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daughter cells during the M phase (mitosis). Most cell cycles 
have gap phases, G1 and G2 (G1 → S → G2 → M). Pro-
liferating cells monitor the process to ensure that cellular 
preparations are complete and DNA/chromosome condi-
tions are suitable from G1 to S (the G1/S checkpoint), dur-
ing DNA replication (the intra-S phase checkpoint), from 
G2 to mitosis (the G2/M checkpoint) [1–12], from the meta-
phase to anaphase in mitosis (the spindle assembly check-
point) [13, 14], or at the end of cytokinesis (the abscission 
checkpoint) [15]. Especially during the G1 phase, cells also 
monitor external conditions and extracellular signals from 
other cells. If these environments are unfavorable for cell 
proliferation, cells delay their cell cycle progression through 
the G1 phase and can remain stable for a long time (even 
years) before resuming proliferation. Some scientists dis-
tinguish this resting state (known as the G0 phase) as differ-
ent from the (proliferating) G1 phase. Like the G1/S transi-
tion [16–18], the G0/G1 transition (cell cycle re-entry) is  
suppressed by the product of the retinoblastoma tumor  
suppressor gene, pRb [19, 20]. Cyclin and cyclin-dependent  
kinase (Cdk) complex are also critical to promote the exit 
from cellular quiescence through pRb phosphorylation  
[19, 21, 22]. However, the mechanisms governing the  
establishment/maintenance of the stationary (G0 or G1) 
phase and cell cycle re-entry (the G0/G1 transition) are not 
fully understood.

On the surface of many types of quiescent cells, the elder 
(mother) centriole frequently nucleates the growth of a non-
motile, microtubule-rich surface projection called a primary 
cilium [23]. Primary cilia are considered to function as che-
mosensors and/or mechanosensors and are implicated in 
several developmental signaling pathways such as the Sonic 
Hedgehog (Shh) and Wingless/Int (Wnt) pathways [24–30]. 
Dysfunction of a primary cilium is associated with a broad 
spectrum of diseases such as polydactyly, cranio-facial 
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Introduction

The cell cycle accurately duplicates large amounts of DNA in 
chromosomes during the S phase and then segregates dupli-
cated chromosomes precisely into two genetically identical 
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abnormalities, brain malformation, situs inversus (defects 
of left–right patterning), obesity, diabetes, and polycystic 
kidney disease (PKD) [26, 27]. The mechanisms of pri-
mary cilia formation have been discussed in other excellent 
reviews [26–33]. In many cells, primary cilia start to disas-
semble as cells re-enter the cell cycle [31, 34, 35]. There 
seems to be an inverse relationship between ciliation and 
cell cycle progression. However, there are some exceptional 
examples of cells that retain cilia during cell proliferation 
[30, 31, 35–38]. For example, many ciliated protozoans 
maintain their cortical cilia throughout cell division [38]. 
Recently, Riparbelli and colleagues [39] also reported that 
spermatocytes in Drosophila melanogaster possess cilia 
during two meiotic divisions. Therefore, whether a primary 
cilium negatively controls cell cycle progression has been a 
topic of discussion for a long time.

Recent studies have indicated that Aurora-A, originally 
identified as one of the mitotic kinases [40–43], negatively 
regulates ciliary dynamics in proliferating cells [44–47]. 
Aurora-A activity outside mitosis is required for at least 
two different categories of ciliary dynamics, the deciliation 
at cell cycle re-entry (the G0/G1 transition) [44–46] and 
continuous inhibition of primary cilia regeneration during 
cell proliferation [47]. Several recent publications have also 
demonstrated that forced ciliary formation/absorption can 
influence cell cycle progression especially at the G0/G1–S 
transition [47–49]. In this review, we focus on the above 
recent advances connecting primary cilia and the cell cycle, 
and discuss possible crosstalk with cell cycle regulators.

Inhibition of primary cilia assembly/regeneration  
by Aurora-A

Aurora-A [also known as serine/threonine kinase-6 (STK-6);  
encoded by AURKA] was originally discovered in a screen 

for D. melanogaster mutations affecting the poles of the 
mitotic spindle [50]. Aurora-A localizes to centrosomes and 
mitotic spindles and drives multi-aspects of mitotic func-
tions including mitotic entry, centrosome maturation, cen-
trosome separation, and bipolar spindle formation [40–43]. 
Several binding proteins are known to regulate the locali-
zation, activation, and/or substrate preference of Aurora-A 
[42, 43].

Even in the interphase, several proteins were reported 
to bind and activate Aurora-A (Table 1). Aurora-A activa-
tors outside mitosis are required for at least two different 
categories of ciliary dynamics in proliferating cells. One is 
ciliary resorption when quiescent ciliated cells resume pro-
liferation. The other is continuous suppression of aberrant 
cilia regeneration in proliferating cells. The members of the 
former category contain calcium–calmodulin (Ca2+/CaM; 
discussed in a later section) [46], human enhancer of fila-
mentation 1 (HEF1; also known as NEDD9 or Cas-L) [44], 
and Pitchfork (Pifo) [45], whereas trichoplein belongs to the 
latter category [47] (Table 1).

A non-mitotic function of Aurora-A was first suggested 
by the study of Snell’s group revealing that CALK, a dis-
tant orthologue of Aurora-A in Chlamydomonas reinhardtii, 
controls the resorption of the flagellum, an organelle simi-
lar to mammalian cilium, during mating or in response to 
ionic stresses [51]. Golemis and colleagues [44] observed 
the increase in Aurora-A-Thr288 phosphorylation (which 
implies Aurora-A activation [40–43]) at the basal body just 
after serum-deprived cultured cells were stimulated by growth 
factor. The treatment with Aurora-A inhibitors or siRNAs  
impaired ciliary disassembly after cell cycle re-entry (the  
G0/G1 transition), whereas the microinjection of pre-activated 
Aurora-A in ciliated cells accelerated ciliary disassembly 
[44]. Aurora-A activation in this resorption process requires 
HEF1 [44] (Fig. 1), a protein which the authors’ group previ-
ously identified as a novel Aurora-A binding protein [52].

Table 1   Aurora-A-binding 
proteins associated with primary 
cilia kinetics

a   Induction of Aurora-A 
autophosphorylation at Thr288

Protein name Cell cycle  
or stimuli

Effects on 
Aurora-A

Function Ref.

Calcium–calmodulin 
(Ca2+/CaM)

Cell cycle re-entry Activationa Primary cilia disassembly [46, 96]

Calcium ionophores Primary cilia disassembly [46, 96]

Mitosis Some mitotic functions  
of Aurora-A

[46, 96]

HEF1 Cell cycle re-entry Activationa Primary cilia disassembly [44]

Mitosis Some mitotic functions  
of Aurora-A

[44, 52]

Pitchfork (Pifo) Cell cycle re-entry Activationa Primary cilia disassembly [45]

Mitosis? Some mitotic functions  
of Aurora-A?

[45]

Trichoplein Cell proliferation  
(especially at  
G1 phase)

Activationa Suppression of aberrant  
primary cilia formation

[47]
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In a separate study, Lickert and colleagues [45] identified 
Pifo as a protein expressed in the mouse embryonic node and 
found that it to be accumulated in the basal body at an early 
stage of cilia disassembly. In mice, Pifo haploinsufficiency 

led to developmental defects associated with ciliary abnor-
malities, such as a left–right asymmetry defect [45]. In 
humans, the authors also found a heterozygous R80K Pifo 
mutation in diseases related to ciliopathy [45]. Interestingly, 

Fig. 1   Aurora-A-mediated deciliation at cell-cycle re-entry and inhi-
bition of ciliary regeneration in proliferating cells. At quiescent state 
(G0 phase), a basal body (to which a mother centriole is converted) 
is anchored at plasma membrane around ciliary pockets through its 
distal appendages [112]. Growth factor stimulation triggers calcium 
influx from extracellular space and/or endoplasmic reticulum (ER) 
to the cytoplasm. Calcium–calmodulin (Ca2+/CaM) binds and acti-
vates Aurora-A (through its autophosphorylation at Thr288) [96]. 
This activation is considered to be transient (within 3 min), but Ca2+/
CaM also enhanced the binding between Aurora-A (AurA) and HEF1 
[46], which in turn activates Aurora-A (AurA) [44]. Pifo is assumed 

to function in a way similar to HEF1 [45]. Aurora-A (AurA) phos-
phorylates and activates HDAC6, which in turn removes acetylated 
group on axonemal α-tubulin [44]. This deacetylation may shorten 
the length of axonemes. After HEF1 levels decrease [44] (likely Pifo 
too), trichoplein (TCHP) works as an Aurora-A (AurA) activator at 
the mother centriole and prevents ciliary regeneration in proliferating 
cells [47]. The disturbance of this process induces the G0/G1–S arrest 
[47]. In addition, trichoplein (TCHP) functions as a protein scaffold 
between Odf2 (Cenexin) and ninein; these three molecules partici-
pate in microtubule (MT) anchoring at the subdistal appendages on a 
mother centriole [55]
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Pifo was able to activate Aurora-A, whereas overexpression 
of its R80K mutant inhibited the catalytic activity of Aurora-A  
[45]. These observations suggest that Pifo participates in 
the early stage of ciliary absorption together with Aurora-A  
[45] (Fig. 1). This function of Pifo appears to resemble that 
of HEF1. Since HEF1 knockout mice have only limited 
defects [53], these observations lead to speculation that Pifo 
may work mainly during embryonic development, whereas 
HEF1 may function largely after the development.

The protein level of HEF1 appears to increase in 
response to the stimulation of serum-deprived cultured 
cells by growth factors but decrease by 4 h after the stimu-
lation [44]. How does ciliary reassembly remain suppressed 
at subsequent cell cycle phases in proliferating cells? Our 
study provides important clues [47]. We found that trichop-
lein [a protein originally identified as a keratin intermedi-
ate filament (IF) scaffold protein [54]; encoded by TCHP] 
bound and then activated Aurora-A in vitro and the two 
proteins colocalized at the centrioles of proliferating cells 
especially in the G1 phase [47] (Table 1). Both trichoplein 
and Aurora-A were required for continuous suppression 
of ciliary reassembly, which in turn promoted proper cell 
cycle progression [47]. Primary cilia formation in quies-
cent RPE1 (h-TERT-immortalized retinal pigment epithe-
lia) cells was also impaired by the expression of truncated 
mutants of trichoplein that could localize to centrioles and 
activate Aurora-A but not by that of the mutants lacking 
either ability [47]. Thus, trichoplein inhibits ciliary reas-
sembly by activating Aurora-A [47], a mechanism similar 
to the HEF1 role in cilia resorption [44] (Fig. 1). All these 
observations suggest that Aurora-A activation in interphase 
requires several different Aurora-A-associated proteins, the 
function of which may be strictly regulated in a temporal 
fashion (Fig. 1).

Cytoskeletal functions of Aurora-A-associated proteins

With regard to intracellular localization both in quiescent 
and proliferating cells, trichoplein is a well-studied mole-
cule (Fig. 2a). In well-differentiated (non-dividing) epithe-
lia, trichoplein is localized on keratin IFs and desmosomes; 
this localization depends on the binding to keratin proteins 
[54]. On the other hand, trichoplein is concentrated at cen-
trioles in (both epithelial and non-epithelial) dividing cells 
and has a key role in microtubule-anchoring activity at cen-
trosomes during proliferation [55]. This activity depends 
on direct interaction of trichoplein with two other centri-
olar proteins, Odf2 (also called Cenexin) and ninein [55]. 
In addition to this activity, trichoplein serves as a scaffold 
for centriole-associated Aurora-A, which suppresses aber-
rant primary cilia formation in proliferating cells [47]. 
Thus, trichoplein appears to translocate from keratin IFs 

and desmosomes to centrioles and change its function to 
prepare for cell proliferation at cell cycle re-entry (the G0/
G1 transition).

Several studies have also illustrated critical roles for 
the actin cytoskeletal network in assembling primary cilia 
(reviewed in detail in [32]). The formation of a primary cil-
ium in quiescent cells depends on the relationship of cellular 
position between nucleus and centrosome, which is largely 
determined by cell shape and contractility [56]. Interest-
ingly, HEF1, originally identified as a member of a group of 
scaffolding proteins that includes p130Cas and Efs/Sin, also 
localizes to focal adhesions and act as an intermediate in 
a variety of integrin-dependent signaling processes, includ-
ing the establishment of cell attachments and migration [57, 
58] (Fig. 2b). These observations suggest the possibility that 
HEF1 and trichoplein may function as molecular scaffolds 
to synchronize cytoskeletal changes in the centrosome and 
cell attachments.

Signaling pathways downstream of Aurora-A

With regard to the pathology of PKD, Golemis and col-
leagues [59] found that Aurora-A was overexpressed and 
hyperactivated in early renal cysts associated with PKD. 
Aurora-A bound and phosphorylated polycystin (PC) 2, 
which limited its calcium channel activity [59] (Table  2). 
PC2 (encoded by PKD2) dimerizes with a transmembrane 
receptor protein PC1 (encoded by PKD1) in the primary 
cilium and their mutations induce renal cyst formation asso-
ciated with PKD [60, 61] (reviewed in detail in [62–64]). 
Since the cilia serve as mechanosensors in the renal tubules 
and flow-induced ciliary bending results in a transient 
increase in intracellular calcium [65], Aurora-A overactiva-
tion may play an important role in the pathological condi-
tion of PKD through PC2 inhibition.

With regard to substrates downstream of Aurora-A 
in ciliary resorption, Golemis and colleagues [44] first 
identified the tubulin deacetylase HDAC6, the activ-
ity of which was stimulated by Aurora-A-induced phos-
phorylation (Table  2). Ciliary resorption at cell cycle 
re-entry was disturbed by the suppression of HDAC6 
activity through treatment with tubacin (the small mol-
ecule inhibitor of HDAC6) or HDAC-6-specific siRNAs 
[44]. HDAC6 activated by Aurora-A removes acetylated 
group on axonemal α-tubulin. Since functional analyses 
of αTAT1 (α-tubulin acetyltransferase 1; also known as 
MEC-17) demonstrated that ciliary assembly decreased in 
speed by strongly decreased acetylation on α-tubulin [66, 
67] (reviewed in detail in [68]), deacetylation on axone-
mal α-tubulin may induce ciliary disassembly. Thus, the 
activation pathway from Aurora-A to HDAC6 most likely 
explains not only ciliary disassembly at cell cycle re-entry 
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(mediated by HEF1 and/or Pifo), but also the suppression 
of ciliary reassembly in proliferating cells (mediated by 
trichoplein; Fig. 1).

Although α-tubulin acetylation is highly enriched on 
the axoneme, some studies have argued against the role of 
α-tubulin acetylation in the assembly or function of primary 

Fig. 2   Localization and function of trichoplein (TCHP; a), HEF1 
(b), Nde1 (c), and Tctex-1 (d). a In well-differentiated (non-dividing) 
epithelia, trichoplein (TCHP) is localized on keratin IFs and des-
mosomes [54]. On the other hand, trichoplein (TCHP) is concentrated 
at the subdistal to medial zone of both mother and daughter centrioles 
in (both epithelial and non-epithelial) dividing cells [47, 55]. Trichop-
lein (TCHP) functions as a protein scaffold not only to activate cen-
triolar Aurora-A in G1 phase [47] but also to promote microtubule 
(MT) anchoring at the subdistal appendages of a mother centriole 
[55] (also see Fig. 1). b The protein level of HEF1 is elevated at the 
G0/G1 transition [44]. The precise localization in the centrosome is 
largely unknown, but HEF1 works as an Aurora-A activator at the 
G0/G1 transition [44] (also see Fig. 1). Since Aurora-A is localized at 
medial zone of both mother and daughter centrioles in G1 phase [47], 

HEF1 is assumed to be localized at least at similar areas of centrioles. 
HEF1 is also localized at focal adhesions, where it functions as a pro-
tein scaffold for integrin-mediated signaling including the establish-
ment of cell attachments and migration [57, 58]. c The dynein light 
chain LC8 associates with retrograde IFT components [113], which 
maintain ciliary assembly [28]. Nde1 is expressed after the G0/G1 
transition and localized at a basal body [48]. Nde1 recruits LC8 to the 
basal body through their association [48]. Sequestration of LC8 leads 
to the inhibition of ciliary assembly [48]. d In response to growth fac-
tor stimulation, Tctex-1 is phosphorylated at Thr94 and then recruited 
to ciliary transition zone [49]. This recruitment of phosphorylated 
Tctex-1 induces ciliary disassembly likely through the rearrangement 
of actin cytoskeleton and the activation of Aurora-A by HEF1 [49]
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cilia (reviewed in detail in [32, 36, 68]). For example, cilia 
were morphologically normal in Tetrahymena thermophile  
where the acetylation of microtubules was strongly reduced 
by the expression of a non-acetylated mutant of α-tubulin 
[69]. The change in acetylation status of tubulin did not 
influence the resorption of the flagellum in C. reinhardtii 
[70], which was likely to share the Aurora-A-mediated 
resorption system [51]. HDAC6 knockout mice showed 
hyperacetylated tubulin in most tissues, but did not reveal 
apparent phenotypes that would be expected to result from 
aberrant ciliary formation [71]. Most recently, two reports 
provided surprising observations that revised our classic 
view of α-tubulin acetylation at Lys40 (a major acetylation 
site) as a marker of stable tubulin; the absence of this modi-
fication only reduced microtubule diameter and length in 
touch receptor neurons of Caenorhabditis elegans [72, 73].  
Thus, Aurora-A may also phosphorylate other important 
substrates to disassemble primary cilia or to inhibit its  
regeneration. All of the known tubulin posttranslational  
modifications (PTMs) except for acetylation occur on  
C-terminal tails of tubulin exposed on the outer surface of 
microtubules, whereas the Lys40 acetylation site is located 
on the inside of microtubule polymers [68]. Since C-terminal  
tails serve as key interaction sites for microtubules-associ-
ated proteins (MAPs) and motor proteins [68], other PTMs 
such as glutamylation may contribute to ciliary formation 
rather than acetylation. Therefore, Aurora-A may phospho-
rylate key enzymes for other PTMs or indirectly regulate 
their activity.

Effects of primary cilia dynamics on cell cycle 
progression

With the exception of some cells possessing primary cilia 
during cell proliferation, cells begin to retract their primary 
cilia at the G0/G1 transition (cell cycle re-entry). This rela-
tionship implies that ciliogenesis and cell proliferation may 
be mutually exclusive processes, but it remains controversial 

whether or not (de)ciliation affects cell cycle progression 
[30, 31, 35–37]. However, several recent publications pro-
vide some clues [47–49, 74].

Tsiokas and colleagues [48] reported Nde1, an Asper-
gillums NudE (nuclear distribution gene E; Ref. [75]) 
homolog 1, as a novel protein localized to the mother cen-
triole. The protein level of Nde1 was high in mitosis but 
low in G0/G1 phase [48], which showed an inverse corre-
lation with the existence of primary cilia. RNAi-mediated 
Nde1 depletion induced not only abnormally long cilia but 
also a delay in cell cycle re-entry in NIH3T3 or RPE1 cells 
[48] (Table 3). Nde1 shortened ciliary length via the inter-
action of Nde1 with a dynein light-chain protein, LC8 [48] 
(Fig. 2c). The authors observed a similar effect of Nde1 on 
ciliary length in zebra fish embryos, where Nde1 deple-
tion reduced proliferating cells of the Kupffer’s vesicle (an 
organ analogous to the embryonic node), which resulted in 
defects of left–right patterning [48]. The cell cycle delay 
in Nde1-depleted RPE1 cells reverted by co-depletion 
of IFT88 (intraflagellar transport protein 88, also known 
as Polaris) or IFT20 [48] (Table 3). Since these IFT pro-
teins are composed of IFT complex B, which contributes 
to anterograde transport and is essential for the assembly/
maintenance of cilia and flagella [28], these results indi-
cate that forced ciliary absorption can influence cell cycle 
progression [48]. The authors also demonstrated that the 
G0/G1–S transition can be delayed by forced induction of 
longer cilia through other treatments, such as the ectopic 
expression of a constitutively active variant of Rab8a and 
a brief disruption of the actin cytoskeleton by cytochalasin 
D [48] (Table 3).

Sung and colleagues [49] reported new function of 
Tctex-1, a protein originally described as a light-chain 
subunit of cytoplasmic dynein [76, 77]. After serum stimu-
lation in quiescent (ciliated) cells, Tctex-1 was phospho-
rylated at Thr94 and then targeted to the transition zone, 
the ciliary base between basal body and axoneme [49] 
(Fig.  2d). Tctex-1 depletion or replacement with its non-
phosphorylated mutant suppressed ciliary absorption after 
serum stimulation, which in turn induced cell cycle arrest at 
the G0/G1–S transition [49] (Table 3). Conversely, replace-
ment with its phospho-mimic mutant accelerated ciliary 
disassembly and entry into S phase after serum stimula-
tion [49] (Table 3). The ciliary resorption via phosphoryl-
ated Tctex-1 was dependent on the actin cytoskeleton but 
independent of the Tctex-1 role of the cytoplasmic dynein 
components [49] (Fig. 2d). The cell cycle arrest by Tctex-1 
depletion was seen in RPE1, 3T3, or MEF cell lines pos-
sessing the ability to form primary cilia during the quies-
cent state (G0/G1 phase) but not in HeLa and COS7 cell 
lines reducing this tendency [49] (Table 3). The cell cycle 
arrest in Tctex-1-depleted cells was reverted by the loss-of-
function mutation of IFT88 or the co-depletion of IFT20 

Table 2   Putative Aurora-A substrates outside mitosis

Putative  
substrate

Phosphorylation  
site

Functional  
change

Ref.

HDAC6 Not identified Elevation of tubulin  
deacetylase activity

[44]

Polycystin 2  
(PC2)

Ser829 Inhibition of calcium  
channel activity

[59]

p53 Ser215 Abrogation of DNA  
binding and transactivation 
activity

[85]

Ser315 Mdm2-mediated  
destabilization

[84]
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[49] (Table 3), the treatment to promote ciliary disassembly 
[28]. The authors also confirmed in vivo Tctex-1-Thr94-
phosphorylation-dependent functions in radial glial cells; 
Tctex-1 depletion reduced the population of neural pro-
genitor cells through premature differentiation of cortical 

neurons, whereas ectopic expression of the phospho-mimic 
mutant increased it [49].

Most recently, we found that Aurora-A activation by 
trichoplein (discussed in the former sections) is critical 
for the suppression of aberrant primary cilia formation 

Table 3   Effects of each treatment on primary cilia and cell cycle progression

KD knockdown, OE overexpression, Rab8a Q67L the constitutively active variant of Rab8a, MEF mouse embryonic fibroblast
a   Inoko A., et al., unpubl. obs.

Treatments Ciliation Cell cycle Cultured cells Ref.

Length Percentage

Trichoplein KD ↑ G0/G1 arrest RPE1 [47]

(Non-ciliated cell line) Only marginal effects HeLa [47]

Trichoplein KD +  
trichoplein OE

→ Only marginal effects RPE1 [47]

IFT88 KD ↓ Only marginal effects NIH3T3, RPE1 [47]

IFT20 KD ↓ Only marginal effects NIH3T3, RPE1 [47]

Trichoplein KD +  
IFT88 KD

↓ Only marginal effects RPE1 a

Trichoplein KD +  
IFT20 KD

↓ Only marginal effects RPE1 [47]

Aurora-A KD ↑ G0/G1 arrest RPE1 [47]

(Non-ciliated cell line) Mitotic failure HeLa [47]

Aurora-A KD +  
Aurora-A OE

→ Only marginal effects RPE1 [47]

Aurora-A KD +  
IFT88 KD

↓ Only marginal effects RPE1 a

Aurora-A KD +  
IFT20 KD

↓ Only marginal effects RPE1 [47]

Chloral hydrate ↓ Only marginal effects RPE1 a

Trichoplein KD +  
chloral hydrate

↓ Only marginal effects RPE1 a

Aurora-A KD +  
chloral hydrate

↓ Only marginal effects RPE1 a

Nde1 KD ↑ Delay in G0/G1 transition NIH3T3, RPE1 [48]

IFT88 KD ↓ Only marginal effects NIH3T3, RPE1 [48]

IFT20 KD ↓ Only marginal effects NIH3T3, RPE1 [48]

Nde1 KD + IFT88 KD ↓ Only marginal effects NIH3T3, RPE1 [48]

Nde1 KD + IFT20 KD ↓ Only marginal effects NIH3T3, RPE1 [48]

Cytochalasin D ↑ G0/G1–S arrest RPE1 [48]

Cytochalasin D +  
IFT20 KD

↓ Only marginal effects RPE1 [48]

Rab8a Q67L expression ↑ Delay in G0/G1 transition NIH3T3 [48]

Tctex-1 KD ↓ ↓ G0/G1–S arrest RPE1, 3T3, MEF [49]

(Non-ciliated cell lines) Only marginal effects HeLa, COS7 [49]

IFT-20KD-RPE1

IFT88 mutant MEF

Tctex-1 KD +  
Tctex-1 WT OE

→ Only marginal effects 3T3 [49]

Tctex-1 KD +  
Tctex-1 WT T99E OE

→ Only marginal effects 3T3 [49]

Tctex-1 KD +  
Tctex-1 WT T99A OE

↑ G0/G1–S arrest 3T3 [49]
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during cell proliferation [47]. Trichoplein was concen-
trated at both centrioles in dividing cells [55], whereas 
it disappeared specifically from the basal body (which a 
mother centriole is converted to) in quiescent RPE1 cells 
[47]. Overexpressing trichoplein suppressed ciliary assem-
bly in these quiescent cells [47]. Similarly, the microin-
jection of pre-activated Aurora-A was reported to induce 
ciliary disassembly in quiescent cells [44]. Conversely, in 
proliferating RPE1 cells, trichoplein or Aurora-A knock-
down induced primary cilia formation, which resulted in 
cell cycle arrest at the G0/G1 phase [47]. This cell arrest 
reverted if primary cilia formation was blocked by simul-
taneously depleting IFT20 [47] or IFT88 (Inoko A., et al., 
unpubl. obs.) or by simultaneously treating with chlo-
ral hydrate [78] (Inoko A., et al., unpubl. obs.; Table 3). 
Unlike the RPE1 cell line, the silencing of trichoplein or 
Aurora-A failed to induce ciliogenesis or cell cycle arrest 
in the HeLa cell line where primary cilia are rarely formed 
in response to serum starvation [47] (Table 3).

These independent studies highlight the possibility that 
the presence of primary cilia can negatively influence cell 
cycle progression. The data on Nde1 [48] and Tctex-1 [49] 
propose a model that ciliary disassembly after cell cycle 
re-entry, per se, affects cell cycle progression especially 
at the G0/G1–S transition [74]. Our data are consistent 
with this model, but we can also suggest a broader model 
in which proper cell cycle progression requires continu-
ous suppression of primary cilia formation in proliferating 
cells [47]. All these data clearly show that forced induc-
tion/suppression of primary cilia can affect cell cycle pro-
gression, in particular the transition from G0/G1 to the  
S phase.

In spite of the above recent publications [47–49], it is dif-
ficult to completely solve whether the absence of a primary 
cilium is a prerequisite for cell cycle progression because 
many treatments to influence ciliary dynamics are also 
known to have extra-ciliary effects [36, 37]. For example, 
IFT80 knockdown was reported to promote cell cycle pro-
gression to S and G2/M phases in (non-ciliated) HeLa cells 
[79]. IFT80 is also known to regulate mitotic spindle orien-
tation [80]. IFT20 is localized not only in primary cilia but 
also in the Golgi apparatus [81]. The disruption of the actin 
cytoskeleton by cytochalasin D is known to activate sev-
eral signaling pathways, such as the Rho signaling pathway 
[82]. However, these recent publications clearly show nega-
tive control results in their systems [47–49]. For example, 
IFT88 or IFT20 knockdown alone induced only marginal 
changes in cell cycle profile [47–49] (Table 3). Using sev-
eral experimental conditions summarized in Table 3, these 
studies [47–49] independently show the inverse relationship 
between primary cilia and cell cycle progression, which 
reduces the risk of extra-ciliary (side) effect(s) in treatments 
to influence ciliary dynamics.

Possible signaling to progress cell cycle in response  
to the absence of a primary cilium

Here, we discuss and speculate how the absence of a pri-
mary cilium leads to cell cycle progression. At present, it 
remains an unsolved question but several studies provide 
some clues. One possible pathway is to inhibit p53 function 
during cell cycle progression. Doxsey and colleagues [83] 
reported that p38 is activated by the depletion of several 
centrosome-associated proteins, some of which are impli-
cated in primary cilia assembly. Then, p38 phosphorylates 
p53 at Ser33, which induces the expression of p21, one of 
the p53 target genes [83]. P21 inhibits cyclin/Cdk complex 
including cyclin A/Cdk2, which is required for S phase 
progression [83]. Interestingly, Aurora-A was reported to 
phosphorylate p53 at Ser215 and Ser315 and result in p53 
inactivation [84, 85] (Table  2). The above observations 
suggest a possible role of p53 in monitoring centrosome 
integrity before the S phase, although there is no clear evi-
dence about the relationship between the p53 pathway and 
primary cilia.

The other pathway is to elevate the expression of G1 cyc-
lins (D and E types), which contribute to cell cycle tran-
sition from G1 to S through pRb phosphorylation [16–18] 
(summarized in Fig. 3). It appears to be controlled by two 
putative signaling pathways, Shh and canonical Wnt. Shh 
is a soluble ligand for Patched (Ptc), the transmembrane 
receptor localized in a primary cilium in its inactive state 
[35, 37, 86, 87]; loss of cilia failed to respond to Shh [88]. 
Ptc represses the activity of Smoothened (Smo) in the 
absence of Shh. Upon Ptc stimulation by Shh, Ptc moves 
out of a cilium and relieves Smo inhibition [35, 37, 86, 87]. 
Conversely, Smo enters the cilium and then stimulates the 
Gli family of transcription factors, which activates several 
genes such as cyclins D and E [35, 37, 86, 87, 89]. On 
the other hand, the relationship between primary cilia and 
Wnt signaling pathways is still under debate [35, 37, 90]. 
Gleeson and colleagues demonstrated an important role of 
a primary cilium in the inhibition of canonical Wnt path-
way [91, 92]. In quiescent cells, Jouberin (Jbn), a protein 
associated with Joubert syndrome (a classic ciliopathy), was 
sequestered in cilia but was released from the cilia upon the 
stimulation of the canonical Wnt pathway [91, 92]. Jbn then 
interacts with β-catenin, which facilitates the activation of 
β-catenin-mediated transcription of target genes, such as 
cyclin D [91, 92]. The expression of cyclin D/E leads to 
pRb hyperphosphorylation by Cdks associated with these 
cyclins. This hyperphosphorylation induces E2F-mediated 
gene expression, which progresses cell cycle from G1 to 
S phase [16–18]. In support of these observations, Tctex-1 
depletion, which blocked ciliary resorption, reduced pRb 
phosphorylation and resulted in cell cycle arrest at the  
G0/G1–S transition [49].
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Signaling pathways upstream of Aurora-A

We here consider how Aurora-A may be activated by the 
growth factor-mediated signaling, in particular through cal-
cium signaling. Tucker and colleagues first observed loss 
of cilia in cells treated with platelet-derived growth factor 
(PDGF) or calcium ionophores [34]. Increase in free intracel-
lular calcium is one of earliest events stimulated by growth 
factors including PDGF [35, 93–95] (Fig.  1). Recently, 
Golemis and colleagues [96] reported that Aurora-A was 
activated in response to the elevation of intracellular cal-
cium. This activation was mediated by Aurora-A binding to  
calcium–calmodulin (Ca2+/CaM) [96] and required for 
Aurora-A-dependent ciliary disassembly [46] (Fig.  1; 
Table 1). However, this Ca2+/CaM-mediated activation was 
relatively short (within 3 min) in contrast to Aurora-A activa-
tion observed in ciliary resorption [46, 96]. Since Ca2+/CaM 
also enhanced the binding between Aurora-A and HEF1 [46], 
Aurora-A activity may be maintained by HEF1 (likely by 
Pifo) after the reduction of free intracellular calcium (Fig. 1).

With regard to HEF1 stability during ciliary disassem-
bly, Lee and colleagues pointed out the importance of the 
non-canonical Wnt pathway [97]. Wnt5a-mediated ligand 
stimulation triggered casein kinase 1 epsilon (CK1ε) acti-
vation, which induced Dishevelled 2 (Dvl2) phosphoryla-
tion at Ser143 and Ser224 [97]. This phosphorylation cre-
ated docking sites for Plk1 [97], one of the mitotic kinases 
[40, 43, 98–100]. Dvl2-bound Plk1 inhibited Smad3- 
dependent HEF1 degradation [97]. This Wnt5a–CK1ε–Dvl2/ 
Plk1-mediated HEF1 stabilization enhanced ciliary resorp-
tion by Aurora-A [97, 101]. These findings support a close 
relationship between primary cilia and Wnt signaling  
pathways, but it is still being debated [35, 37, 90].

Tctex-1 function in ciliary resorption also depends on the 
Aurora-A/HEF1 complex [49] (Fig. 2). In a separate study, 
the expressions of both Aurora-A and HEF1 were elevated 
by mutation-induced loss of a protein associated with von 
Hippel–Lindau disease [102]. Thus, upstream molecules 
regulating Aurora-A/HEF1-mediated deciliation start to 
emerge, but less information is available about the mecha-
nism of the molecular switch among Aurora-A activators, 
such as Ca2+/CaM, HEF1, Pifo, and trichoplein during cell 
proliferation.

Conclusions and perspectives

The primary cilium is a dynamic organelle whose assembly 
and disassembly appear to be linked to cell cycle. A series 
of recent publications have strongly suggested the possibil-
ity that the absence of a primary cilium may be a prereq-
uisite for cell cycle progression especially at the G0/G1–S 
transition [47–49]. Due to technical limitations and some 

Fig. 3   Effects of cilia-mediated signaling on cell cycle progression. 
In quiescent state (without the canonical Wnt ligands such as Wnt3a), 
β-catenin leads to degradation through the APC/GSK3β/Axin com-
plex and Jouberin (Jbn) is sequestered in the cilium (left). Upon 
canonical Wnt ligand stimulation (at the G0/G1 transition), Jbn is 
translocated from the cilium to the cytoplasm and associated with 
β-catenin accumulating in the cytoplasm. The interaction between 
Jbn and β-catenin in the cytoplasm promotes the translocation of this 
complex to the nucleus, which in turn stimulates β-catenin-mediated 
transcription of target genes, such as cyclin D [91, 92]. On the other 
hand, in the absence of Hedgehog (Hh) ligand (in quiescent state), the 
Hh receptor Patched (Ptc) is localized in the primary cilium, where 
it suppresses the ciliary localization of Smoothened (Smo; right). Gli 
transcription factors are localized in the cilium but remain inactive. 
Upon Ptc association with Hh ligand (at the G0/G1 transition), Ptc is 
translocated to the cell body, which promotes Smo accumulation at  
the cilium. Smo activates Gli in the cilium, which accelerates the tran-
scription of Gli target genes, such as cyclin D/E [35, 37, 86, 87, 89]. 
The expression of cyclin D/E leads to pRb hyperphosphorylation 
by Cdks associated with these cyclins. This hyperphosphorylation 
induces E2F-mediated gene expression, which advances cell cycle 
from G1 to S phase [16–18]
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exceptions, this possibility remains in dispute. However, the 
argument is fed by observations that most cancer cells lack 
cilia [103–108] and that ciliary formation is suppressed by 
Aurora-A [44–47], a putative oncogene [109, 110]. Inter-
estingly, the inhibition of Aurora-A can cause fatal mitotic 
errors in tumor cells, whereas it may induce healthy cells to 
merely assemble cilia and exit the cell cycle [47]. This dif-
ference of cellular reaction may potentially make Aurora-A 
an attractive target for anti-cancer therapies.

Recent studies also raise a new question of why forced 
induction/absorption of a primary cilium affects cell cycle 
progression. One possible explanation is the preparation of 
centrosome duplication in the S phase: a basal body and its 
associated daughter centriole may not serve as templates 
for centriole duplication. On the other hand, many ciliated 
protozoans are known to duplicate their centrioles without 
deciliation [111]. Therefore, whether entry into the S phase 
requires the absence of a primary cilium may depend on 
cells in which deciliated centrioles are a prerequisite for 
duplication templates. Further investigation will be needed 
to clarify the role of primary cilia (dis)assembly on cell 
cycle progression.
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