces the N-terminus from the orthosteric

pocket. In contrast, CB2 binding suggests a conformation selection mechanism, with no
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major changes observed. For CB2, a separate non-canonical binding pathway was observed

in between TM5 and TM6. Although this pathway finally converges to the same orthosteric

binding pocket, it is kinetically unfavorable compared to the canonical pathway between

TM1 and TM7. These distinct binding mechanisms result in different ligand binding poses

and interactions with the receptors. Major differences in ligand interactions are observed

between the N-terminus of the receptors. Higher interaction with N-terminus for CB1 makes

the ligand enthalpically more stable in CB1 binding pocket, which supports our first hypoth-

esis. Additionally, we observed that the larger pocket volume of CB2 allows greater ligand

dynamics, leading to a more favorable entropy contribution to free energy for CB2. Compar-

ison of this relatively contradicting enthalpy and entropy effect on binding free energy reveal

that the dominant enthalpy effect causes the ligand to be more selective towards CB1.

In summary, our work elucidates the orthosteric selectivity of anandamide for cannabinoid

receptors using extensive molecular simulations and post-processing Markovian techniques.

These insights provide crucial information for designing selective drugs.

Methods

System Preparation

Inactive structures of CB1 (PDB ID: 5TGZ15) and CB2 (PDB ID: 5ZTY16) were selected to

perform anandamide binding simulations. Non-protein residues (ligands and water molecules)

and fused proteins (Flavodoxin and T4-lysozyme) were removed for the structure file. Ther-

mostabilized mutations were modified back to the original residues. Missing residues in

ICL3 were modeled using Rosetta loop modeling for CB1 and CB2.
48,49 For CB2, missing

21 residues in the N-terminus were also modeled using Robetta webserver.50 Ninety-eight

residues were missing from the CB1 N-terminus, and no template is available to model from

homologous protein.51 Furthermore, it is challenging to model 98 residues accurately with

template-free modeling because of the combinatorial expansions of conformational space.
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However, the membrane-proximal regions of the N-terminus were shown to be important for

CB1 signaling by allosterically modulating ligand affinity.52 Hence, the closest ten residues

(89 to 98) were modeled using Rosetta with a disulfide bond constraint between C98N−term

and C107N−term residues.52,53 The remodeled structure with the least energy was further

refined in each step using kinematic closure protocol.54

Proteins with the modeled loops were embedded in the membrane bilayer and salt solu-

tion (extracellular and intracellular region) using CHARMM-GUI.55 Asymmetric complex

membrane compositions were selected for CB1 and CB2. Average brain membrane compo-

sition was used for CB1 as it is majorly expressed in the central nervous system. Average

mammalian cell composition was used for CB2 as it is majorly expressed in immune cells.

The membrane compositions were obtained from Ingólfsson et al. and proportionally down-

sized according to our system.56 The final membrane composition is shown in Tables S1 and

S2. 150 mM NaCl salt solution with TIP3P water model is used in the extracellular and

intracellular regions.57 CHARMM36m forcefield was used to parameterize the system.58

Additional steps were implemented to include anandamide in MD systems. Anandamide

was parameterized with CGenFF using the “Ligand Reader & Modeler” of CHARMM-

GUI.59 PACKMOL v18.169 software package randomly placed the anandamide in the ex-

tracellular solution.60 Ligand added systems were rebuilt using the psfgen v2.0 module of

VMD.61 ParmEd v3.2.0 software package was used to perform hydrogen mass repartitioning

on the systems and convert the systems into AMBER-recognized format.62–64

Simulation Details

Minimization, equilibration, and initial round of production runs were performed in AM-

BER v18 simulation package.65 Later rounds of production runs were run on openMM v7.7

using the distributed computing platform folding@home.66,67 Systems were minimized for

a total of 14000 steps with an initial 5000 steps using the steepest descent algorithm and

the remaining 9000 steps with conjugate gradient algorithm.68 Temperature was increased
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to 300K in NVT ensemble using Langevin dynamics as thermostat.69 Collision frequency

for Langevin dynamics was used as two ps−1. NVT ensemble simulations were performed

for one ns. In the next step, the pressure was set to 1 bar in the NPT ensemble using a

Monte Carlo barostat with anisotropic pressure control.70 This step was performed for two

ns. In NVT and the initial stage of NPT ensemble simulation, the protein backbone atoms

were restrained using a harmonic force with spring constant 10 kcal/mol-Å2. These steps

were run using the AMBER v18 module sander. The restraints were removed in the final

equilibration step, and systems were equilibrated for 50 ns in the NPT ensemble before the

production run. Production runs were also continued in the NPT ensemble. During the

simulation, a cut-off distance of 12 Å was used for non-bonded force calculations. Particle

Mesh Ewald method was used for long-range electrostatic calculations.71 SHAKE algorithm

was used to constraint bond lengths for bonds with hydrogen atoms.72 As HMR was used to

perform simulations, four fs simulation step was chosen.63,64 Periodic boundary conditions

were maintained throughout the simulation. All the simulation parameters were kept the

same during AMBER v18 and openMM v7.7 production runs.

MD sampling

As GPCR orthosteric pockets are buried inside the transmembrane domain, ligand binding

often involves stable intermediate states.23,73–76 Therefore, long timescale MD simulations

are not efficient for capturing ligand binding as it requires significant time to sample the

entire process. Here, we employed adaptive sampling,77,78,78–86 a exploitative and explorative

iterative approach for sampling the ligand binding by running parallel short simulations.

Adaptive sampling has been successfully employed to investigate the dynamics of mmebrane

proteins including GPCRs.23,38,75,87–92 Initial rounds of sampling were exploitative, where we

ran simulations from the frames with ligand positions closest to the binding pocket. The

distance of the ligand center of mass from the protein binding pocket center of mass was

estimated along the y and z projection, and the closest 15 to 20 frames were selected to
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run the next round of sampling. Residues to calculate the center of mass of protein binding

pocket for CB1 and CB2 are shown in Figure S21. Each trajectory was run for 80 ns. 28

and 25 rounds of iterative simulations were run for CB1 and CB2 to observe the complete

binding of the ligands.

As MSM building requires sampling of reversible local transitions during the binding

procedure, further sampling was done from the entire simulation space using folding@home

distributive computing.66 The entire simulation space was clustered into 1000 clusters based

on x, y, and z projection of the center of mass (COM) distance from the ligand. One frame

was picked randomly from each cluster, and four independent 100 ns atomistic unbiased

simulations were run using folding@home distributive computing.

Finally, explorative sampling was performed to sample the ligand diffusion in the mem-

brane bilayer. Simulations were started from the frames where ligand exists in the membrane.

For each round of simulations, these frames are clustered into 20 clusters based on x, y, and

z projection of the center of mass (COM) distance from the ligand, and one frame is selected

randomly from each cluster. From the selected frame, four independent simulations were

started using folding@home. Simulations were continued until the membrane adjacent area

of the protein was appropriately sampled.

Featurization of Protein Conformational Ensemble

To build Markov state model (Discussed in the next subsection), each conformation of the

biomolecular simulations needs to be featurized to capture the important dynamics. Here,

ligand binding and resulting protein conformational changes are the process of interest. To

featurize the ligand binding dynamics, the distance from the hydrophobic tail’s terminal

carbon (C20) and anandamide’s carboxyl oxygen to every binding pocket residue (Cα) was

calculated. For capturing protein movements, we considered the pairwise residue distances

of residues that undergo significant conformational change during activation as measured

by the residue-residue contact scores (RRCS).93 The entire process of residue pair selection
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using RRCS is discussed in Dutta and Shukla.38

Markov State Models

As short trajectories were run to observe ligand binding, each trajectory can only sample

the local transitions. Markov state model (MSM) is a technique that connects the local

transitions observed in short trajectories to provide global information about the dynamics

such as free energy barriers and kinetics of transitions.94–98

In MSM, the MD simulations are discretized into microstates. It is assumed these states

would follow Markovian dynamics where the jump between states would only depend on the

current state, not the past state.99 A concept of lag time was introduced to maintain this

Markovian property between interstate transitions. Lag time is the minimum time when the

interstate transitions become memoryless. Lag time (τ) for CB1 and CB2 ligand binding

systems were considered 35 ns (Figures S22A and S22B).

According to the assumption of Markovian property, all conformations in a macrostate

have to be kinetically similar. Therefore, before discretizing the simulation spaces, featurized

MD frames were converted into time-independent components (tiCs) using the variational

approach of MSM.100,101 tiCs are the linear combinations of slow features. Here, tICs were

built with a lag time of 25 ns. tiCs were further clustered, and transitional probabilities (pij)

between the clusters were calculated using maximum likelihood estimation.

To build an optimized model, hyperparameters such as the number of tIC components

and microstates were optimized by maximizing the VAMP-2 score.102 VAMP-2 scores are a

measure to represent the quality of the slowest processes captured by Markov state models

(Figures S22C and S22D). In this case, the VAMP-2 score was calculated using a 10-fold

cross-validation of the MD data. The entire MSM building process was implemented using

pyEMMA 2.5.6 python package.103 Optimized MSM redistributes the population of Marko-

vian states, removing the bias created by running short simulations (Figures S23A and

S23B).
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Trajectory Analysis and Visualization

Feature calculations (e.g., distances, angles) for MSM building and other analyses were

performed using MDTraj 1.9.8 python package.104 Trajectory visualization was performed

VMD v1.9.3.61 Frame selection and other modulations in trajectories were performed using

CPPTraj v18.01. All analysis codes were written using written in python programming

language. Pocket volume calculations were performed using POVME3.0.105 Getcontacts

software was used for contact probability calculations.106 Linear interaction energy (LIE)

analysis was performed using CPPTraj implementation to calculate the interaction energies

between the ligand and protein residues.107,108

Metastable State Estimation Using VAMPnets

VAMPnets is a deep learning based technique to capture the slow processes from MD ensem-

ble.41 Using neural network architecture, VAMPnets tries to find the non-linear transforma-

tion of features that can represent slow processes. VAMPnets is trained by maximizing the

VAMP-2 score. In this work, VAMPnets were used to discretize the space into macrostates.

Macrostate represents a collection of Markovian states that encompasses kinetically close

regions of the MD ensemble.38 To achieve the discretization, we used the softmax activation

function at the last layer of the neural network. Softmax function returns a discrete proba-

bility distribution, where each value represents a probability of an MD frame belonging to a

particular macrostate.

We used features that have been used to build MSM to train VAMPnets. A forward

neural network with eight hidden layers was used for training, where number of nodes per

layer is 30, 100, 100, 100, 100, 100, 100, 30, respectively. ELU activation was used on

the input of every hidden layer. The network was trained for 100 epochs on 80% of total

trajectories.

The number of the macrostates for every system was selected based on the least errors in

the implied time scale and macrostate population109 (Figures S2, S3, S4, and S5). Implied
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time scale is obtained from the VAMP transformation of the last layer. The VAMPnets

analysis was performed with Deeptime 0.4.3 python package.110

Transition Path Theory

Transition Path Theory (TPT) is a probabilistic approach to calculate the kinetics from

the Markov state model.111,112 This approach introduces a variable named committer (q+i ).

In a probabilistic transition between an initial and final macrostate, committer (q+i ) is the

probability of an intermediate Markovian state (i) reaching the final state before the initial

state. Mathematically, the committer can be calculated from the system of linear equations

as shown in Equation 1. From the committer, the mean free passage time between the two

macrostates is calculated using Equation 2, where πi is the stationary density of ith Marko-

vian state and τ is the lagtime of MSM. TPT calculations were performed using PyEMMA

v2.5.6.103 Error estimation in TPT calculations was performed using the bootstrapping ap-

proach, where MSM was built using randomly selected 80% of all trajectories.113

−q+i +
∑
k/∈B

pikq
+
i =

∑
k∈B

pikq
+
k (1)

MFPTAB =
τ
∑m

i=1(πi(1− q+i ))∑
i∈A

∑
k/∈A πipikq

+
k

(2)

Kullback-Leibler Divergence

Kullback-Leibler divergence (K-L divergence) is an asymmetric statistical distance measure-

ment between two probability distributions. In this context, K-L divergence was performed

between the distance distributions of difference macrostates to compare protein conforma-

tional changes observed during the ligand binding process.23,38,114 For this analysis, a thou-

sand representative conformations from each macrostate were selected based on the probabil-

ity of the MSM states belonging to the macrostate. All possible pairwise closest-heavy atom
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distances (except for the two next neighbors per residue) were calculated for these confor-

mations of each macrostate. K-L divergence was estimated between the inverse of each pair

of these distances. Per residue pair, we averaged two measurements where each macrostate

is considered a reference to make it symmetric. To estimate per-residue contribution, we

averaged K-L divergences for all residue pairs containing that certain residue.

Relative Free Energy Calculation

We selected 11 synthetic analogs of anandamide to perform relative binding free energy

calculations on the stable bound pose of anandamide observed in the simulation. These

calculations were performed on the GROMACS v2020.7 simulations package with a sin-

gle topology alchemical free energy approach.115 System building was performed with the

following steps.

• As anandamide and its analogs are flexible, a constrained optimization module of the

RDKit was used to generate the coordinates of analogs from isomeric smiles stings

similar to the bound pose of anandamide in CB1 and CB2. The isomeric smiles were

obtained from the PubChem database.116

• OpenBabel v2.4.1 software was used to convert the obtained mol file from RDKit

to mol2 format and to add hydrogen.117 The mol2 file was parameterized using the

CHARMM-GUI ligand generator module. The ParmEd package was used to create

the top and gro files.

• alchemical-setup module was used to create single topology top and gro files of the

analogs by mapping the similar atoms against the anandamide.

• The new ligand system was solvated using a gmx module of GROMACS, and a 150

mM concentration of NaCl was maintained.
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• To create the complex system, the anandamide-bound receptor system was converted

into the top and gro format using ParmEd software. Further, anandamide topology

parameters and coordinates were replaced with the ligand system.

To perform Alchemical free energy calculations, the system is divided along a hyperpa-

rameter λ, where λ equal to 0 represents the reference ligand and λ value 1 represents query

ligand.118 Here, twenty-one λ values were considered for both ligand and complex systems.

In Intermediate λ values, force-field parameters were obtained by the linear combination of

both ligand parameters.

Ligand systems and complex systems were minimized and equilibrated using NVT and

NPT ensemble. The steepest descent algorithm was used for energy minimization for 15000

steps. Langevin dynamics was used as a thermostat to maintain the temperature at 300K.69

Parrinello-Rahman barostat was used to control the pressure at 1 atm.119 Cutoff distances

for electrostatics and other non-bonded interactions were 12 Å. The Particle Mesh Ewald

method was used for long-range electrostatic calculations. To take into account the particle

disappearance, the soft-core version of the potential was used to with hyperparameter σ, α

and soft-core λ power set to 0.3, 0.5, and 1 respectively.120 Each NVT and NPT step was

run for 100 ps. For a complex system, the backbone atoms of the protein are restrained with

1000 kJ/mol. Production runs for each λ value of each complex and ligand system were

performed for five ns. Free energy calculations from these simulations were performed with

a thermodynamics integration approach using the Python module alchemical-analysis.121
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(65) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Grand, S. L.; Walker, R. C. Routine

Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit

Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation 2013, 9,

3878–3888.

(66) Voelz, V. A.; Pande, V. S.; Bowman, G. R. Folding@home: Achievements from over

20 years of citizen science herald the exascale era. Biophysical Journal 2023, 122,

2852–2863.

(67) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.;

Beauchamp, K. A.; Wang, L.-P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.;

Wiewiora, R. P.; Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid development of high

performance algorithms for molecular dynamics. PLOS Computational Biology 2017,

13, e1005659.

(68) Meza, J. C. Steepest descent. WIREs Computational Statistics 2010, 2, 719–722.

(69) Schneider, T.; Stoll, E. Molecular-dynamics study of a three-dimensional one-

component model for distortive phase transitions. Physical Review B 1978, 17, 1302–

1322.

(70) Braun, E.; Gilmer, J.; Mayes, H. B.; Mobley, D. L.; Monroe, J. I.; Prasad, S.; Zuck-

erman, D. M. Best Practices for Foundations in Molecular Simulations [Article v1.0].

Living Journal of Computational Molecular Science 2019, 1, 5957.

(71) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A

smooth particle mesh Ewald method. The Journal of Chemical Physics 1995, 103,

8577–8593.

(72) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. Numerical integration of the cartesian

equations of motion of a system with constraints: molecular dynamics of n-alkanes.

Journal of Computational Physics 1977, 23, 327–341.

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.25.620304doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.620304
http://creativecommons.org/licenses/by-nc-nd/4.0/


(73) Saleh, N.; Ibrahim, P.; Saladino, G.; Gervasio, F. L.; Clark, T. An Efficient

Metadynamics-Based Protocol To Model the Binding Affinity and the Transition State

Ensemble of G-Protein-Coupled Receptor Ligands. Journal of Chemical Information

and Modeling 2017, 57, 1210–1217.

(74) Mattedi, G.; Deflorian, F.; Mason, J. S.; de Graaf, C.; Gervasio, F. L. Understand-

ing Ligand Binding Selectivity in a Prototypical GPCR Family. Journal of Chemical

Information and Modeling 2019, 59, 2830–2836.

(75) Dutta, S.; Selvam, B.; Shukla, D. Distinct Binding Mechanisms for Allosteric Sodium

Ion in Cannabinoid Receptors. ACS Chemical Neuroscience 2022, 13, 379–389.

(76) Saleh, N.; Hucke, O.; Kramer, G.; Schmidt, E.; Montel, F.; Lipinski, R.; Ferger, B.;

Clark, T.; Hildebrand, P. W.; Tautermann, C. S. Multiple Binding Sites Contribute to

the Mechanism of Mixed Agonistic and Positive Allosteric Modulators of the Cannabi-

noid CB1 Receptor. Angewandte Chemie 2018, 130, 2610–2615.

(77) Hinrichs, N. S.; Pande, V. S. Calculation of the distribution of eigenvalues and eigen-

vectors in Markovian state models for molecular dynamics. The Journal of Chemical

Physics 2007, 126, 244101.

(78) Weber, J. K.; Pande, V. S. Characterization and Rapid Sampling of Protein Folding

Markov State Model Topologies. Journal of Chemical Theory and Computation 2011,

7, 3405–3411.

(79) Zimmerman, M. I.; Bowman, G. R. FAST Conformational Searches by Balancing

Exploration/Exploitation Trade-Offs. Journal of Chemical Theory and Computation

2015, 11, 5747–5757.

(80) Shamsi, Z.; Moffett, A. S.; Shukla, D. Enhanced unbiased sampling of protein dynam-

ics using evolutionary coupling information. Scientific Reports 2017, 7, 12700.

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.25.620304doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.620304
http://creativecommons.org/licenses/by-nc-nd/4.0/


(81) Zimmerman, M. I.; Porter, J. R.; Sun, X.; Silva, R. R.; Bowman, G. R. Choice of

Adaptive Sampling Strategy Impacts State Discovery, Transition Probabilities, and

the Apparent Mechanism of Conformational Changes. Journal of Chemical Theory

and Computation 2018, 14, 5459–5475.

(82) Shamsi, Z.; Cheng, K. J.; Shukla, D. Reinforcement Learning Based Adaptive Sam-

pling: REAPing Rewards by Exploring Protein Conformational Landscapes. The

Journal of Physical Chemistry B 2018, 122, 8386–8395.

(83) Buenfil, J.; Koelle, S. J.; Meila, M. Tangent Space Least Adaptive Clustering. Pro-

ceedings of the 38th International Conference on Machine Learning, Proceedings of

Machine Learning Research 2021, 139 .

(84) Kleiman, D. E.; Shukla, D. Active Learning of the Conformational Ensemble of Pro-

teins Using Maximum Entropy VAMPNets. Journal of Chemical Theory and Compu-

tation 2023, 19, 4377–4388.

(85) Kleiman, D. E.; Nadeem, H.; Shukla, D. Adaptive Sampling Methods for Molecular

Dynamics in the Era of Machine Learning. The Journal of Physical Chemistry B 2023,

127, 10669–10681.
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(100) Pérez-Hernández, G.; Paul, F.; Giorgino, T.; Fabritiis, G. D.; Noé, F. Identification
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