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Abstract

Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in
many engineering and computer science applications. Especially the Earth Mover’s Distance is used in a plethora of
applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and
phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known
revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose
substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the
number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for
the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and
pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems
in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell’s
Method.
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Introduction

Finding solutions to the classical transportation problem is of

great importance, since this optimization problem arises in various

guises in many real world and theoretical situations. They occur as

subproblems in larger problems, e.g. the warehouse location

problem or the traveling salesperson problem and also in a variety

of engineering and computer science applications, such as content

based image retrieval [1], automatic scene analysis [2] or for the

discrimination between real and artificial fingerprints [3]. A more

extensive discussion of such applications is given in Section

Applications of the Transportation Problem.

The problem was first described by Monge in 1781 [4] in

somewhat different form and has been analyzed by many

researches including Kantorovich, Hitchcock, Koopmans and

especially Dantzig [5,6], the father of the simplex algorithm. The

solution of this problem is the fundamental ingredient for

computing the Earth Mover’s Distance [1] in computer science

and the Wasserstein distance, also known as Mallows or

Kantorovich distance in statistics and physics, see Chapter 6 in [7].

In order to give a quick and intuitive description of the various

facets of the transportation problem and the revised simplex

algorithm we often use an economic interpretation, which of

course will not reduce the scope of the described algorithms and

their applications in any way. The problem can be summarized as

follows.

Consider a consortium of m production and n consumption

facilities of a certain good. For simplicity these are also referred to

as origins and destinations. Suppose that there is a certain supply

of aiw0 available at origin i, and there is a certain demand of bj at

destination j. The cost for transporting a unit of the good from i to

j shall be given by arbitrary cij [ R. Borrowing the illustration

from Chapter 3 in [7], the production facilities might be Parisian

bakeries cooperating with cafés (consumption facilities), where the

good transported are baguettes, and the cost incurred is the actual

transportation cost. It is assumed that total supply equals total

demand, i.e.
Pm

i~1ai~
Pn

j~1 bj . The objective is then to

determine a transportation plan X~(xij)1ƒiƒm,1ƒjƒn such that

all producers and consumers are satisfied and that the total cost is

minimized. In other words

minimize
Xm

i~1

Xn

j~1

cijxij ð1Þ
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subject to
Xn

j~1

xij~ai for i~1,:::, m, ð2Þ

Xm

i~1

xij~bj for j~1,:::, n, ð3Þ

xij§0 for all i, j: ð4Þ

A dual formulation can be obtained as follows. Suppose that a

carrying company offers to take over the good from the

consortium for a price of ui [ R per unit at origin i and to hand

it back at destination j for a price of vj [ R (any prices may be

negative). In order for the carrier to be competitive, it needs to set

prices ui,vj so that uizvjƒcij for all 1ƒiƒm, 1ƒjƒn. Following

[8] we refer to the difference rij~cij{ui{vj as relative cost
incurred when the consortium takes over the transportation from i

to j itself rather than commissioning the carrier. The carrier would

like to maximize its profit
Pm

i~1 aiuiz
Pn

j~1 bjvj subject to the

price constraint. Standard duality theory, e.g. Chapter 4 in [8]

relates the solutions of the two problems to one another (provided

one of them exists) and shows that the optimal values of the

objective functions are the same.

The rest of the paper is organized as follows. In the next section,

we first give a non-technical description of the revised simplex

algorithm for solving the transportation problem; for a more

detailed presentation see [8]. Then we discuss crucial aspects in

various subsections, starting with pivot strategies, and passing from

cycle finding to treating initialization methods. Next we introduce

the new Shortlist Method for solving the transportation problem.

Benchmark tests reported in the section simulation results clearly

show the advantage of the proposed method over the existing

ones. We conclude with a discussion of the results and review

relevant application scenarios.

The Transportation Algorithm

Using the simplex approach the transportation algorithm

consists of two stages: first, an initial transportation plan X is

constructed such that Equations (2–4) are satisfied. Second, the

initial plan is iteratively improved until the optimal solution is

obtained.

At any time the current feasible plan consists of mzn{1
‘‘active’’ origin/destination pairs (i, j) between which a positive

amount xij is transported (in a degenerate case there might be

pairs with zero amount, but we exclude this case in our

description). We will refer to them as basis pairs or basis entries.

For each iteration in the second stage a basis entry is replaced

by a ‘‘better one’’. For this we first compute the ‘‘dual’’ prices ui

and vj . In the context of the simplex method, these are also known

as simplex multipliers. Starting with an arbitrary value, e.g. setting

u1~0, all other prices are determined by solving the equations

uizvj~cij , where (i, j) are basis entries. A property well-known as

basis triangularity sees to it that every origin and every destination

gets a price assigned in this way.

A new basis entry is then selected as a so-called pivot element by

finding a non-basis pair (i, j) that has negative relative cost

rij~cij{ui{vj , meaning that the consortium can transport goods

more cheaply from i to j by itself than by commissioning the

carrier.

Next, a cycle of changes starting in (i, j) is determined by

alternately scanning rows and columns for basis entries until a

cycle is complete, which again is bound to happen by basis

triangularity. Assuming that all amounts xi’j’ at basis entries are

positive (the non-degenerate case), there is a maximal positive

amount h which we can alternately add and subtract from the

values xi’j’ when following the cycle, starting with addition for the

first value xij . Since the cycle alternates between following rows

and columns, the procedure preserves Equations (2–3).

After this, one of the xi’j’ has been reduced to 0 and we remove

the corresponding pair (i’, j’) from the basis (if several values have

been reduced to zero, we remove the first such entry, but are then

dealing with a degenerate case). The basis still has exactly

nzm{1 entries, and we proceed with the next iteration,

continuing until there are no entries with negative relative cost

any more. In this case we have reached an optimum.

Pivot Strategies
When selecting a pivot element to enter the basis, all non-basis

entries with relative cost rijv0 are candidates. According to

Dantzig’s criterion, the most negative one is chosen. To the best of

our knowledge it is an open question whether a better criterion for

selecting one of these candidates can be formulated in order to

minimize the number of pivot operations until optimality is

reached.

If the algorithm is applied to solve real-world transportation

problems, the goal of a practical implementation is typically to

minimize the runtime on a computer. Our analysis has shown that

two key factors determine the runtime: the number of pivot

operations and the number of elements for which relative costs are

computed in order to select pivot elements.

The former can be made small by computing the relative costs

for all non-basis entries which in turn maximizes the latter (‘matrix

most negative’ strategy). The other extreme is to perform the pivot

operation immediately after discovering the first candidate (‘first

negative’ strategy). In this way, the second factor is minimized at

the cost of an increase of the first. A more balanced strategy is to

compute the relative costs for all non-basis entries of a row and

then choose the most negative among these candidates (‘modified

row most negative strategy’) or go on with the subsequent row, if

no candidate has been discovered. In the next iteration of the

algorithm, continue with the first row not considered in the

previous one. The latter strategy outperformed the others in our

tests, which corroborates earlier findings reported by [9] and by

[10].

Finding Cycles
The procedure of finding cycles of changes can be translated

into a depth-first search (DFS) [11] on the following directed graph

(see also Figure 1): Each basis entry corresponds to two vertices:

one vertex with the basis entries in the same row as incoming

edges and the basis entries in the same column as outgoing edges,

and a second vertex with the basis entries in the same column as

incoming edges and the basis entries in the same row as outgoing

edges. The graph is weakly connected, acyclic and bipartite. By

adding the (two copies of the) pivot element, the graph becomes

cyclic and DFS is an efficient method for discovering the (up to

mirroring) unique cycle. Since each basis entry is connected to all

other basis entries in the same row and the same column, no other

data structure is needed to store the graph than a list of basis

entries for each row and for each column.

Shortlist Method for Fast Computation of the Earth Mover’s Distance
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Considering the example shown in Figure 1, we begin with the

transport plan and graph on the left. Next, we insert F as pivot

element (right) and discover the cycle starting in F1 with depth-first

search. Along the cycle, the minimum of all nodes on the right side

of the graph determines the amount of change h which is

subtracted from B and E (red) and added to D and F (green). One

of the two elements B or E will leave the basis. F2 was not required

during the pivot operation, but alternatively it would have been

possible to use the complementary cycle F2 ? B1 ? D2 ? E1 ?
F2 instead, leading to the same result. Basis elements A and C

remain unchanged during this pivot operation.

Initialization Methods
In the subsequent comparison of methods for constructing an

initial feasible solution (stage one in the transportation algorithm),

we take the following established procedures into account. If a

method generates fewer than mzn{1 basis entries (degenerate

case), we complement them by adding the right number of entries

(i, j) in such a way that all basis entries are connected, i.e. there

are other basis entries in the same row or the same column, but no

cycles are formed and their values xij remain zero.

Northwest Corner Rule. Suppose we list all origins from

i~1 to i~m as rows and all destinations from j~1 to j~n as

columns. This rather naive rule starts in the top left corner and

allocates the maximum possible amount to x11, i.e. the minimum

of a1 and b1. If there remains supply at origin 1, we move to the

right and assign to x12 maximum possible amount. Otherwise if

the demand at destination 1 was larger than the supply, we move

one cell down and continue with assignment x21. And in case that

a1 is equal to b1, we move directly to x22. In this way, we iterate

over all origins and destinations, and we obtain a solution

satisfying Equations (2–4).

Least Cost Rule or Matrix Minimum Rule. This simple

rule determines in each iteration the minimum cost entry cij

among all origins with remaining supply and among all

destinations with remaining demand, and assigns the maximum

possible amount to xij until all requirements are met.

Houthakker’s Method of Mutually Preferred Flows. The

idea of Houthakker’s mutually preferred flows [12] is somewhat

similar to the least cost rule. For all origins that have any supply

left, the minimum cost cij of the corresponding row is determined,

and likewise for all destinations that have any demand left, the

minimum cost cij of the corresponding column is detected. If an

entry (i, j) is both row and column minimum, the maximum

feasible amount is assigned to xij . A difference to the least cost

method is that more than one entry can enter the basis in each

iteration.

Vogel’s Approximation Method. The basic idea of Vogel’s

approximation method [13] is to compute the opportunity costs:

for each not yet exhausted origin and for each remaining

destination, take the difference between its smallest cost and its

second smallest cost. This idea is also the key ingredient for

computing bids and raising prices in the auction algorithm [14]. In

each iteration of Vogel’s approximation method, the row or

column with the maximum opportunity cost is selected and for the

Figure 1. Each graph corresponds to the transport plan shown below. Directed edges are drawn with arrows. The direction from left to right
indicates a ‘same row’ relation between basis entries, right to left shows a ‘same column’ relation. The graph on the left becomes cyclic by adding the
pivot element F to the basis (right).
doi:10.1371/journal.pone.0110214.g001
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minimum cij in that row or column, the maximum possible value

xij is allocated.

Russell’s Method. Russell [15] proposed an approach to

approximate Dantzig’s criterion. In each iteration denote by I the set

of origins i that have any supply left and by J the set of destinations j
that have any demand left. Then determine wi~ maxj[J cij for

every i [ I and yj~ maxi[I cij for every j [ J . The quantities wi

and yj are supposed to approximate the simplex multipliers ui and vj

(see Section 0). Using these estimates, Russell computes in each

iteration (i, j)~argmini[I , j[J (cij{wi{yj) and allocates the max-

imum possible amount to xij .

Modified Russell Method. In this paper, we propose a

modification of Russell’s method which outperforms the original

version on our benchmarks: instead of updating wi and yj , we

compute these values once at the start. Next, we compute a cost

matrix D with dij : ~cij{wi{yj and then, we apply the least cost

rule to this matrix D. The proposed modification saves a lot of

computational time in each iteration by not updating wi and yj

and performs much better in comparison to the original Russell

method.

Weighted Frequency Method. Eight years before Russell,

Habr [16] proposed a related method which he called weighted

frequency method. Let mri be the mean cost of row i and mcj the

mean cost of column j. According to Habr’s method, we define a

matrix F with cost entries fij : ~cij{mri{mcj . The transporta-

tion plan is established by choosing xij in each iteration pursuing

the matrix minimum rule applied to F and assigning the

maximum possible amount to xij . Habr provides a nice theoretical

justification for his method: suppose for each possible entry (i, j)
we consider each possible combination (r,s) with r=i and s=j.
The question whether it is beneficial to include xij in the

transportation plan is answered by comparing the costs cijzcrs

with the costs ciszcrj for all combinations (r,s). Habr showed that

summing up the differences cijzcrs{cis{crj over all possible

combinations is equivalent (up to a constant) to computing the

matrix F .

Row Minimum Rule and Modified Row Minimum

Rule. These two rules [10] iterate over the rows (origins) and

determine for each row i the column (destination) with positive

unassigned demand bj which has the minimum transportation cost

cij . The difference between both rules is that modified row

minimum rule assigns at most one entry xij per row and then

resumes with the next row. The row minimum rule in contrast

repeatedly determines the minimum for row i until the supply of

origin i is completely distributed and only then it continues with

the next row.

Column Minimum Rule and Modified Column Minimum

Rule. These two rules work exactly as the two previous

described methods with rows and columns exchanged.

Alternating Row Column Minimum Rule. This initializa-

tion method combines the modified row minimum rule and the

modified column minimum rule by alternating between rows and

columns.

Two Smallest in Row Rule. The two smallest in row rule [9]

can be regarded as a variant of the modified row minimum rule

that assigns two instead of one entries per row and iteration.

The Shortlist Method

As described in the previous section, the simplex-based

transportation algorithm consists of two stages: an initialization

phase to find a feasible solution and a convergence phase in which

the current solution is iteratively improved to optimality. The

Shortlist Method introduces an additional phase in between these

two. The main steps of the Shortlist Method can be outlined as

follows:

1. A shortlist is created for each origin containing only a small

fraction of all possible destinations.

2. An initial feasible transportation plan is derived from these

shortlists (for an example see Figure 2, left).

3. The transportation plan is improved towards optimality based

on the shortlists.

4. The transportation plan is improved to global optimality based

on the complete matrix (for an example see Figure 2, right).

The crucial part is the third step in which the shortlist search for

a new basis entry balances the computational burden between the

number of elements for which relative costs are calculated and the

number of pivot operations performed.

More precisely the Shortlist Method uses as parameters the

length s of the shortlists and two decision criteria k and p. The four

steps are carried out as follows.

At the beginning, for each origin i, a list of s destinations with

the lowest transportation costs is created, containing the index j of

the destination and the corresponding costs. This shortlist is sorted

in ascending order according to costs by QuickSort [11].

Next, we iterate over all not yet exhausted origins i and assign

the maximum feasible amount to xij with the smallest costs cij

among all destinations j in the shortlist of i. If no such destination

is available any more, the minimum over the remaining j is

chosen. The latter is usually only necessary for very small shortlist

lengths.

In the third phase, we improve the transportation plan X
iteratively considering batches of consecutive shortlists. Starting

from the first shortlist not considered in the previous iteration, we

compute relative costs rij~cij{ui{vj for non-basis entries until k

candidate entries with negative rij have been discovered or p

percent of all shortlists have been searched. Then the batch ends.

We choose the entry with the most negative relative cost for

performing a pivot operation, i.e. we add the entry to the basis,

compute a cycle of changes and remove another entry from the

basis as detailed in Section. Then we go the next iteration.

Whenever the last shortlist has been used, we continue by reusing

the first one. If at any point no more candidates are discovered,

phase three is terminated.

In the final phase, complete rows are searched instead of

shortlists and if a row contains at least one candidate, the most

negative one is chosen; i.e. we perform the simplex-based

transportation algorithm as described in Section with the

‘modified row most negative’ pivot strategy until the optimum is

reached.

Simulation Results

In order to evaluate the performance of the described

initialization methods as a function of the number of origins and

destinations, a benchmark was generated in the following way: On

an empty grid of size 512|512, the x- and y-coordinates of

locations for n origins and n destinations were chosen indepen-

dently and uniformly at random while avoiding double allocations.

Amounts ai and bj were chosen independently and uniformly at

random between 0 and 255. A final adjustment step ensures the

equality of the sum over all ai and the sum over all bj . The cost

matrix C contains as entry cij the Euclidean distance between

origin i and destination j. 100 examples are generated for each

number n of origins and destinations from 100 to 3000 in steps of

100.

Shortlist Method for Fast Computation of the Earth Mover’s Distance
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We make the generated transportation problem examples

available for download, so that other researchers can reproduce

the results and test other methods on the same benchmark. Data

are available from the Dryad Digital Repository: http://doi.org/

10.5061/dryad.k30sg

An implementation of the shortlist method is provided as

part of the R package transport: http://cran.r-project.org/web/

packages/transport/

All initialization methods were implemented to the best of our

knowledge and optimal solutions were computed using the same

revised simplex implementation for all methods. In Figure 3, we

report total runtimes including the runtime for finding an initial

basis and the runtime for the simplex iterations. The total runtimes

are averaged over the 100 examples for each n. The implemen-

tations are written in Java and were tested using one core of an

Intel Core i7 CPU with 3.20 GHz.

We observe that the Shortlist Method outperforms the other

methods by a rather large margin. While for other initialization

methods it is clearly preferable to use the ‘‘modified row most

negative pivot strategy’’ (compare the remark in Subsection), this

makes hardly a difference for the Shortlist Method. We may

attribute this to the fact that this choice of the pivot only enters in

step 4 of the Shortlist Method. However, by the end of step 3 the

solution is already so close to optimality that step 4 does not have

much influence on the total computation time.

The aforementioned parameters of the Shortlist Method were

chosen in the following way. An additional set of examples was

created with 30 examples for each n. For each parameter, a set of a

few possible choices were defined, and in total about thirty of their

combinations were used for computing initial bases and optimal

solutions on this training set. In this way, we obtained the

following rough rule of thumb:

Shortlist length: s : ~15 for nƒ200, then an increase of s by

another 15 for each doubling of n. More precisely,

s : ~15zt15: log2 (n=200)s for nw200.

Stop criteria: (i) k : ~s candidates. (ii) p : ~5% of shortlists are

searched at most in one iteration.

Although these parameter values have been trained, we

consider them to be rather ad hoc, as they were chosen informally

and by considering a few choices only. We understand this as a

proof of concept of the Shortlist Method and as a first step towards

determining good universal parameters that only depend on the

problem size. There are clearly situations, where one has the

opportunity to train the method to more specific features of the

problem at hand, e.g. when comparing images to a larger

database. Then we expect our method to perform even

considerably better than suggested by the above simulations.

Table 1 gives a comparison of our implementation of the

shortlist method with two other programs: the original C code by

Rubner used via the R package emdist [17] and lp_solve [18] by

Berkelaar and others, a general purpose mixed integer linear

programming solver (which accounts to some extent for its long

runtime).

Last but not least, let us note that we have also compared the

different approaches on various collections of real and randomly

generated images, and the respective performances were largely

confirmed.

Discussion

The results for various problem sizes presented in the previous

section demonstrate the potential of the novel approach. The

Shortlist Method outperforms all the other methods on the

considered benchmark and the curves in Figure 3 and 4 suggest

that the performance difference increases with increasing problem

size.

To substantiate this conjecture we have simulated additional

sets of 10 examples for each of the six best performing methods in

the lower panel of Figure 3 in combination with each of the

problem sizes n~400, 800, 1600, 3200, 6400, and 12800. Based

on the literature we have expected polynomial growth of the time

complexity of the problem with an exponent that is somewhat

below 3, i.e. a runtime of roughly the form r~cnq for some

q [ ½2,3�. Since this implies that log (r)~ log (c)zq log (n) one

Figure 2. Visualization of a transportation plan for a very small example with 60 origins (blue) and 60 destinations (red) at the end
of phase two (left; initial feasible solution derived from shortlists) and at the end of phase four (right; global optimal solution). The
diameters of the circles correspond to the mass at these origins and destinations. A greater width and darker color of arrows indicates a larger
amount of mass being transported.
doi:10.1371/journal.pone.0110214.g002

Shortlist Method for Fast Computation of the Earth Mover’s Distance

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e110214

http://doi.org/10.5061/dryad.k30sg
http://doi.org/10.5061/dryad.k30sg
http://cran.r-project.org/web/packages/transport/
http://cran.r-project.org/web/packages/transport/


can expect a roughly linear relation, when drawing the logarithm

of the runtime as a function of the log problem size.

As we can see from Figure 4 this idea works out quite well. We

only plot the results for the Shortlist Method and two competing

methods as the other four competitors would overlap large parts of

the two that are given. The circles indicate the results from our

simulations, whereas the lines have been fitted by least-squares

regression. Note that the lines fit the simulation data very well.

The slopes of the lines provide estimates for the exponents q.

These are given numerically in Table 2 for all seven methods,

together with p-values for testing whether the slope is different

from the q obtained for the Shortlist Method. The p-values are

based on statistical tests for comparing slopes in an ANCOVA

model, see [19, Chapter 13]. Since they are so small, it seems

highly likely that the Shortlist Method has in fact a better time

complexity than the other methods.

Let us also compare the performances of the best six

competitors for our original benchmark to earlier performance

studies from the literature. Based on the results considered in the

lower panel of Figure 3, i.e. based on problem sizes up to 3000,

several initialization methods performed similarly: the modified

column minimum rule, Houthakker’s method and the alternating

Figure 3. Comparison of the Shortlist Method to other methods. Depicted are total runtimes in seconds (for each method and each number
of origins averaged over 100 solved transportation problems) for various initialization methods from the literature combined with one of two pivot
strategies: matrix most negative (top) and modified row most negative (bottom). The total runtime encompasses the runtime for finding an initial
basis and the runtime for the simplex iterations.
doi:10.1371/journal.pone.0110214.g003
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row column minimum rule, followed by the modified row

minimum rule, the least cost rule and the weighted frequency

method.

These results confirm earlier findings reported in [9] and in [10]

on other benchmarks, with one exception: the least cost rule (also

known as matrix minimum rule) performed among the best

competitors in our test and finished among the slowest methods in

[9]. A possible explanation is our implementation which sorts all

matrix entries once in ascending order by transportation costs and

then iterates over the list until the initial solution is obtained. This

procedure is more efficient than determining the matrix cost

minimum in each iteration by scanning all remaining origins and

destinations. Analogously, we can explain the advantage of the

proposed modified Russell’s method over the original Russell’s

method. The speedup gained by the avoidance of scanning large

parts of the complete matrix in each iteration clearly outweighs a

possible quality loss of the initial solution by not updating the

quantities wi and yj which are supposed to approximate the

Table 1. Comparison of the shortlist method with lp_solve [18] and emdist [17]. Runtimes in seconds averaged over 100 solved
transportation problems.

Problem size Method

lp_solve [18] emdist [17] Shortlist

100|100 0.1360 0.0616 0.0054

200|200 1.1839 0.1507 0.0246

300|300 4.3854 0.5705 0.0634

400|400 10.6491 1.8974 0.1245

500|500 22.4806 4.8668 0.2254

600|600 40.4955 9.0441 0.3525

700|700 67.5250 17.0948 0.5269

800|800 104.1458 28.5478 0.7411

900|900 145.6244 42.1987 0.9436

1000|1000 203.5568 62.3756 1.2314

doi:10.1371/journal.pone.0110214.t001

Figure 4. Comparison of the Shortlist Method to two main competitors. Depicted as circles are the logarithms of total runtimes in seconds
(for each method and each number of origins averaged over 10 solved transportation problems) depending on the logarithm of the problem size
(circles). The lines have been fitted by least-squares regression.
doi:10.1371/journal.pone.0110214.g004
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simplex multipliers ui and vj (see The Transportation Algorithm

Section).

Further research includes a systematic large-scale simulation

study to determine good universal parameter settings depending

only on easy-to-determine features of the problem such as problem

size. Also we would like to investigate to what extent computation

times and orders of complexity can be improved when comparing

images within a homogeneous database, where one has the

possibility to train the parameters to the expected type of

transportation problem.

In either case we believe that there is still much room for

improvement of the results obtained above. We expect these

findings to prepare the ground for applications in pattern

recognition, computer vision and image processing, where solving

the transportation problem has so far been considered as

intractable due to the problem size and the runtimes of existing

methods when applied to (smaller) raw gray scale images or

features like curved Gabor filter bank responses [20] or histograms

of invariant gradients (HIG) descriptors [21]. A selection of further

applications is contained in the next section.

Applications of the Transportation Problem

Solving transportation problems efficiently is of great impor-

tance in many different fields of application. We would like to give

an idea of the relevance of fast algorithms by discussing a selection

of specific examples.

Detection of Phishing Web Pages
The earth mover’s distance (EMD) has been applied for the

detection of phishing web pages by Fu et al. [22]. Screenshots are

taken from banking websites and potential phishing sites and the

visual similarity is measured using the EMD. If an anti-phishing

system automatically compares thousands or millions of websites,

the speed of each comparison is an important factor and can

become the bottleneck of the system. In this application scenario,

the speedup by the shortlist method can make a huge difference.

E.g. if web sites are compared at a resolution of 100|100 pixels,

this corresponds to a problem with an approximate dimension of

5000 origins and 5000 destinations.

Linguistics
The EMD has been applied as a measure of dissimilarity when

comparing the distribution of color names among 110 different

languages [23]. Notably, computation of EMDs for 2300 language

vectors took the authors about one week using an industrial

strength LP solver [24]. Due to the computational complexity,

they refrained from evaluating the 23,982 speaker response

vectors.

Content-based Image Retrieval
Since the early days of retrieving images from large databases,

the EMD has been applied for comparing histograms and

signatures [1]. Pele and Werman proposed a thresholded ground

distance which is an EMD variant [25]. For content-based image

retrieval, thresholding the ground distance has a positive effect on

the retrieval accuracy [26].

Fingerprint Recognition
In the area of fingerprint recognition, the EMD has been

applied for discriminating between real and synthetic fingerprint

images based on minutiae histograms [3]. These 2-dimensional

minutiae histograms capture the minutiae distribution as a fixed-

length feature vector which is invariant to rotation, translation and

the variations in the number of minutiae. Scale invariance can be

achieved by scaling input fingerprint images or minutiae templates

to the size of adult fingerprints at a fixed resolution, e.g. 500 DPI.

Fingerprints of adolescents can be enlarged using an age-

dependent scaling factor as described in [27].

Performance Evaluation of Multi-Object Filters
In [28] and [29] the transport idea was used to evaluate the

performance of multi-object filtering and control algorithms.

Using a simulated ground truth of a varying number of objects

moving through space, the online predictions by an algorithm that

had only a cluttered version of the ground truth available was

judged by performance curves over time. These curves at any one

time were defined as the cost of the optimal transport between

predicted configuration and ground truth.

Perceived Plant Color
The EMD was applied for computing color differences between

images of different plant species by Kendal et al. [30].

Comparisons showed that these results were largely consistent

with qualitative assessments by human experts.

Shape Matching
A fast approximation of the EMD for shape matching was

introduced by Grauman and Darrell in [31]. Similar shapes are

retrieved by embedding the mimimum weight matching of the

contour features of a query contour and performing an

approximate nearest neighbors search with locality-sensitive

Table 2. We assume a relation of r~cnq between computation time r and problem size n.

Method factor [:10{8] exponent p-value signif.

Shortlist Method 5:0026 2.4591 —

Alternating Row Col. Minimum Rule 3:9526 2.5510 0.009090 ��
Modified Column Minimum Rule 3:4778 2.5667 0.002624 ��
Modified Row Minimum Rule 3:1825 2.5915 0.000312 � � �
Least Cost Rule 2:3954 2.6362 0.000005 � � �
Weighted Frequency Method 2:0282 2.6574 v10{6 � � �

Houthakker’s Method 1:7119 2.6594 v10{6 � � �

Shown are estimates of the factor c (to be multiplied by 10{8) and the exponent q, together with p-values for the comparison of exponents for the Shortlist versus other
methods. Significance levels correspond to the usual classification: 0v � � �v0:001v � �v0:01v �v0:05v

:
v0:1.

doi:10.1371/journal.pone.0110214.t002
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hashing. Ling and Okada proposed a method [32] that reduces the

computational complexity for computing the EMD between

histograms and they show its usefulness for shape matching and

histogram feature matching. However, the method is restricted to

the taxicab metric (‘1 distance).

Cell Classification
Qiu [33] considered the two-class problem of classifying cells

represented by multi-dimensional flow cytometry data into cells

from healthy donors and cells from patients with acute myeloid

leukemia. The EMD was used by Qiu to compare cell distributions

and to derive features for classification.

Complex Scene Analysis
Ricci et al. apply the EMD idea for analyzing complex scenes

such as frames from videos which change dynamically and they

propose to learn a sparse set of prototypes with EMD [2].

Visual Object Tracking
Zhao et al. address the problem of visual object tracking [34].

They argue that the EMD is suited for capturing the perceptual

differences between images, however, its computational complex-

ity is too large for many potential applications. They propose a

differential EMD for tracking which has a reduced computational

complexity.

Squared Euclidean Distances and the Interpolation of
Shapes and Images

In the last two decades, numerical schemes were proposed for

the special situation that the ground distance is the square of the

Euclidean distance between origins and destinations. Aurenham-

mer et al. [35] proposed an algorithm which uses power diagrams

to transform the transportation problem into an unconstrained

convex minimization problem. Recently, Mérigot [36] improved

this algorithm by solving this optimization problem via a

multiscale approach and applied it to the interpolation of images.

Further methods for solving transportation problems with a

squared Euclidean ground distance were proposed by Benamou

and Brenier [37], by Angenent et al. [38], by Loeper and Rapetti

[39] and by Benamou et al. [40].

Assignment Problems
An important special case of the transportation problem is the

assignment problem, where the numbers of origins and destina-

tions are the same and the mass at each origin and destination is

equal to one.

There exists a multitude of applications in computer science and

electrical engineering as well as in operations research: e.g.

assigning n persons to n jobs, or n computational tasks to n nodes

in a network.

For geographical coordinates obtained at different points in

time for objects like airplanes from radar or satellites, target

tracking can be viewed as an assignment problem by matching

moving targets observed at two points in time. However, if more

than two points in time are considered simultaneously, the

problem becomes a multi index assignment problem which is a

NP-hard problem [41].

Further potential applications can arise in the area of future

public transportation systems: in case of a prevalence of electric

drive vehicles and autonomous driving, the proposed method can

be used to optimally assign cars to recharging locations, using for

recharging e.g. a wireless transmission by electromagnetic

induction.

Conclusions

In this paper, we have introduced the Shortlist Method, which is

a novel approach for solving the classical transportation problem

in full generality (with an arbitrary cost matrix) based on the

simplex algorithm. We have demonstrated that the new method

clearly outperforms previous variants of the simplex algorithm and

two freely available modern solvers of transportation problems on

a rather general benchmark. In view of the host of specialized

transportation problems, we are far from making a claim that the

Shortlist Method is universally the best in any way. However, we

do believe that it is an appealing addition to the zoo of

transportation algorithms that is very versatile and whose full

potential has yet to be uncovered.

There are various other promising approaches to fast solving of

large-scale transportation problems, many for special cost matrices

(e.g. based on squared Euclidean distance, as mentioned in

Section) or considering only rather coarse approximations to the

real problem. Also there are many modern ideas to optimization,

such as the growing class of swarm intelligence algorithms. These

algorithms imitate aspects of the behavioral patterns of social

animals, such as ants (see e.g. [42]) or bees, and have shown

remarkable performance for similar problems in combinatorial

optimization (see e.g. [43,44]).
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