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Invaginating structures are common in the synapses of most animals. However,
the details of these invaginating structures remain understudied in part because
they are not well resolved in light microscopy and were often misidentified in early
electron microscope (EM) studies. Utilizing experimental techniques along with the
latest advances in microscopy, such as focused ion beam-scanning EM (FIB-SEM),
evidence is gradually building to suggest that the synaptic invaginating structures
contribute to synapse development, maintenance, and plasticity. These invaginating
structures are most elaborate in synapses mediating rapid integration of signals, such
as muscle contraction, mechanoreception, and vision. Here we argue that the synaptic
invaginations should be considered in future studies seeking to understand their role
in sensory integration and coordination, learning, and memory. We review the various
types of invaginating structures in the synapses and discuss their potential functions. We
also present several new examples of invaginating structures from a variety of animals
including Drosophila and mice, mainly using FIB-SEM, with which we trace the form and
arrangement of these structures.
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INTRODUCTION

Invaginating structures are small outward projections found in a diverse array of cell types (Bastiani
and Goodman, 1984; Petralia et al., 2015; Wood et al., 2021), including synapses of neurons
of almost all animals (reviewed in Petralia et al., 2015, 2016, 2017, 2018). The invaginating
structures involve cell membranes of two different cells, with the outward projection – the
invaginating structure – from one cell being surrounded by the invaginated membrane of the
other cell. Therefore, in cross-sectional views of transmission electron microscopy (TEM), the
invaginating structures can appear as double membrane-covered vesicles. In neuronal synapses,
the invaginating structures can be divided into two main groups depending on the presence or
absence of active zones.

Invaginating structures can be important in synapse physiology, yet they often have been
overlooked in studies of synaptic function. This is especially true for the smaller spinule types of
invaginating structures because they are difficult to identify without TEM, and even with standard
2D TEM, the origins of the invaginating structures are often obscure. Today, super-resolution
and other specialized light microscopy techniques allow better visualization of these invaginating
structures in synapses (Ueda and Hayashi, 2013; Zaccard et al., 2020). Moreover, the new wave of
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3D EM methods such as focused ion beam-scanning electron
microscopy (FIB-SEM) makes tracing of these invaginating
structures possible. These approaches are inspiring scientists to
examine the role of invaginating structures in synapses and
neurons. In this perspective, we describe some of the more
interesting examples of invaginating structures including several
new examples from across the animal kingdom. We also discuss
the latest ideas about how they may be central to the regulation of
synaptic and neuronal function.

RESULTS AND DISCUSSION

Invaginating Structures Associated With
Mechanoreception and Photoreception
(Figure 1A)
Some of the most elaborate arrangements of invaginating
structures are found in synapses of the circuits involved
in processing mechanoreception or photoreception and are
adaptations to allow animals to respond very rapidly to changing
environmental mechanical and visual stimuli (Petralia et al.,
2017). They include various combinations of invaginating
presynaptic terminals and postsynaptic spines (Figure 1A). The
most amazing example is seen in cubozoan jellyfish, which have
eyes as elaborate as those of higher animals even though they lack
brains! These jellyfish exhibit complex behaviors involving vision,
such as avoiding obstacles, prey capturing, and complex mating
behaviors (e.g., Nilsson et al., 2005). They possess photoreceptor
cells with prominent invaginating spines from postsynaptic cells
or other photoreceptor cells (Gray et al., 2009). This suggests
that the invaginating synapse was one of the earliest functional
developments in animal nervous systems, even forming prior to
the evolution of any form of “brain.” Invaginating postsynaptic
spines can be found in some invertebrate sensory cell synapses
such as in the octopus statocyst involved in balance and
hearing, and mechanoreceptor cells involved in the defensive gill-
withdrawal reflex of the sea hare, Aplysia (Bailey and Thompson,
1979; Bailey et al., 1979). Interestingly, the invaginating spines
of Aplysia have twice as many presynaptic vesicles as non-
invaginating ones; the authors attribute this to the high degree
of synaptic plasticity related to the reflex (Bailey and Thompson,
1979; Bailey et al., 1979). Hair cell synapses of the tunicate, Ciona
intestinalis, can have invaginating structures at their base and
these can be postsynaptic, presynaptic, or both (reciprocal – with
presynaptic vesicles on both sides of the synapse; Rigon et al.,
2018). In the octopus (Figure 1A), the photoreceptor terminals
form large bag- or carrot-shaped structures that are filled with
presynaptic vesicles and contain (1) invaginating postsynaptic
spines, (2) presynaptic vesicle-filled “finger twigs” from adjacent
carrots, and (3) “tunnel fibers” from small neurons (Dilly et al.,
1963; Case et al., 1972). Structures like “finger twigs” also are
found in squid photoreceptor terminal “carrots.” Neither the
finger twigs nor tunnel fibers show any distinctive signs of
chemical synapses (no definitive active zones with densities),
except for the synaptic vesicles in the finger twigs. Due to their
deep invagination of the photoreceptor terminal, these structures

are instead ideally arranged to mediate electrical field/ephaptic
conduction (Cohen, 1973; Haghighat et al., 1984; Petralia et al.,
2017).

Simple Brains (Figures 1B,C)
Flatworms are the simplest animals with bilateral symmetry,
a head, and a brain. Even at this earliest stage in brain
evolution, a variety of invaginating structures are evident
including at postsynaptic dendrites or other cellular processes
with or without synaptic active zones, and various presynaptic
terminals invaginating and interdigitating with other terminals
(Figure 1B; Petralia et al., 2015). Nematodes have a simple
nervous system with a minimal “brain” structure composed of
a circumpharyngeal nerve ring and associated neuron clusters
including the ventral ganglion (White et al., 1986). Recent
studies show that nematodes have a variety of types of spine
synapses similar to those found in vertebrates (Cuentas-Condori
et al., 2019). White et al. (1986) showed several examples of
presynaptic terminals invaginating into postsynaptic processes,
and postsynaptic processes (spines) invaginating into presynaptic
terminals, as well as a motoneuron terminal invaginating into
an interneuronal cell body. In Figure 1C, a presynaptic terminal
invaginates a structure into the base of a neurite extending from
a neuronal soma in the ventral ganglion. A possible junction may
occur on the invaginating structure where the membranes appear
denser and there are unidentified subsynaptic structures in the
postsynaptic cell.

Vertebrate Brains (Figures 1D–H)
Invaginating structures are rather common in synapses of
the vertebrate brain. For example, in a recent study of the
human temporal cortex, Rollenhagen et al. (2020) found
examples of postsynaptic spines invaginating into presynaptic
terminals. They also found examples of presynaptic terminals
with active zones and large non-synaptic structures from
presynaptic terminals, both of which invaginate into dendrites.
We have examined a FIB-SEM dataset from mouse nucleus
accumbens showing various examples, including (1) postsynaptic
spinules invaginating into presynaptic terminals, (2) invaginating
structures from presynaptic terminals forming cup-shaped
synapses with a more deeply invaginating portion, and (3) short
presynaptic spinules invaginating into dendrites (Figures 1D–
H). These will be discussed below in relation to the published
literature.

Spinules from the postsynaptic spine invaginating into the
presynaptic terminal (Figures 1E–G) have been described
in many areas of the mammalian brain especially in the
hippocampus (Westrum and Blackstad, 1962; Spacek and Harris,
2004; Yao et al., 2005; Tao-Cheng et al., 2009). An interesting
example was documented in mouse barrel cortex, where
some postsynaptic spines invaginate fully into the presynaptic
terminals and then appear to extend a thick process, filled
with various vesiculate structures and filaments, deeper within
the terminal (Rodriguez-Moreno et al., 2018, 2020). Spinule
formation is enhanced in hippocampal slice cultures following
stimulation to induce long-term potentiation (LTP; Tao-Cheng
et al., 2009) suggesting that spinules recycle extra postsynaptic
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FIGURE 1 | Invaginating structures are common in animal synapses. (A) Drawings recapitulating the octopus’s large en passant photoreceptor terminals, called
“bags” (b) or “carrots.” The bags are filled with synaptic vesicles (shown in lower drawing) and contain three types of invaginating structures from three different
sources, including: (1) postsynaptic spines (blue) with a dense layer of synaptic vesicles surrounding the deeply invaginating spine heads; (2) presynaptic terminals,
also called “finger twigs” (f ), which are filled with synaptic vesicles (lower drawing), invaginating from adjacent bags; and (3) “tunnel fibers” (t), which are one or more
nerve trunks passing in a “tunnel” through the bag at ∼right angles to the invaginating spines and originating from small neurons called “microneurons.” Mitochondria
are green. Drawings are from Petralia et al. (2017) with slight modifications. (B) Electron microscopy (EM) images of the planaria brain synapses. The invaginating
structures include an invaginating postsynaptic dendrite (blue, left image), an invaginating filopodium (f, middle image), and interdigitating axon terminals (yellow and
uncolored, right image). In the EM image on the left in the 2nd row, an unidentified projection invaginates into an axonal terminal (yellow) with large dense-cored
vesicles. (C) EM images show an invaginating structure from the ventral ganglion of the nematode, Pristionchus pacificus (Bumbarger et al., 2013; serial
cross-section online data set in Neurodata OCP). An invaginating structure (asterisk) originates from an axon terminal (yellow), which is one of two vesicle-filled
terminals that form typical nematode dyadic synapses with a presynaptic density (arrows) centered between two postsynaptic processes (lacking PSD; White et al.,
1986; Hall and Russell, 1991). The invaginating process enters into the base of a neurite extending from a neuron soma of the ventral ganglion (cell matches
descriptions of neurons by position and structure; Ware et al., 1975; White et al., 1986). A possible junction may occur on the dorsal aspect of the invaginating
process where the membranes appear denser and there are unidentified subsynaptic structures (arrowheads) in the postsynaptic cell. The left two images are
transverse sections (z positions 2017 and 2019 in the image stack), and the right image is a digitally reconstructed parasagittal section. (D–H) Invaginating structures
in the mouse nucleus accumbens. (D) An invaginating presynaptic terminal (yellow). The z positions in the FIB-SEM image stack are 144, 202, and 237 for the three

(Continued)
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FIGURE 1 | Continued
images. The main part of the terminal partly invaginates into the cup-shaped postsynaptic process, and it then invaginates a portion of the terminal deep within the
postsynaptic process (asterisk). (E) A 3D reconstruction of a similar invaginating presynaptic (yellow) terminal (asterisk) from the same data set in panel (D), turned
about 90 degrees relative to the structure in panel (D). The postsynaptic membrane also invaginates a short spinule (arrow) into the presynaptic terminal (yellow),
similar to the one shown in panel (F). The 3D reconstruction is reprinted, after slight modification, from Delgado et al. (2019). (F,G) Examples of postsynaptic (blue)
membrane invaginating short spinules (arrows) into presynaptic terminals. The EM image in panel (F) also includes a myelinated axon in which the glial cytoplasm
(oligodendrocyte) partly invaginates into the axon. (H) Two presynaptic terminals invaginate short spinules (arrows) into dendrites (adjacent EM image in z position to
this EM image is published in Delgado et al., 2019). (I) ImmunoEM of rat brain synapse. Immunogold localization (arrows) of GABA-A receptors in invaginating
structures in the rod spherule of the rod photoreceptor synaptic terminal complex (r) in the rat retina. As is typical in vertebrate retinas, a complex of processes (b, h)
from bipolar and horizontal cells invaginate into the terminal adjacent to the active zone identified by the presynaptic ribbon (asterisk). The immunogold labeling for
GABA-A (arrow) is concentrated between a horizontal cell process and a small projection extending from the presynaptic rod cytoplasm and directly subjacent to the
active zone. (J) Drawing shows that in the human retina, rod photoreceptor synaptic terminals have a ribbon (asterisk) synapse with an invaginating structure from
one bipolar and two horizontal cells (b, h) plus a small projection of cytoplasm from the rod terminal. Horizontal cell processes can form synapses (red arrows) with
the rod terminal and its projection and with the bipolar cell process; they contain large vesicles and presynaptic densities (Linberg and Fisher, 1988). Panels (I,J) are
reprinted from Petralia et al. (2017) with slight modifications. Scale bars (B,I) = 500 nm, (C,E,F) (apply D,G,H) = 1 µm.

membrane formed during enhanced synaptic activity. Indeed,
some spinules are associated with the formation of the large,
mushroom-shaped spines during synaptic plasticity such as
that following LTP (Petralia et al., 2014, 2015, 2018). These
mushroom-shaped spines enlarge since more membrane is added
as additional glutamate receptor molecules are incorporated
into the postsynaptic membrane; this increase in receptors
likely enhances synaptic transmission. Apparently, this added
membrane causes the PSD to become perforated in correlation
with the increased density of glutamate receptors (Ganeshina
et al., 2004a,b). At this point, a spinule may form at the
perforation, invaginate into the presynaptic terminal (Figure 1F),
and transfer excess postsynaptic membrane into the presynaptic
terminal (Spacek and Harris, 2004; Tao-Cheng et al., 2009;
Petralia et al., 2014, 2015, 2018). Coated pits often are seen at
the ends of spinules (Westrum and Blackstad, 1962; Spacek and
Harris, 2004; Yao et al., 2005; Tao-Cheng et al., 2009), mediating
removal and absorption of spinule ends into the terminal. And
recent studies with enhanced resolution 3D light microscopy
have confirmed that neuronal activity induces spine-derived
spinule elongation (Zaccard et al., 2020).

Invaginating structures originating from presynaptic
terminals in many animals vary from small spinules (Figure 1H)
to larger structures and are often filled with presynaptic vesicles
(Figures 1D,E). In the mammalian forebrain, some spinules that
invaginate into presynaptic terminals originate from adjacent
axons or presynaptic terminals, from∼12% in the CA1 region of
the rat hippocampus (Spacek and Harris, 2004) to ∼35% in the
visual cortex of the ferret (Campbell et al., 2020). Invaginating
structures from adjacent presynaptic terminals that are filled
with synaptic vesicles often enter each other; these “pseudopodial
indentations” or “PSIs” are described in some vertebrate synaptic
terminals and can sometimes form complex intertwinings (Boyne
and Mcleod, 1979; Boyne and Tarrant, 1982; see invertebrate
examples in Figures 1B, 2). Such complex structures could
act as “variable diffusion traps” to control levels of ions and
other substances in the space between the processes (Boyne and
Tarrant, 1982). Electrical stimulation of presynaptic terminals
on the electrical organ of torpedo rays increases PSI frequency
and size (∼27×; Boyne and Mcleod, 1979). Some inhibitory
GABAergic terminals in the mammalian forebrain invaginate
short structures into the postsynaptic cell. The postsynaptic

membrane surrounding the invaginating structure contains an
enzyme to synthesize cannabinoid that mediates a retrograde
signal for tonic inhibition of synaptic activity (Yoshida et al.,
2011; Omiya et al., 2015).

Cup-shaped spines are highly concave spines that wrap around
partly or fully invaginating presynaptic terminals. They are
common in cerebral cortex and hippocampus of mammals,
and especially in the dentate gyrus (Desmond and Levy, 1983;
Frotscher and Leranth, 1986; Petralia et al., 2017, 2018). Cup-
shaped spines can be even more complex in the nucleus
accumbens (Delgado et al., 2019; Yao et al., 2020), where
the presynaptic terminal can continue in part as a deeper
invagination with a synaptic active zone (Figures 1D,E; Delgado
et al., 2019). Desmond and Levy (1983) found that high-
frequency stimulation of entorhinal cortex input increases the
number of concave spines in the dentate gyrus. Spines in CA1
slice cultures appear more cup-like after chemical induction of
LTP (Nagerl et al., 2008), while the number of cup-shaped spines
decreases after high-frequency electrical stimulation to induce
LTP in CA1 slice cultures (Chang and Greenough, 1984). Cup-
shaped spines appear to be more common in both slice and
dissociated cultures compared to intact tissue (Roelandse et al.,
2003; Mitchell et al., 2012; Petralia et al., 2017 and unpublished
data). All of this suggests that formation of cup-shaped spines
is a type of spine plasticity that is analogous in some ways to
development of the large convex mushroom spines.

Drosophila: Brain (Figure 2) and
Neuromuscular Junctions
One of the most striking recent revelations about invaginating
structures in synapses has occurred for the insect brain. When we
first reviewed the invaginating structures of all animals in 2015
(Petralia et al., 2015), such structures were almost unknown for
the insect brain.

The only examples were glia-derived capitate projections
invaginating into photoreceptor terminals in the Drosophila
eye (Prokop and Meinertzhagen, 2006) and some interaxonal
invaginating structures (Petralia et al., 2015). Then, in 2018,
utilizing FIB-SEM, (Gruber et al., 2018) described the synaptic
spinules of the olfactory circuit of the Drosophila brain, and it
became apparent that synaptic spinules are common. As can be
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FIGURE 2 | Invaginating structures in the Drosophila brain. Examples are FIB-SEM image stacks of the protocerebral bridge (A–E) and mushroom body (F,G). Blue,
dendrite; yellow, axon; magenta, either dendrite or axon or both. Axon terminals were defined by accumulation of synaptic vesicles or were traced to a presynaptic
T-bar; dendrites were traced to a postsynaptic process. Invaginating structures are defined as outward projections. (A) Neurites 1 and 2 are large axon terminals that
co-invaginate (neurite 1 invaginates into neurite 2 while neurite 2 invaginates into neurite 1). Neurite 3 is a dendrite that invaginates into axon 1, and neurite 3 is one
of the two postsynaptic processes of a T-bar synapse (t) of axon 2. Neurite 4 is a dendrite that invaginates into a glial cell process; neurite 4 also is one of two
postsynaptic processes at a T-bar synapse in an adjacent axon terminal (left image). (B) Neurite 1 is an axon terminal that invaginates into an adjacent axon terminal;
neurite 1 is also postsynaptic at a T-bar synapse in the adjacent terminal (bottom image). Neurites 2, 3, and 4 invaginate into the same large axon terminal; 3 and 4
are small dendrites. Neurite 2 (magenta) was traced for a long distance (>4 µm). This neurite 2 displays features of both presynaptic and postsynaptic structures
and forms at least two or three T-bar synapses as well as two or three postsynaptic processes with different synapses (not shown). (C) Axon terminal 1 is
invaginated by axon terminal 2 and also invaginates another terminal. Neurite 3 is a dendrite that forms four spine-like structures, including one that forms a
postsynaptic process at a synapse with terminal 1 and another that invaginates into a subjacent terminal. Neurite 4 is a dendrite that also invaginates into the same
subjacent terminal. (D) A structure from axon terminal 2 invaginates into axon terminal 1, while structures from dendrites 3, 4 and 5 invaginate into terminal 2. (E)
Neurites 1, 2, and 3 are projections from dendrites that invaginate into the same large axon terminal; neurite 1 has two invaginating structures. Neurite 3 also bears
some T-bar like structures (not shown). Invaginating structures from axon terminals can be filled with synaptic vesicles as seen in panels (A,B), or devoid of vesicles
as evident in panel (D). (F) Neurites 1-6 are all small axon terminals with relatively few synaptic vesicles. These axons invaginate with each other and also often
cluster to form synapses on central dendrite processes. (G) An example of a dendrite (1) invaginating into an axon terminal. The number in the lower left or lower
right corner of each micrograph indicates its z position in the FIB-SEM image stack. t = T-bar (only selected ones are labeled). Scale bars are 500 nm for panels
(A–E) and (F–G). Note that the protocerebral bridge neuropil (A–E) contains abundant invaginating processes from large axon terminals and dendrites, while the
mushroom body neuropil (F,G) contains abundant invaginating processes from small axon terminals but few from dendrites.

seen for two areas of the Drosophila brain in Figure 2, there
is a high abundance of invaginating neuronal processes into
axonal terminals, derived from either dendrites or other axonal

terminals. This pattern appears to be the rule for the Drosophila
brain. Interestingly, some of the invaginating structures are
derived from neurites with reciprocal synaptic functions, acting
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as both axon and dendrite. One such example is shown in
Figure 2B: neurite 1 is a vesicle-filled axonal terminal but also
forms one of the two postsynaptic elements of a photoreceptor
terminal T-bar synapse, and neurite 2 was traced to different
portions (not shown) containing postsynaptic processes or
presynaptic T-bars. Similar reciprocal structures in interneurons
are described for the ocellar photoreceptor terminal complex of
Drosophila (Stark et al., 1989) that shows an example of a vesicle-
filled interneuron invaginating into a photoreceptor terminal.
However, photoreceptor terminals in both compound eyes and
ocelli of Drosophila are invaginated mainly by specialized glial
processes, rather than axonal or dendritic ones (reviewed in
Prokop and Meinertzhagen, 2006; Petralia et al., 2015). Overall,
the complexity of the invaginations in the Drosophila brain
rivals or surpasses those found in the vertebrate brain, yet these
neuronal invaginations in insect synapses were overlooked or
missed by electron microscopists for the past 60 years!

Invaginations from presynaptic terminals also are common
at neuromotor junctions including neuromuscular (NMJ) and
secretomotor (such as glands) junctions (Petralia et al., 2017).
These invaginating structures can either partially or fully
invaginate into the postsynaptic cell. Such invaginating structures
are part of mechanisms mediating rapid responses of skeletal
muscle fibers. Because these invaginating structures also are
found in NMJs of some slower muscles and glands, they
might facilitate maintaining an enclosed space for exchange of
regulatory factors. This function is best understood for NMJs
of larval Drosophila skeletal muscle (reviewed in Deshpande
and Rodal, 2016; Van Vactor and Sigrist, 2017, Guangming
et al., 2020). A hundred-fold increase in muscle area occurs
during larval growth (Deshpande and Rodal, 2016) and this
must be accompanied by an equally impressive and matching
growth in the NMJ; thus, this enclosed invagination area is
a special arrangement to allow for the exchange back and
forth across the synapse of a large number of different growth
and regulatory factors to maintain this organization through
development. For example, Wg (wingless; a Wnt ligand) is one
of several regulatory proteins transported from the presynaptic
terminal membrane via release of exosomes, probably from
multivesicular bodies into the invagination intercellular space,
that affect postsynaptic differentiation; other factors move
retrogradely to affect presynaptic differentiation (Deshpande and
Rodal, 2016). Another curious example is the transport of Arc1,
important for synaptic plasticity, in capsid-like structures of
Arc1 protein + mRNA within exosomes probably derived from
presynaptic multivesicular bodies (Ashley et al., 2018).

Invaginating Complexes of Processes
(Figures 1I,J)
Some mechanoreceptor and photoreceptor cells in various
invertebrates and vertebrates have large invaginations at their
bases that contain a complex of both postsynaptic and
presynaptic invaginating processes (Petralia et al., 2016, 2017).
This is best known for the photoreceptor synapses of vertebrates
(Figures 1I,J), in which the various processes are arranged

within as well as subjacent to the invagination. Thus, they
are in different positions and with different combinations of
glutamate receptors within the area of glutamate spillover
diffusion; GABA and ephaptic conduction are probably also
involved here (Kramer and Davenport, 2015; Petralia et al.,
2017). The main invaginating structures extend from bipolar
and horizontal cells; their invagination and function are partly
dependent on trans-synaptic complexes of proteins including
calcium channel subunits and receptors (Kerschensteiner, 2017;
Wang et al., 2017; Cao et al., 2020; Maddox et al., 2020;
Tsukamoto et al., 2021). Invaginating horizontal cell processes
form a type of reciprocal synapse including a feed-forward
function along with negative feedback to provide lateral
inhibition to help the brain modulate signals from groups of
adjacent photoreceptor cells. The feedback mechanism from
the horizontal cell processes to the photoreceptor cell may
involve variable combinations of three different mechanisms:
GABA (Figure 1I), proton (H+), and ephaptic transmission
(electrical coupling between nerve processes not involving direct
synapses) (Liu et al., 2013; Gardner et al., 2015; Kramer and
Davenport, 2015; Petralia et al., 2017; Barnes et al., 2020;
Hirano et al., 2020).

Horizontal cell processes vary in structure among vertebrates,
and often have large vesicles of unknown function. Human
horizontal cell processes at the rod photoreceptor terminal form
definitive synapses (Figure 1J; Linberg and Fisher, 1988). Many
fish have unusual spinules that invaginate into the photoreceptor
cell from the horizontal cell processes, and they have enlarged
ends with internal densities (Popova, 2014). These structures are
numerous in the day but mostly gone at night. Popova (2014)
suggests that they mediate feedback activity essential for the
coding of antagonistic color information. They possibly have
some role in postsynaptic neurotransmission and retract when
glutamate receptors are activated (Weiler and Schultz, 1993

Why Are Invaginating Structures So
Important for Synapse Function?
We have discussed the various aspects of this question in greater
detail in our previous reviews (Petralia et al., 2015, 2016, 2017,
2018). This is perhaps easier to answer for those invaginations
with synaptic active zones containing presynaptic vesicles and
postsynaptic densities. In these cases, the invagination creates a
unique, isolated environment for biochemical exchange/activity
between the presynaptic and postsynaptic structures. Depending
on the structural arrangements, this can either improve
the transmission of biochemical and/or electrical signals or
sequester and isolate chemicals associated with plasticity
between pre- and postsynaptic processes. One such example
is the mossy terminal synapses of the hippocampus (Petralia
et al., 2016, 2018). These large terminals are invaginated by
large, modified compound spines called thorny excrescences,
providing numerous active zones within the invagination
(somewhat similar structures are found in the thalamus;
Petralia et al., 2016; Pelzer et al., 2017). The cleft region is
continuous and excludes glial processes. Overall, this specialized
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synapse is designed to have a higher net probability of release
than typical cortical synapses (Henze et al., 2000). And as we have
discussed, the invagination in the retinal photoreceptor synapses
is highly organized with processes arranged at different distances
and positions to take best advantage of neurotransmitter spillover
and feedback mechanisms to affect the highly specialized visual
responses. In some cases, an invaginating process without active
zones is designed to modify neurotransmission, as we have
discussed for presynaptic invaginating processes in inhibitory
synapses in the mammalian forebrain and horizontal cell spinules
in the fish retina. The Drosophila NMJ is the best studied
example of a synaptic invagination providing an isolated and
regulated local environment for chemical exchange to affect
synaptic plasticity, as we discussed above. Finally, a large
variety of small invaginating processes exists, and which are
often broadly classified as “spinules,” lacking active zones and
originating from postsynaptic, presynaptic, or glial components
of the synapse. Many lines of evidence support various functions
for these spinules in nutrient exchange, modulation/mediation
of synaptic activity, and interneuronal signaling. Most intriguing
and least studied are possible electrical field/ephaptic signaling
effects (Faber and Pereda, 2018) that are likely facilitated by the
invaginating structures (Gardner et al., 2015).
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