
7372  |   	﻿�  Cancer Medicine. 2019;8:7372–7384.wileyonlinelibrary.com/journal/cam4

Received: 13 June 2019  |  Revised: 1 October 2019  |  Accepted: 2 October 2019

DOI: 10.1002/cam4.2619  

O R I G I N A L  R E S E A R C H

Massive computational identification of somatic variants in 
exonic splicing enhancers using The Cancer Genome Atlas

Kousuke Tanimoto1,2   |   Tomoki Muramatsu3  |   Johji Inazawa3,4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Kousuke Tanimoto and Tomoki Muramatsu contributed equally to this work. 

1Genome Laboratory, Medical Research 
Institute, Tokyo Medical and Dental 
University (TMDU), Tokyo, Japan
2Genomics Research Support Unit, 
Research Core, Tokyo Medical and Dental 
University (TMDU), Japan, Tokyo, Japan
3Department of Molecular 
Cytogenetics, Medical Research 
Institute, Tokyo Medical and Dental 
University (TMDU), Tokyo, Japan
4Bioresource Research Center, Tokyo 
Medical and Dental University (TMDU), 
Tokyo, Japan

Correspondence
Kousuke Tanimoto and Johji Inazawa, 
Tokyo Medical and Dental University 
(TMDU), 1‐5‐45, Yushima, Bunkyo‐ku, 
Tokyo, Japan.
Email: ktani.nri@mri.tmd.ac.jp (K. T.) and 
johinaz.cgen@mri.tmd.ac.jp (J. I.)

Funding information
Japan Society for the Promotion of Science, 
Grant/Award Number: JP15H05908 and 
JP18K15305

Abstract
Owing to the development of next‐generation sequencing (NGS) technologies, a large 
number of somatic variants have been identified in various types of cancer. However, 
the functional significance of most somatic variants remains unknown. Somatic vari-
ants that occur in exonic splicing enhancer (ESE) regions are thought to prevent serine 
and arginine‐rich (SR) proteins from binding to ESE sequence motifs, which leads to 
exon skipping. We computationally identified somatic variants in ESEs by compil-
ing numerous open‐access datasets from The Cancer Genome Atlas (TCGA). Using 
somatic variants and RNA‐seq data from 9635 patients across 32 TCGA projects, 
we identified 646 ESE‐disrupting variants. The false positive rate of our method, es-
timated using a permutation test, was approximately 1%. Of these ESE‐disrupting 
variants, approximately 71% were located in the binding motifs of four classical SR 
proteins. ESE‐disrupting variants occurred in proportion to the number of somatic 
variants, but not necessarily in the specific genes associated with the biological pro-
cesses of cancer. Existing bioinformatics tools could not predict the pathogenicity of 
ESE‐disrupting variants identified in this study, although these variants could cause 
exon skipping. We demonstrated that ESE‐disrupting nonsense variants tended to es-
cape nonsense‐mediated decay surveillance. Using integrated analyses of open access 
data, we could specifically identify ESE‐disrupting variants. We have generated a 
powerful tool, which can handle datasets without normal samples or raw data, and 
thus contribute to reducing variants of uncertain significance because our statistical 
approach only uses the exon‐junction read counts from the tumor samples.

K E Y W O R D S
exonic splicing enhancer, nonsense‐mediated decay, somatic variants, splicing variants, TCGA

1  |   INTRODUCTION

Owing to the rapid progress of next‐generation sequencing 
(NGS) technologies, an enormous amount of omics data, 
across every type of cancer, has been analyzed and shared 

through public databases. These omics data, including so-
matic variants, whole transcriptome data, and DNA methyl-
ation profiles, have been associated with clinical information 
and utilized to classify cancer types based on omics profiles 
and explore molecular targets for therapeutics. However, in 
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terms of their function, only a few somatic variants identified 
by NGS technologies have been studied, mainly because there 
are too many somatic variants, making functional analyses 
impractical. Somatic variants whose relevance to pathogenic-
ity have not been elucidated, are called variants of uncertain 
significance (VUS) and are one of the problems addressed by 
precision medicine.1-3

One of the important types of somatic variants in cancer 
is the nonsynonymous variant, which leads to a change in 
the encoded amino acid. Additionally, it is known that so-
matic variants located in promoter regions and splice sites, 
which are flanking regions of exon‐intron junctions, affect 
gene expression and protein function.4,5 Variants located 
in other cis‐regulatory elements, such as splicing enhancer 
and splicing silencer, also play an important role in can-
cer.6-8 Exonic splicing enhancers (ESEs) are a class of such 
cis‐regulatory elements. ESEs are sequence motifs located 
in exons and bound by SR (Serine and Arginine‐rich) pro-
teins, which lead to the incorporation of exons into mRNA. 
Somatic variants that ESEs are thought to prevent binding 
of SR proteins to ESE sequence motifs and subsequently 
lead to exon skipping.9 In this study, we named these vari-
ants ESE‐disrupting variants. Many studies involving com-
putational identification of ESEs using public datasets have 
been reported.10-16 For example, Woolfe et al computation-
ally identified a number of exonic variants causing exon 
skipping, by utilizing datasets of ESEs and ESSs (Exonic 
Splicing Silencers) such as NI‐ESE, RESCUE‐ESE and so 
on.11 In another study, Mort et al predicted that exonic vari-
ants disrupt splicing, using a machine learning approach.12 
These studies integrated analyses of genome and transcrip-
tome datasets from different individuals. However, SR pro-
tein binding is determined not only by the genome sequence 
but also by epigenetics such as histone modifications,17 and 
thus, functional ESEs may differ between individual pa-
tients. Therefore, the effect of ESE on splicing is still not 
fully understood.

Recently, due to the establishment of international con-
sortia to catalogue omics data from clinical samples, we can 
obtain paired genome‐transcriptome datasets from the same 
individual. Transcriptome information is important to eluci-
date splicing regulation. Given these facts, we hypothesized 
that ESE‐disrupting variants could be identified massively 
by compiling somatic variant and gene expression data ob-
tained from the public database The Cancer Genome Atlas 
(TCGA). TCGA contains omics data and clinical informa-
tion from over 12 000 patients across every type of cancer. 
TCGA data are classified into two types, controlled and open. 
Access to controlled data, including raw sequence data such 
as binary alignment map (BAM) format, requires user autho-
rization and authentication. In contrast, we can easily access 
open data, which includes somatic variants, gene expression, 
DNA methylation, clinical information and so on. Here, we 

computationally identified somatic variants in ESEs using 
a variety of population genomics approaches and numerous 
open access datasets from TCGA.

2  |   MATERIALS AND METHODS

2.1  |  Data download
The data analysis workflow for this study is shown in Figure 
1. We obtained two data type files, “Gene expression quan-
tification” files (junction_quantification.txt) and “Simple so-
matic mutation” files (somatic.maf), of 9635 patients across 
32 TCGA projects (25 tissues) from the “Legacy Archive” 
of GDC Applications. The TCGA projects used in this study 
are listed in Table S1. The genomic coordinates of these data 
are hg19. The junction_quantification.txt files contain read 
counts of 249  547 paired genomic coordinates. Each read 
count indicates the number of reads aligned to a reference 
genome across the gap between each paired genomic coordi-
nate. Of these paired genomic coordinates, 24 025 genomic 
coordinates correspond to known exon‐exon junctions of 
RefSeq transcripts, which are associated with 8079 genes 
(analyzable genes are listed in Table S2). To compare sam-
ples, each read count was normalized by the total read counts 
aligned to all junctions listed in the junction_quantification.
txt file of each sample.

2.2  |  Calculation of the exon exclusion rate
To identify ESE‐disrupting variants, we defined the exon ex-
clusion rate (EER) (Figure 2A). EER indicates the ratio of 
transcripts with skipped exons containing somatic variants 
(which we named “Normalized count A”) to normal tran-
scripts. To calculate EER(N  −  1), read counts aligned to a 
junction between an exon with somatic variants and the previ-
ous exon (which we named “Normalized count B”) were used. 
Similarly, to calculate EER(N + 1), read counts aligned to a 
junction between an exon with somatic variants and the next 
exon (which we named “Normalized count C”) were used. If 
ESE disruption is caused by somatic variants, exons derived 
from one allele harboring somatic variants should be skipped, 
and the EER value in this situation is assumed to be approxi-
mately 1. Therefore, if both EER(N − 1) and EER(N + 1) val-
ues are between 0.5 and 2.0, these variants are hypothesized 
to be candidate ESE‐disrupting variants. Since the fraction of 
tumor cells is not 100%, true EER value should be below 1. 
However, to avoid false negatives, we used low stringency 
criteria at this step and performed further validation in the next 
step (explained below).

In this study, we focused only on autosomal variants be-
cause we could not compare RNA‐seq read counts of sex 
chromosomes genes between males and females. Splice site 
(a donor site and an acceptor site of intron) variants were not 
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included in this study because these variants obviously reg-
ulate splicing.

2.3  |  Validation of candidate  
ESE‐disrupting variants
For each ESE‐disrupting variant candidate, a distribution of 
read counts of corresponding transcripts in individuals with-
out ESE‐disrupting variants was determined by kernel density 
estimation, which is a nonparametric way to estimate the prob-
ability density function, using the generic function “density” in 
the R statistical software (version 3.3.0). Subsequently, if the 
upper‐tail probabilities of “Normalized count A” of candidate 
ESE‐disrupting variants to estimated distributions were less 
than 0.05, we considered such variants as ESE‐disrupting vari-
ants (Figure 2B). If a random variable X is given and its dis-
tribution admits a probability density function f, the upper‐tail 
probability of X can be calculated as P (x>X)=1− ∫ X

0
f (x) dx

. In this step, a random variable is equivalent to the read count 
of a transcript skipping an exon harboring ESE‐disrupting var-
iant candidate, and the probability density function is equiva-
lent to a distribution determined by kernel density estimation.

2.4  |  Permutation test
To evaluate the false positive ratio, we repeated the proce-
dures for identifying ESE‐disrupting variants 1000 times by 

permuting the combination of somatic variants and RNA‐seq 
data. Permutation was performed by exchanging the sample 
labels of the data randomly when combining somatic variants 
and RNA‐seq data. The combinations were permutated using 
in‐house Perl scripts, and other procedures were performed 
as described above.

2.5  |  Evaluation of the effects of nonsense 
variants on gene expression
We obtained rsem.genes.normalized.results.txt files of each 
sample across 32 TCGA projects. This file format con-
tains normalized counts of 20 502 transcripts from RefSeq, 
KIAA, and FLJ. First, the distribution of expression of each 
gene was determined by kernel density estimation, using 
genes not harboring nonsense variants in each TCGA pro-
ject. Next, the lower‐tail probabilities of each gene harbor-
ing nonsense variants to the distributions estimated above 
were calculated. The lower‐tail probability calculations 
were performed using the R statistical software (version 
3.3.0). If a random variable X is given and its distribution 
admits a probability density function f, the lower‐tail prob-
ability of X can be calculated as P (X> x)=1− ∫ X

0
f (x) dx. At 

this step, a random variable is equivalent to the read count 
of each gene harboring nonsense variant in each sample, and 
the probability density function is equivalent to a distribu-
tion determined by kernel density estimation.

F I G U R E  1   The data analysis 
workflow for this study
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2.6  |  Searching for SR protein binding 
motifs using ESE finder
In the ESE finder release 3.0 (http://krain​er01.cshl.edu/cgi-bin/
tools/​ESE3/esefi​nder.cgi?proce​ss=home) analysis, we used 
the default threshold. ESE finder identifies binding motifs of 
four SR proteins (SRSF1, SRSF2, SRSF5, and SRSF6) based 
on functional systematic evolution of ligands by exponential 
enrichment (SELEX).18,19 ESE finder provides two SRSF1 
scores, SF2/ASF and IgM‐BRCA1. In this study, when either 
of the two scores was above the threshold, we assumed that the 
input sequences contained SRSF1 binding motifs.

2.7  |  GO enrichment analysis
GO terms were obtained from the GO consortium.20,21 The 
P‐value was calculated using a hypergeometric distribution 
in R statistical software.

2.8  |  Data processing
All text data used in this study was processed by in‐house 
Perl scripts. The scripts used in this study are available on 
GitHub repository under the following address:

https​://github.com/ktres​earch/​ese_disru​pting_variants

2.9  |  Cell culture and PCR‐based splicing 
pattern analysis using morpholino oligos
HeLa and HEK293 cell lines were purchased from the 
American Type Culture Collection (ATCC, Manassas, VA). 
All cells were grown in DMEM supplemented with 10% fetal 
bovine serum in a humidified atmosphere with 5% CO2 at 
37°C and were authenticated by monitoring cell morphology.

HeLa and HEK293 cell were treated with 10  µmol/L 
morpholino oligos for 48  hours using Endo‐Porter (Gene 
Tools, LLC). Morpholino oligos were obtained from 
Gene Tools and were designed not to target splice sites 
to prevent exon skipping caused by splice site inhibition. 
Morpholino oligo sequences were as follows: APMAP 
5′‐CAGAGCTGCTGGGCCGGATGTTGTC‐3′, USP4 
5′‐ATTCAGTTGTTCTTCGCATATGCA‐3′, and DPH5 5′‐
GTTCTTCTCCTCGTATTCTTTGATT‐3′. DPH5‐targeting 
morpholino oligo was used as a control. Total mRNA was 
extracted from cell lines treated with morpholino oligos, and 
cDNA was synthesized using the PrimeScript™ II 1st‐strand 
cDNA Synthesis Kit (TAKARA) according to manufactur-
er's instructions. PCR amplification was performed using 
PrimeSTAR MAX DNA polymerase (TAKARA) using the 
following reaction conditions: 98°C for 2 minutes, 30 cycles of 
98°C for 10 seconds, 58°C for 5 seconds, 72°C for 15 seconds, 
and 72°C for 2 minutes. PCR primer sequences used to amplify 
APMAP exon 7‐9 were 5′‐GTGAAACTGCTGCTGTCCTC‐3′ 
(Fw) and 5′‐GGCACAAACTTCATCACCGT‐3′ (Rv). 
PCR primer sequences used to amplify USP4 exon 20‐22 
were 5′‐ACCTGTCAGCAAGGCCTTAT‐3′ (Fw) and 5′‐
AGGATCGTGGAGTCAGCATT‐3′ (Rv).

3  |   RESULTS

3.1  |  Identification of ESE‐disrupting 
variants
We attempted to computationally identify somatic vari-
ants located in ESEs, which perturb their function (named 
ESE‐disrupting variants), by the integrated analysis of gene 
expression data and somatic variants from TCGA. The data 
analysis workflow is shown in Figure 1. To identify ESE‐
disrupting variants, we defined the EER as shown in Figure 
2. EER indicates the ratio of transcripts with skipped exons 
to normal transcripts. We calculated the EER of 156 794 so-
matic variants obtained from TCGA across 32 TCGA pro-
jects and selected candidate ESE‐disrupting variants by the 
procedure described in Section 2.

To assess whether exon skipping is caused by ESE‐dis-
rupting variants, tumor and corresponding normal tissue 
RNA‐seq data are needed. However, TCGA contains fewer 

F I G U R E  2   Definition of exon exclusion rate (EER) (A) and 
upper‐tail probability (B)

http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
https://github.com/ktresearch/ese_disrupting_variants
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normal tissue data compared to tumor data. Thus, to validate 
whether exon skipping in these candidates was statistically 
significant, we calculated an upper‐tail probability for each 
candidate. This compares the degree of exon skipping in sam-
ples with somatic variants to that in corresponding control 
samples without somatic variants (see Section 2). Finally, 
we obtained 646 ESE‐disrupting variants by this validation 
step. Details of the 646 ESE‐disrupting variants obtained are 
shown in Table S3.

3.2  |  Permutation test
To estimate the number of false positive ESE‐disrupting vari-
ants, we performed a permutation test. A permutation test is 
one of the standard approaches to determine statistical sig-
nificance in genome‐wide association studies (GWAS) and 
other integrative analyses.22-25 Permuting the combination 
of genetic information and traits randomly and repeating the 
analysis, provides a null distribution while maintaining the 
correlation structure of the datasets.26 To evaluate the false 
positive rate, we repeated the procedures for identifying 
ESE‐disrupting variants 1000 times by randomly permuting 
the combinations of somatic variants and RNA‐seq data. The 

distribution of the number of ESE‐disrupting variants ob-
tained from this test is shown in Figure 3A. The average and 
median false positive ESE‐disrupting variants were 6.493 
and 5 respectively. The average number of false positives 
was approximately 1% of the ESE‐disrupting variants using 
exact combination (Figure 3B). The ratio between exact and 
permutated combinations was similar in each TCGA project 
(Figure 3C). This test indicates that very few false positives 
were detected by our method.

3.3  |  Summary of ESE‐disrupting 
variants identified
The summary of ESE‐disrupting variants identified by our 
method is shown in Table 1. Of the 156 794 somatic variants 
analyzed in this study, 0.41% (0%‐0.72%) were identified as 
ESE‐disrupting variants. The types of cancer not harboring ESE‐
disrupting variants tended to have fewer samples. Examples 
of ESE‐disrupting variants identified are shown in Figure 4. A 
TCGA UCEC project (uterus cancer) sample A2HD harbored a 
G > A silent (synonymous) variant (chr20:24949636) in exon 8 
of the APMAP gene. The values of EER(N + 1) and EER(N‐1) 
for this variant were 0.83 and 0.71 respectively (Figure 4A). In 

F I G U R E  3   Permutation test. A, 
Distribution of number of ESE‐disrupting 
variants obtained after the permutation 
test. B, Numbers of ESE‐disrupting 
variants detected in exact combination and 
permutated combinations. The number of 
permutated combinations is an average 
of 1000 combinations. C, Details of ESE‐
disrupting variants detected in each TCGA 
project
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TCGA UCEC project, 540 samples harbored no somatic vari-
ants in exon 8 of the APMAP gene, and the read count distri-
bution of their exons, determined by kernel density estimation, 
is shown in Figure 4B. To this distribution, the upper‐tail prob-
ability of the read count, skipping exon 8 in sample A2HD, was 
0. We searched for SR protein binding motifs around this so-
matic variant, using all available SR proteins (SRSF1, SRSF2, 
SRSF5, SRSF6) in the ESE finder, and found that this variant 
probably disrupted SRSF2 and SRSF6 binding motifs (Figure 
4C). Furthermore, we experimentally validated that this vari-
ant was located in an ESE, using HeLa and HEK293 cells. We 
used morpholino oligos to block the region, corresponding to the 

region containing the ESE‐disrupting variants, in both cell lines 
and found that this led to exon skipping (Figure 4D). Our mor-
pholino oligos specifically blocked the target region (Figure S1).

Another example is shown in Figure 4E‐H. A TCGA 
UCEC project (uterus cancer) sample, A0UV, harbored a 
C  >  A missense variant (chr3:49316319) in exon 21 of the 
USP4 gene. The values of EER(N + 1) and EER(N − 1) for 
this variant were 0.90 and 0.80 respectively (Figure 4E). In 
TCGA UCEC project, 542 samples harbored no somatic vari-
ants in exon 21 of the USP4 gene, and the read count distribu-
tion of their exons, determined by kernel density estimation, 
is shown in Figure 4F. The upper‐tail probability of the read 

TCGA 
project

The number 
of samples

The number of 
total variants

The number of ESE‐
disrupting variants

The percentage of ESE‐
disrupting variants

ACC 79 538 0 0

PCPG 179 336 2 0.60

CHOL 36 308 2 0.65

BLCA 408 5084 27 0.53

GBM 154 4600 21 0.46

LGG 516 2228 5 0.22

BRCA 1092 9079 34 0.37

CESC 305 3742 17 0.45

COAD 431 11 507 38 0.33

READ 151 2555 12 0.47

ESCA 182 2638 11 0.42

UVM 80 158 0 0

HNSC 520 4068 11 0.27

KICH 66 258 1 0.39

KIRC 531 1227 5 0.41

KIRP 290 1202 2 0.17

LIHC 371 38 398 94 0.24

LUAD 516 7204 27 0.37

LUSC 500 9198 40 0.43

DLBC 48 773 3 0.39

OV 304 1822 9 0.49

PAAD 177 2696 8 0.30

MESO 87 175 0 0

PRAD 497 1451 7 0.48

SKCM 104 2229 16 0.72

SARC 258 1854 11 0.59

STAD 379 7299 38 0.52

TGCT 147 344 0 0

THYM 120 1048 2 0.19

THCA 505 494 0 0

UCEC 545 31 875 201 0.63

UCS 57 406 2 0.49

Total 9635 156 794 646 0.41

T A B L E  1   The numbers of somatic 
variants analyzed in this study and the ESE‐
disrupting variants identified
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count skipping exon 21 in sample A0UV was 0. Using the 
ESE finder, we estimated that this variant probably disrupted 
SRSF2 and SRSF5 binding motifs (Figure 4G). We validated 
that this variant was located in an ESE in both cell lines by 
morpholino experiments (Figure 4H).

3.4  |  Characteristics of ESE‐disrupting  
variants
Details of variant types of ESE‐disrupting variants identified 
are shown in Figure 5A. Of these, 18% were synonymous 
variants. We analyzed whether the ESE‐disrupting variants 
identified in this study were located in known binding motifs 
of four SR proteins using the ESE finder. We found that ap-
proximately 71% of the variants were located in the binding 
motifs of the four SR proteins (Figure 5B), and the fraction 
associated with each SR protein was similar (Figure 5C). On 
the other hand, of the 156 148 somatic variants identified as 
non‐ESE‐disrupting variants, approximately 46% were lo-
cated in the binding motifs of the four SR proteins (Figure 
5B). The binding motifs of the four SR proteins were signifi-
cantly enriched in ESE‐disrupting variants identified in this 
study (P = 2 × 10−37, hypergeometric distribution). Details 
of motifs detected by the ESE finder are shown in Table S4.

It is known that ESEs are located in various regions from 
the 5′ to the 3′ end of the exon.13 We examined the positional 
distribution of ESE‐disrupting variants identified in this study. 
To examine the positional distribution, the distance from each 
ESE‐disrupting variant to the 5′ end of the exon was normal-
ized by the length of the exon. We found that the ESE‐disrupt-
ing variants were located uniformly across exons (Figure 5D).

To evaluate the correlation in the frequencies between 
somatic variants and ESE‐disrupting variants, the genes an-
alyzed in this study were classified into three groups: more 
than two ESE‐disrupting variants detected, one ESE‐dis-
rupting variant detected, and no ESE‐disrupting variants 
detected. The distribution of each group is shown in Figure 
5E. The genes tended to contain ESE‐disrupting variants in 
proportion to the number of somatic variants.

We computed the effect of 334 missense ESE‐disrupt-
ing variants on protein function using the REVEL tool.27 
REVEL is a tool used to quantify the pathogenicity of so-
matic variants by integrating 13 algorithms predicting the 

effect of variants on protein structure and function. Of the 
334 missense variants, 188 (56%) ESE‐disrupting variants 
scored below 0.25, which were judged to have a low prob-
ability of causing disease (Figure 5F). This result suggests 
that existing bioinformatics tools regarded most ESE‐dis-
rupting variants identified in this study as having low patho-
genicity, although these variants could cause exon skipping.

To examine the correlation between the identified ESE‐
disrupting variants and gene function, we performed a GO 
enrichment analysis. Not only cancer‐associated processes, 
for example, cell cycle (GO:0000086 G2/M transition of mi-
totic cell cycle) and apoptosis (GO:0006915 apoptotic pro-
cess, GO:0008630 intrinsic apoptotic signaling pathway in 
response to DNA damage),28 but also other biological pro-
cesses were enriched (Figure 5G). Furthermore, we examined 
whether the genes that represented oncogenic signatures were 
enriched in the set of genes harboring ESE‐disrupting vari-
ants identified in this study. Of 8079 analyzable genes, 4551 
genes were a part of oncogenic signatures in MSigDB.29-31 
We identified ESE‐disrupting variants in 416 genes across 
32 TCGA projects. Among these, 243 genes were identi-
fied as ESE‐disrupting variants (P  =  .234, hypergeometric 
distribution).

3.5  |  Nonsense‐mediated decay may be 
avoided by exon skipping caused by  
ESE‐disrupting variants
Transcripts harboring nonsense variants can be potentially 
degraded by nonsense‐mediated decay (NMD),32 which 
is an mRNA quality control system. However, nonsense 
variants identified as ESE‐disrupting variants cause exon 
skipping and thus, do not trigger NMD.33 Therefore, we 
evaluated the effects of nonsense variants, identified as 
ESE‐disrupting variants, on gene expression using TCGA 
gene expression datasets. To evaluate this, we calculated 
lower‐tail probabilities of 5546 nonsense variants used 
in this study, including 43 ESE‐disrupting nonsense vari-
ants, by the procedure described in Section 2. A lower‐tail 
probability can range from 0 to 1, with a larger value in-
dicating that samples harboring nonsense variants have 
higher expression levels than samples without nonsense 
variants. Nonsense variants were classified into four types: 

F I G U R E  4   Examples of ESE‐disrupting variants identified. A, Normalized read counts of each exon‐exon junction around the APMAP 
gene somatic variant in the uterus cancer A2HD sample. B, Estimated normalized count distribution of exons 7‐9 without variants in APMAP 
in TCGA UCEC project samples (N = 540) determined by kernel density estimation. C, ESE finder graphical result of exon 8 somatic variant 
(chr20: 24949636 G>A) in the APMAP gene from sample A2HD. D, PCR‐based splicing pattern analysis by morpholino oligos targeting an ESE‐
disrupting variant in exon 8 of the APMAP gene in HeLa and HEK293 cell lines. E, Normalized read counts of each exon‐exon junction around the 
USP4 gene somatic variant in the uterus cancer A0UV sample. F, Estimated normalized count distribution of exons 20‐22 without variants in USP4 
in TCGA UCEC project samples (N = 542) determined by kernel density estimation. G, ESE finder graphical result of exon 21 somatic variant 
(chr3: 49316319 C>A) in the USP4 gene from sample A0UV. H, PCR‐based splicing pattern analysis by morpholino oligos targeting an ESE‐
disrupting variant in exon 21 of the USP4 gene in HeLa and HEK293 cell lines
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out‐of‐frame variants in non‐ESE, in‐frame variants in 
non‐ESE, out‐of‐frame variants in ESE, and in‐frame vari-
ants in ESE. The out‐of‐frame variants in ESE cause exon 
skipping and a subsequent frameshift. The in‐frame vari-
ants in ESE cause exon skipping but maintain the read-
ing frame. The lower‐tail probability distributions for each 
group are shown in Figure 6. The medians of both groups, 
in which nonsense variants were not located in the ESE, 
were less than 0.50. This result demonstrates that the genes 
harboring nonsense variants, not identified as ESE‐disrupt-
ing, tended to have lower expression levels compared to 
those without nonsense variants. This tendency is presum-
ably caused by NMD. On the other hand, the medians of 
both groups in which nonsense variants were located in the 
ESE were more than 0.50. This result demonstrates that the 
genes harboring nonsense variants, identified as ESE‐dis-
rupting, tended to have higher expression levels than those 
without nonsense variants. This suggests that the tran-
scripts harboring ESE‐disrupting nonsense variants tend 
to escape NMD surveillance, and thus transcripts lacking 
exons harboring nonsense variants accumulate. Details of 
the lower‐tail probabilities of each nonsense variant are 
shown in Table S5.

4  |   DISCUSSION

In this study, we performed an integrated analysis of somatic 
variants and gene expression data and identified 646 ESE‐dis-
rupting variants across 32 TCGA projects. The false positive 
rate of our method was estimated to be approximately 1% 
by the permutation test (Figure 3). The statistical test, using 
the distribution of gene expression levels of the samples not 
harboring somatic variants in the validation step, probably 
reduced false positives. GO enrichment analysis showed that 
ESE‐disrupting variants occurred in genes associated with 
various biological processes (Figure 5G). It is well known 
that aberrant splicing in cancer frequently occurs in genes as-
sociated with cancer‐related processes, such as transcription 
factor, cell signaling, proliferation, invasion, and metastasis.34

ESE‐disrupting variants were significantly biased toward 
UCEC and SKCM (Figure S2A). Regarding the genomic 
loci, ESE‐disrupting variants were significantly biased 

toward chromosome 3p, 5q, 8q, 16p, and 22q (Figure S2B). 
These biases were found in groups that had more variants 
than average. However, other factors such as epigenetics may 
influence these biases because they were not found in some 
highly mutated groups such as LIHC. Further analysis is re-
quired to explain these biases. Our results suggest that ESE‐
disrupting somatic variants occur in proportion to the total 
number of somatic variants, not in specific genes associated 
with carcinogenesis or cancer progression (Figure 5E,G). 
ESE‐disrupting variants identified in this study were located 
uniformly across exons (Figure 5D). Using raw sequence data 
across six types of cancer from TCGA, Hyunchul Jung et al 
demonstrated that most of the somatic variants with abnormal 

F I G U R E  6   Expression levels of genes harboring nonsense 
variants. The Y‐axis shows a lower‐tail probability of read counts of 
genes harboring ESE‐disrupting nonsense variants to the read count 
distributions of samples without nonsense variants. This value can 
range from 0 to 1, with a larger value indicating higher expression 
levels. Genes were classified into four groups: out‐of‐frame variants in 
non‐ESE, in‐frame variants in non‐ESE, out‐of‐frame variants in ESE 
and in‐frame variants in ESE

F I G U R E  5   Characteristics of identified ESE‐disrupting variants. A, Details of variant types of ESE‐disrupting variants identified. B, 
Numbers of somatic variants located in four known SR protein (SRSF1, SRSF2, SRSF5, SRSF6) binding motifs, identified by ESE finder. P‐value 
was calculated using a hypergeometric distribution. C, Percentages of variants located in SR protein binding motifs identified by ESE finder. D, 
Positional distribution of identified ESE‐disrupting variants in exons. The X‐axis indicates the normalized position of each exon; 0 indicates the 5ʹ 
end of the exon and 1 indicates the 3ʹ end of the exon. E, Distributions of the number of total somatic variants in each gene. Genes were classified 
into three groups: more than two ESE‐disrupting variants detected, one ESE‐disrupting variant detected, and no ESE‐disrupting variants detected. 
F, REVEL score distribution of identified ESE‐disrupting variants. The X‐axis indicates the REVEL score. G, Results of GO enrichment analysis 
using genes harboring ESE‐disrupting variants. The bar plot indicates the log10 converted P‐value for each GO term. The line plot indicates the 
number of genes associated with each GO term
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splicing were enriched in nucleotides flanking exon‐intron 
junctions, which include splice sites, while others were lo-
cated uniformly in exonic regions.35 Our results were con-
sistent with their study, except for variants in exon‐intron 
junctions. In this study, somatic variants in splice sites were 
not analyzed because such variants clearly regulate splicing. 
This may be one of the reasons why only 0.41% of total vari-
ants were identified as ESE‐disrupting by our method.

The ESE finder can identify binding motifs of four SR 
proteins namely, SRSF1, SRSF2, SRSF5, and SRSF6. These 
SR proteins are categorized as “classical” SR proteins, which 
have structural and functional similarities.36 Approximately 
71% of ESE‐disrupting variants identified in this study 
were located in one of these four classical SR protein bind-
ing motifs (Figure 5B). If additional SR protein motifs were 
included, we may obtain a different result because each SR 
protein has multiple binding motifs and targets.37 However, 
the conclusion that our method could specifically identify 
ESE‐disrupting variants may not change.

Of the ESE‐disrupting variants identified in this study, 
17% were synonymous variants (Figure 5A). Additionally, 
56% of the ESE‐disrupting variants were predicted to have 
low pathogenicity by REVEL analysis (Figure 5F). Thus, 
the variants identified in this study may have escaped 
functional analyses because cancer researchers gener-
ally to focus on changes in protein structure and function. 
However, somatic variants causing transcriptional alter-
ations possibly play an important role in cancer.35,38-40 
Furthermore, transcripts escaping NMD surveillance, as 
shown in Figure 6, would lead to an accumulation of aber-
rant transcripts, which lack exons harboring nonsense vari-
ants. These transcripts have an impact on protein functions, 
with or without an associated frameshift.41 Taken together, 
the pathogenicity of every variant including synonymous 
variants may not be negligible with regards to cancer. Our 
approach is a useful tool to detect such pathogenic somatic 
variants not identified by conventional methods.

Recently, several studies have reported the identification 
of splicing patterns using TCGA datasets. Kahles et al identi-
fied approximately 173 000 tumor‐specific alternative splicing 
events and 251 000 exon‐exon junctions using tumor datasets 
from 8705 patients.42 Shirley et al showed that 341 486 vari-
ants had a significant impact on mRNA splicing, and approxi-
mately 70% of these variants were not registered in the dbSNP 
database.43,44 Furthermore, these studies could analyze all 
genes and identify novel splicing variants because of integrated 
analyses using raw sequence data such as FASTQ or BAM 
files. In studies using TCGA datasets, one of the things to be 
considered is how to handle data from normal samples because 
tumor matched normal samples are a lot fewer than only tumor 
samples in TCGA. For example, Kahles et al only used tumor 
types that had at least 50 tumor samples and 10 matched nor-
mal samples, to analyze differential splicing events between 

tumor and normal tissue. Shirley et al merged normal samples 
derived from different tissues, in order to analyze tumor types 
which did not have enough normal samples. On the other hand, 
our statistical approach, using kernel density estimation, does 
not need normal samples. To validate ESE‐disrupting variant 
candidates, we calculated the upper‐tail probability to the dis-
tribution of the gene expression levels of tumor samples not 
harboring corresponding variants, using kernel density esti-
mation. Although our method could not detect ESE‐disrupting 
variants in genes whose expression levels were similar to those 
of control tumor samples, our population genomics approach 
can detect ESE‐disrupting variants overlooked by other meth-
ods. In fact, of the ESE‐disrupting variants identified in our 
study, only about 4% of variants were identified by Shirley and 
colleagues (Table S3).

Compared to these previous studies, we recognize that our 
approach is not comprehensive because junction_quantifica-
tion.txt files from TCGA “Legacy Archive” used in this study 
contains exon‐exon junction information from a limited number 
of known transcripts (Table S2). This may also be correlated 
with a low identification percentage for all somatic variants. 
Whereas analysis of tumor‐normal paired raw sequence data 
such as fastq or BAM formats enables us to perform a compre-
hensive analysis, access to this type of data is restricted, owing 
to personal and ethical issues. However, edited datasets of 
tumor samples such as VCF format data, gene expression data 
and clinical information generated by international consortia 
are numerous and easily accessible. Our method provides a 
powerful tool to handle large datasets without normal samples 
or raw data. We hope that our approach will reduce VUS and 
contribute to cancer biology and clinical treatment.
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