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Abstract The Ewing sarcoma family of tumors is a group of malignant small round blue cell 
tumors (SRBCTs) that affect children, adolescents, and young adults. The tumors are character-
ized by reciprocal chromosomal translocations that generate chimeric fusion oncogenes, the most 
common of which is EWSR1- FLI1. Survival is extremely poor for patients with metastatic or relapsed 
disease, and no molecularly targeted therapy for this disease currently exists. The absence of a 
reliable genetic animal model of Ewing sarcoma has impaired investigation of tumor cell/microen-
vironmental interactions in vivo. We have developed a new genetic model of Ewing sarcoma based 
on Cre- inducible expression of human EWSR1- FLI1 in wild- type zebrafish, which causes rapid onset 
of SRBCTs at high penetrance. The tumors express canonical EWSR1- FLI1 target genes and stain for 
known Ewing sarcoma markers including CD99. Growth of tumors is associated with activation of 
the MAPK/ERK pathway, which we link to dysregulated extracellular matrix metabolism in general 
and heparan sulfate proteoglycan catabolism in particular. Targeting heparan sulfate proteoglycans 
with the specific heparan sulfate antagonist Surfen reduces ERK1/2 signaling and decreases tumori-
genicity of Ewing sarcoma cells in vitro and in vivo. These results highlight the important role of the 
extracellular matrix in Ewing sarcoma tumor growth and the potential of agents targeting proteo-
glycan metabolism as novel therapies for this disease.

Editor's evaluation
This model represents an improvement upon previous zebrafish sarcoma models and the data 
suggest that the methods employed yield tumors that resemble human disease. This new model 
may be used to better understand sarcoma progression so that new therapeutic targets may be 
realized.

Introduction
Ewing sarcoma is an aggressive sarcoma of bone and soft tissue with a peak incidence in adoles-
cents and young adults (Gaspar et al., 2015). Diagnosis relies on histologic and molecular analysis of 
biopsy specimens or surgically resected tumor tissue. Histologic examination of the tumor typically 
reveals sheets of small, round, blue cells with a prominent nucleus and scant cytoplasm. Approxi-
mately 20–25% of patients present with metastases at diagnosis that are often resistant to intensive 
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therapy (Gaspar et al., 2015). Standard multimodal therapy for patients with small round blue cell 
tumor (SRBCT) includes surgical resection and/or local radiotherapy as well as intensive multiagent 
chemotherapy (Grünewald et al., 2018). Ewing sarcoma family tumors are characterized by the pres-
ence of reciprocal chromosomal translocations that fuse a member of the FET family of RNA- binding 
proteins (encoded by FUS, EWSR1, and TAF15), with different members of the ETS (E26- specific) 
family of transcription factors. The most common oncofusion found in 85% of cases is EWSR1- FLI1 
(Delattre et al., 1992; Grünewald et al., 2018). These chimeric fusion oncoproteins act as aberrant 
transcription factors deregulating hundreds of genes (e.g., genes involved in cell- cycle regulation, 
cell migration, and proliferation) by binding DNA enriched with GGAA motifs (Gangwal et al., 2008; 
Guillon et al., 2009; Johnson et al., 2017). These and other studies, made on patient- derived tumor 
tissue and cell lines, have provided great insight into the molecular mechanisms of fusion protein 
function. However, in the absence of a representative in vivo model, other questions, including the 
cell of origin of Ewing sarcoma, mechanisms of tumor initiation, and the relationships between tumor 
and host cells, remain a subject of constant debate.

ERK1 and ERK2 are key effectors in the Ras–Raf–MEK–ERK signal transduction cascade. The phos-
phorylation of ERK1/2 is required for the activation and subsequent phosphorylation of hundreds of 
cytoplasmic and nuclear substrates including transcription factors regulating cell adhesion, migration, 
and proliferation (Meloche and Pouysségur, 2007). ERK1/2 activity is required for transformation 
of NIH- 3T3 cells by EWSR1- FLI1 (Silvany et  al., 2000). In therapy- naive Ewing sarcoma samples, 
combined expression of pAKT, pmTOR, and pERK predicted worse progression- free and overall 
survival (van de Luijtgaarden et al., 2013). ERK is a downstream target of insulin- like growth factor 
signaling, however the prognostic impact of IGF- 1 and IGF- 1 receptor expression in Ewing sarcoma is 
controversial (Scotlandi et al., 2011). These findings raise the question of precisely which mechanisms 
drive ERK1/2 signaling in Ewing sarcoma, including the possible role of the tumor microenvironment.

The tumor microenvironment plays an important role in determining tumor cell growth, survival, 
and response to treatment. The tumor microenvironment is composed of various cell types embedded 
in an altered extracellular matrix (ECM). The ECM is a three- dimensional network of extracellular 
proteins, collagen, glycoproteins, and signaling molecules that provide structural and biochemical 
support to surrounding cells, as well as playing an essential role in signal transduction (Kim et al., 
2011). Proteoglycans are key molecular effectors of the cell surface and pericellular microenvironment 
with essential roles in signal transduction and regulating cell adhesion, migration, and differentiation. 
Signaling between cells is modulated by proteoglycan activity at the cell membrane (Elfenbein and 
Simons, 2010). They have an ability to interact with both ligands and receptors that could directly 
affect cancer growth (Edwards, 2012; Iozzo and Sanderson, 2011; Multhaupt et al., 2016; Myth-
reye and Blobe, 2009). Importantly, heparan sulfate proteoglycans play an essential role in differen-
tiation and migration of both neural crest and mesenchymal cells – both of them are considered as 
potential cell of origin of Ewing sarcoma (Henderson and Copp, 1997; Long and Huttner, 2019; 
Papy- Garcia and Albanese, 2017; Yaylaci et al., 2016). To date, however, little is known about the 
role of proteoglycans and activation of ERK1/2 signaling in Ewing sarcoma development.

A genetic animal model of Ewing sarcoma family of tumors would thus be highly valuable as a 
complement to existing xenograft models in both mouse and zebrafish (El- Naggar et  al., 2015; 
Grünewald et  al., 2018) for exploration of cooperating genetic factors for tumor development 
and for testing the role of the complex microenvironment in tumor progression. However, multiple 
attempts to create genetically engineered mouse models of Ewing sarcoma have not yielded a trac-
table model, likely due to the developmental toxicity of heterotopic expression of the oncofusion 
(Minas et al., 2017). Previously, we demonstrated that transposon- mediated expression of human 
EWSR1- FLI1 drives SRBCT formation in zebrafish from 6 to 19 months of age (Leacock et al., 2012). 
While serving as proof of principle that EWSR1- FLI1 is tumorigenic in fish, the model had some limita-
tions, including low penetrance, requirement for tp53 deficiency, and a low incidence of other tumor 
types such as leukemias.

Here, we describe a Cre- inducible invasive model of Ewing Sarcoma in zebrafish that reproducibly 
develops tumors in wild- type backgrounds. We characterize tumors and show that they recapitulate 
the main aspects of the human disease. Using this model, we show that tumor growth is associated 
with the activation of the ERK1/2 signaling pathway, and that EWSR1- FLI1 upregulates expression of 
proteins involved in extracellular matrix reorganization and heparan sulfate proteoglycan catabolism. 

https://doi.org/10.7554/eLife.69734
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We demonstrate that surfen, a heparan sulfate antagonist, effectively reduces proteoglycan- mediated 
activation of ERK1/2 signaling in Ewing sarcoma cell lines and zebrafish models, leading to decreased 
proliferation of Ewing sarcoma tumor cells in vitro and in vivo.

Results
Cre-inducible expression of EWSR1-FLI1 drives SRBCT development in 
zebrafish
We reasoned that the low penetrance of tumors and requirement for loss of tp53 function in our orig-
inal zebrafish Ewing sarcoma model (Leacock et al., 2012) might be due to developmental toxicity of 
EWSR1- FLI1, similar to what was described in mouse models (Minas et al., 2017). This is especially 
true since microinjection is performed into single- cell- stage embryos, allowing integration of trans-
posons into cell populations early in development. We therefore tested several strategies, beginning 
with expression of EWSR1- FLI1 under ubiquitous and tissue- specific promoters in wild- type zebrafish 
embryos (Figure 1A). All constructs incorporated eGFP (Enhanced Green Fluorescent Protein) linked 
to EWSR1- FLI1 via a viral 2A linkage, to allow fluorescent labeling of EWSR1- FLI1- expressing cells via 
an unfused eGFP (Provost et al., 2007). Consistent with our previous data (Leacock et al., 2012), 
constitutive expression of eGFP- 2A-EWSR1- FLI1 under the beta- actin promoter in wild- type fish 
caused high embryonic lethality and low incidence of tumor formation (Figure 1—figure supplement 
1A). We obtained similar results with other ubiquitous promoters including cmv and ubiquitin (ubi). 
On the other hand, expression of EWSR1- FLI1 from tissue- specific promoters (sox9b, fli1a, and mitfa) 
failed to produce tumors (Figure 1—figure supplement 1A, data not presented). Some of these 
promoters become active only during somitogenesis or at later stages, suggesting that the develop-
mental stages or lineages marked by these promoters were no longer susceptible to transformation 
by EWSR1- FLI1.

Based on these results, we suspected that at early stages of development, beyond the initial prega-
strulation stage but prior to the onset of somitogenesis, there might be a population of cells that 
would be susceptible to transformation. We accordingly designed a Cre- inducible allele (loxP- DsRed- 
STOP- loxP- eGFP- 2A-EWSR1- FLI1, henceforth Red- STOP- Green or ‘RSG’-EWSR1- FLI1) that would 
allow more control over the timing of EWSR1- FLI1 expression. Injection of RSG- EWSR1- FLI1 trans-
poson and Tol2 transposase, along with mRNA encoding Cre, allows for a short delay in expression of 
EWSR1- FLI1, as the Cre mRNA must be translated before recombination can occur. Initial attempts to 
generate tumors with RSG- EWSR1- FLI1 driven by the beta- actin promoter (Figure 1—figure supple-
ment 1B and Figure 1—figure supplement 2B, C) caused early apoptosis (Figure 1—figure supple-
ment 2A) and the growth of cranial cell masses (Figure 1—figure supplement 2D), however failed to 
recapitulate the histologic appearance of Ewing sarcoma (Figure 1—figure supplement 2E).

In contrast, coinjections of Cre mRNA with expression constructs in which RSG- EWSR1- FLI1 is driven 
by the ubiquitin promoter led to robust, mosaic expression of EWSR1- FLI1 and eGFP (Figure 1A, B). 
To estimate the frequency of tumor development using this approach, injected fish were sorted for 
eGFP at 14 days post- fertilization (dpf) and a cohort of 77 fish was monitored up to 4 months. To 
control for promoter leakiness, we injected embryos with ubi:RSG- EWSR1- FLI1 in the presence of 
GFP RNA (142 fish). Uninjected embryos were used as an additional negative control (150 fish). We 
found that 34% of eGFP- positive fish developed tumors with onset during the first 3–4 weeks post- 
fertilization (Figure 1C) exhibiting SRBCT histology (Figure 1D, Figure 1—figure supplement 3C). 
No tumors were observed in either control group. Among the fish developing tumors, 42% developed 
a single tumor, while 58% of fish had two or more tumors (Figure 1—figure supplement 3A). EWSR1- 
FLI1- driven tumors arose most frequently in the dorsal regions of the fish (Figure 1E). Thirty- seven 
percent of tumors were SRBCTs associated with the dorsal fin radial bones, while a further 15% of 
tumors arising from similar locations showed deep muscle invasiveness and were characterized as 
SRBCT with diffuse striated muscle infiltration. 9% and 21% of tumors were associated with the skel-
eton of caudal and anal fins, respectively. Finally, we observed several tumors that appeared to arise 
from the cranial skeleton or the brain. In summary, the inducible ubi:dsRed- stop- eGFP2A- EWSR1- FLI1 
allele efficiently induced bone and soft- tissue small round blue cell sarcomas in fish, without require-
ment for impaired tp53 function.

https://doi.org/10.7554/eLife.69734


 Research article      Cancer Biology

Vasileva et al. eLife 2022;11:e69734. DOI: https://doi.org/10.7554/eLife.69734  4 of 25

EWSR1-FLI1-driven tumors in zebrafish recapitulate the main aspects of 
human Ewing sarcoma
To further characterize the zebrafish model, we performed immunohistochemistry (IHC) on tumors 
with antibodies specific for human FLI1 and CD99 (Figure 2A, Figure 2—figure supplement 1A, C). 
As expected, tumor cells had nuclear localization of EWSR1- FLI1, whereas control fish had no expres-
sion of FLI1 in the corresponding sites (Figure 2—figure supplement 1A, top panel). CD99 is a cell 
surface glycoprotein that serves as a sensitive, clinically useful marker for Ewing sarcoma (Muhammad 

Figure 1. Cre- inducible expression of EWSR1- FLI1 drives small round blue cell tumor (SRBCT) development in zebrafish. (A) Overview of experimental 
method. The Tol2 transposon system was used to integrate human EWSR1- FLI1 into the wild- type zebrafish genome by microinjection into single- cell- 
stage embryos. (enhanced Green Fluorescent Protein) eGFP- positive fish were monitored up to 4 months. (B) Constructs for Cre- inducible expression of 
EWSR1- FLI1. (C) Incidence of eGFP+ tumors detected in Ubi:RSG- EWSR1- FLI1; Cre RNA (n = 77) injected zebrafish versus Ubi:RSG- EWSR1- FLI1; eGFP 
RNA (n = 142) and uninjected controls (N = 150) in a wild- type genetic background (p < 0.001 by log- rank test). (D) Representative images of eGFP- 
positive tumors in zebrafish (top panel) and H&E staining of tumor sections (bottom panel): (I) SRBCT with diffuse skeletal muscle infiltration and (II) 
visceral SRBCT arising from fin dorsal radial bone. Scale bars, 100 μm. (E) Percent tumor incidence at different anatomic sites.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The Tol2 transposon- based system was used to integrate EWSR1- FLI1 into the zebrafish genome by microinjection into single- 
cell- stage zebrafish embryos.

Figure supplement 2. The Tol2 transposon- based system was used to integrate b- actin:RSG- EWSR1- FLI1 into the wild- type zebrafish genome.

Figure supplement 3. Mosaic model of Ewing sarcoma generated by the microinjection of ubi:RSG- EWSR1- FLI1 plus Cre mRNA into single- cell- stage 
embryos.

https://doi.org/10.7554/eLife.69734
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Figure 2. Zebrafish tumors phenocopy human Ewing sarcoma. (A) Representative image of Ewing sarcoma tumor in WT zebrafish. H&E staining, 
immunohistochemistry (IHC) staining with anti- FLI1 and anti- CD99 antibodies. Scale bars, 100 μm. (B) H&E and Periodic acid- Schiff (PAS) staining of 
zebrafish tumors. Scale bars, 50 μm. (C) Relative mRNA expression of human EWSR1- FLI and zebrafish nr0b1 in normal and tumor tissues. Error bars 
represent standard error of the mean (SEM), N = 3, *p < 0.05, **p < 0.01, two- tailed Student’s t- test. (D) Immunofluorescence staining of zebrafish tumor 
with anti- eGFP and anti- FLI1 antibodies. Scale bars, 20 μm. (E) Validation of EWSR1- FLI1 expression in tumors at different sites by immunoblotting. (F) 
Gene set enrichment analysis (GSEA) comparing the enrichment of common upregulated proteins at dorsal, caudal and pectoral fin tumors to human 
Ewing sarcoma (GSE17674) and human Rhabdomyosarcoma (GSE108022) datasets.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Validation of zebrafish model of Ewing sarcoma.

https://doi.org/10.7554/eLife.69734


 Research article      Cancer Biology

Vasileva et al. eLife 2022;11:e69734. DOI: https://doi.org/10.7554/eLife.69734  6 of 25

et al., 2012). IHC confirmed the presence of CD99 on the cell surface of zebrafish Ewing sarcoma 
tumor cells (Figure 2A, Figure 2—figure supplement 1C).

Ewing sarcoma cells are characterized by the presence of the glycogen and are positive for Peri-
odic acid- Schiff (PAS) staining (Muhammad et al., 2012). Consistently, zebrafish tumors were positive 
for PAS staining (Figure 2B). NR0B1 is a target of EWSR1- FLI1 that directly modulates transcription 
and oncogenesis in Ewing sarcoma (Kinsey et al., 2009). Analysis of relative RNA expression showed 
upregulated expression of nr0b1 in tumor tissues compared to normal (Figure 2C), correlating with 
EWSR1- FLI1 expression level in tumor samples (N of repeats = 3, N of replicas = 3). Recently, it was 
shown that Ewing sarcoma cells exhibit cell- to- cell heterogeneity affecting proliferative and migra-
tory potential of tumor cells (Franzetti et al., 2017). To test whether zebrafish tumor cells express 
EWSR1- FLI1 on different levels we performed immunofluorescence staining of tumor sections with 
anti- eGFP and anti- FLI1 antibodies (Figure 2D). eGFP staining was used to label all tumor cells within 
the tumor, while FLI1 staining was implemented to detect the EWSR1- FLI oncofusion in tumor cells 
(Figure 2D). Staining of zebrafish tumors showed that cells have varying levels of EWSR1- FLI1. Thus, 
the zebrafish model appears to recapitulate the cell- to- cell heterogeneity found in human Ewing 
sarcoma cells.

To test whether tumors express EWSR1- FLI1 on the protein level we collected tumor and normal 
tissues at different sites (dorsal, caudal, and pectoral fins) and processed them for immunoblot anal-
ysis. All tumor samples expressed EWSR1- FLI1 (Figure 2E) (N of repeats = 3, N of replicas = 3). We 
next performed liquid chromatography–mass spectrometry (LC–MS/MS) analysis of protein samples 
made from single tumor dissected from dorsal, caudal, and pectoral fins. Normal tissues from the 
corresponding sites were used as controls. We first identified a set of 194 proteins that were commonly 
upregulated in the zebrafish tumors compared to control tissues (p < 0.05). To test the similarity of fish 
and human Ewing sarcoma, we used gene set enrichment analysis (GSEA) (Subramanian et al., 2005) 
to test the enrichment of the 194 upregulated proteins in a publicly available RNA- seq dataset of 44 
human Ewing sarcoma tumors and 18 normal samples Series (GSE17674). Previously, it was shown 
that differentially expressed mRNAs correlate significantly with their protein products (Koussoun-
adis et al., 2015). As a further test of specificity, we compared the fish tumors to another RNA- seq 
dataset of 44 human rhabdomyosarcoma tumors and 5 normal samples (GSE108022). GSEA showed 
enrichment of zebrafish tumor upregulated genes (NES = 1.501, FWER = 0.029) in the human Ewing 
sarcoma dataset but not in human rhabdomyosarcoma (NES = −1.476, FWER = 0.024) (Figure 2F). To 
enhance our analysis, we used publicly available data of proteins significantly upregulated in human 
mesenchymal cells after the expression of EWSR1- FLI1, considering that expression of the oncofusion 
in normal human cells best mimics the transformation process (Tanabe et  al., 2018) (oncotarget- 
09- 14428 s009). We used that list of upregulated proteins to run the GSEA to evaluate the enrichment 
of those hits in our zebrafish tumors dataset (Figure 2—figure supplement 1B). We found that the 
list of proteins was significantly upregulated in zebrafish tumors (NES: 1.540, FWER p value: 0.048) 
confirming similarity between zebrafish and human disease (Figure 2—figure supplement 1B). Taken 
together, the histologic appearance, marker expression, and gene expression establish the similarity 
of zebrafish EWSR1- FLI1- induced sarcomas to human Ewing sarcoma.

Characterization of embryonic model of ES
In most murine models, EWSR1- FLI1 expression is toxic and causes embryonic lethality (Minas et al., 
2017). To estimate the developmental toxicity of EWSR1- FLI1 expression in zebrafish we performed 
survival analysis in a group of 524 animals. Uninjected embryos (N = 528), embryos injected with 
ubi:RSG- EWSR1- FLI1 and GFP mRNA (N = 328) and embryos injected with ubi:RSG and Cre mRNA 
(N = 304) were used as negative controls. Expression of EWSR1- FLI1 significantly increased embryonic 
mortality in zebrafish (Figure 3A).

To characterize the effects of EWSR1- FLI1 expression during early stages of zebrafish development 
we integrated the ubi:RSG- EWSR1- FLI1 cassette into the zebrafish genome in the presence of Cre 
mRNA (Figure 3B, top panel). Negative controls included coinjection of Cre mRNA with an ubi:RSG 
construct that lacks EWSR1- FLI1 (Figure 3B, middle panel) and coinjection of ubi:RSG- EWSR1- FLI 
with GFP mRNA (Figure 3B, bottom panel). Embryos were imaged at 12 hr post- fertilization (hpf), 
24 hpf, and 5 dpf. The timeline demonstrates that eGFP driven by the ubi promoter is expressed 
broadly, including throughout the muscle (Figure 3B, middle panel). However, zebrafish expressing 

https://doi.org/10.7554/eLife.69734
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Figure 3. Validation of EWSR1- FLI expression in zebrafish embryos. (A) Rate of embryos expressing EWSR1- FLI1 during the first 10 days of development 
(N = 524 Survival). Uninjected embryos (N = 528) as well as embryos injected with ubi:RSG-EWSR1- FLI1 plus GFP mRNA (N = 328) or ubi:RSG plus Cre 
mRNA (N = 304) were used as negative controls (p < 0.001 by log- rank test). (B) Timeline of zebrafish development after injection with ubi:RSG-EWSR1- 
FLI1 plus Cre mRNA (top panel). Zebrafish injected with ubi:RSG-EWSR1- FLI1 plus GFP mRNA (middle panel) or ubi:RSG plus Cre mRNA (bottom panel) 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.69734
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eGFP- 2A- EWSR1- FLI1 under the ubi promoter have a distinct distribution pattern of eGFP- positive 
cells (Figure 3B, upper panel), predominantly on the fish dorsum, tail, and fins (Figure 3B, upper 
panel).

To confirm the expression of EWSR1- FLI1 in the zebrafish embryo model, we collected embryos 
expressing low (GFP+), medium (GFP++), and high (GFP+++) levels of EWSR1- FLI1 (Figure 3C) for 
analysis via qRT- PCR (Figure 3D) or immunoblot (Figure 3E). Each sample consisted of 10 embryos 
at 24 hpf (N of repeats = 3, N of replicas = 3). Upon Cre- mediated recombination, EWSR1- FLI is effi-
ciently expressed in embryos on both the RNA and protein levels (Figure 3D, E).

We also found that EWSR1- FLI1 drives the formation of outgrowths in embryonic model of the 
disease (Figure 3F). To better characterize the EWSR1- FLI1- expressing cells we evaluated nkx2.2a 
gene expression in zebrafish outgrowths. NKX2.2 is an immunohistochemical marker that has been 
reported to be sensitive and specific for Ewing sarcoma in human (McCuiston and Bishop, 2018). 
Because there are no available antibodies for zebrafish nkx2.2a we optimized an RNA scope approach 
to evaluate RNA expression of nkx2.2a in whole mount embryos. We generated fish mosaically 
expressing EWSR1- FLI1 and sorted animals with EWSR1- FLI1- induced tumors at 24 hpf. Embryos were 
fixed in 4% paraformaldehyde (PFA and used for double RNAscope staining for nkx2.2a (529751- C2 
RNAscope Probe – Dr- nkx2.2a- C2)) and eGFP (538851 RNAscope Probe – EGFP- O4). Normally 
nkx2.2a is expressed in the spinal cord (Figure 3F, control). We found that consistent with human 
data the EWSR1- FLI1- expressing cells in tumor were also positive for nkx2.2a (Figure 3F, EWSR1- FLI).

In summary, the Cre- inducible allele leads to robust and reproducible expression of human 
EWSR1- FLI1 with limited spatial distribution during early zebrafish embryogenesis. Developmental 
toxicity, while much less than that caused by EWSR1- FLI1 expression under b- actin and cmv promoters, 
does impact the survival of larvae over the first 10 days of life. Finally, EWSR1- FLI1 drives the forma-
tion of nkx2.2a- positive outgrowths in embryonic model of the disease.

EWSR1-FLI1 expression leads to activation of ERK1/2 signaling in 
zebrafish embryos and adult tumors
Our finding that expression of EWSR1- FLI1 in early embryos leads to a high prevalence of tumors in 
adult zebrafish led us to examine the behavior of cells expressing EWSR1- FLI1 in developing embryos, 
to understand early events in tumorigenesis. Zebrafish embryos mosaically expressing EWSR1- FLI1, 
but not control embryos, developed outgrowths visible as discrete cell masses. Immunostaining 
with anti- phospho- histone H3 (pH3) showed increased cell proliferation in these areas, associated 
with expression of EWSR1- FLI1 as indicated by the associated eGFP marker (Figure 4A). The Ras–
MAPK–ERK signaling pathway transduces signals downstream of growth factor receptors, and is an 
important mediator of cell proliferation during embryonic development and in cancer (Kamiya et al., 
2015; Maekawa et al., 2007; Steinmetz et al., 2004; Wong et al., 2018; Yang et al., 2020; Zhou 
et  al., 2019). To assess the contribution of MAPK–ERK signaling to formation of outgrowths, we 
performed immunofluorescence staining for the active, phosphorylated form of ERK1/2 (pERK1/2). 
Cells expressing EWSR1- FLI1 were positive for pERK1/2 (Figure 4B). While most pERK1/2- positive 
cells also expressed EWSR1- FLI1 (Figure 4C, Videos 1 and 2), some surrounding cells lacking the 
transgene were also marked with pH3 and pERK1/2 (Figure 4—figure supplement 1A). Thus, activa-
tion of ERK1/2 signaling is an early event in EWSR1- FLI1- driven aberrations.

To test whether the activation of ERK1/2 signaling is also a feature of mature zebrafish tumors we 
performed ERK1/2 pathway analysis in zebrafish tumors. We used GSEA to determine the enrich-
ment of genes associated with ERK1/2 pathway (GOBP_ERK1_AND_ERK2_CASCADE) in zebrafish 
tumors. We found that the GOBP_ERK1_AND_ERK2_CASCADE gene set was significantly enriched 
in zebrafish tumor proteomic dataset (NES:1.3867193, FWER p value: 0.03) (Figure 4D). To confirm 
this finding, we prepared histologic sections of tumors and performed IHC for pERK1/2 (Figure 4E, 

were used as negative controls. Images were taken at 12 hpf, 24 hpf, and 5 dpf time points. (C) Representative image of embryos with low (GFP+), 
medium (GFP++), and high (GFP+++) levels of EWSR1- FLI1 expression. (D) Relative mRNA expression of EWSR1- FLI1 in embryos with low (GFP+), 
medium (GFP++), and high (GFP+++) levels of EWSR1- FLI1 according to eGFP signal. (E) Immunoblot confirming the expression of EWSR1- FLI1 protein 
in embryos with low (GFP+), medium (GFP++), and high (GFP+++) levels of EWSR1- FLI1 expression according to eGFP signal. (F) RNA scope staining of 
control and EWSR1- FLI1- positive embryos for nkx2.2a (529751- C2 RNAscope Probe – Dr- nkx2.2a- C2) and eGFP (538851 RNAscope Probe – EGFP- O4).

Figure 3 continued

https://doi.org/10.7554/eLife.69734
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Figure 4. EWSR1- FLI expression activates the ERK1/2 signaling pathway in vivo. (A) Immunofluorescent staining of eGFP (control) and eGFP2A- EWSR1- 
FLI1- expressing embryos at 48 hpf. Blue: phosphohistone H3. Green: eGFP or eGFP2A- EWSR1- FLI1. A small region of the dorsal surface is shown. The 
outgrowth is outlined with a dashed white line. Scale bars, 20 μm. (B) Immunofluorescent staining of eGFP (control) and eGFP2A- EWSR1- FLI1- expressing 
embryos at 24 hpf for pERK1/2 (red) and eGFP. Scale bars, 100 μm. (C) Immunofluorescent staining of eGFP (control) and eGFP2A- EWSR1- FLI1- 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.69734


 Research article      Cancer Biology

Vasileva et al. eLife 2022;11:e69734. DOI: https://doi.org/10.7554/eLife.69734  10 of 25

Figure 4—figure supplement 1B), complemented by immunoblot analysis (Figure 4F) (N of repeats 
= 3, N of replicas = 3). Similar to EWSR1- FLI1- driven outgrowth in larvae, ERK1/2 is active in advanced 
zebrafish tumors. ERK1/2 signaling activity in tumors was heterogeneous, with focal areas showing 
Video 1 more intense signaling activity.

EWSR1-FLI1 affects proteoglycan metabolism in zebrafish embryonic 
model
To gain further insight into the impact of EWSR1- FLI1 expression during early tissue and organ devel-
opment and the mechanisms driving increased growth factor signaling and cell proliferation, we 
performed MS analysis. As above, we integrated the ubi:RSG- EWSR1- FLI1 cassette into the zebrafish 
genome in the presence of Cre mRNA. The control group of embryos was coinjected with an ubi:RSG 
transposon and Cre mRNA. Embryos were sorted for eGFP expression at 24 and 48 hpf time points 
and used to generate samples for LC–MS/MS analysis. Each sample consisted of 10 embryos (N of 
replicas = 3). EWSR1- FLI1 significantly affects protein expression in zebrafish embryos (Figure 5A). 
We identified 248 differentially expressed proteins affected by EWSR1- FLI1 at 24 hpf, and 1102 at 48 
hpf (Figure 5B). Downregulated proteins comprised 65% and 73% of differentially expressed proteins 
at 24 and 48 hpf, respectively, suggesting that EWSR1- FLI1 was acting mostly as a transcriptional 
repressor rather than an activator (Figure 5B).

Gene ontology (GO) enrichment analysis of proteomics data at the 48 hpf time point showed 
that downregulated proteins were involved in regulation of cell metabolism (Figure 5C). Importantly, 
we found a strong upregulation of proteins involved in extracellular matrix (ECM) reorganization, 
proteoglycan metabolism, and protein synthesis (Figure  5D). The proteomics data revealed that 
EWSR1- FLI1 expression in zebrafish embryos is associated with upregulated expression of collagens 
col1a1b, col1a2, col2a1a, col9a1b, col9a2, and col28a2a, which are involved in ECM organization and 
skeletal system development. Proteins involved 

expressing embryos at 48 hpf for pERK1/2 (red), pH3 (blue), or eGFP (green). Scale bars, 20 μm. (D) Gene set enrichment analysis (GSEA) showing the 
enrichment of genes associated with ERK1/2 pathway (GOBP_ERK1_AND_ERK2_CASCADE) in zebrafish tumors. (E) Immunostaining of zebrafish tumor 
for pERK1/2. (F) Immunoblot analysis and immunoblot quantification of pERK1/2 and ERK1/2 levels in tumor and normal tissue. Error bars represent 
standard error of the mean (SEM), N = 3, *p < 0.05, two- tailed Student’s t- test.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Immunostaining of zebrafish tumors for pERK1/2.

Figure 4 continued

Video 1. Immunofluorescence staining of a 48 hpf 
zebrafish embryo for pERK1/2 (red), EWSR1- FLI1 
(green), and pH3 (blue). Confocal Z- stack focusing on a 
region of the trunk and dorsal fin.

https://elifesciences.org/articles/69734/figures#video1

Video 2. Immunofluorescence staining of a tumor 
outgrowth in 48 hpf zebrafish embryo for pERK1/2 (red), 
EWSR1- FLI1 (green), and pH3 (blue). Confocal Z- stack 
focusing on an outgrowth arising from the dorsal 
surface of the embryo.

https://elifesciences.org/articles/69734/figures#video2

https://doi.org/10.7554/eLife.69734
https://elifesciences.org/articles/69734/figures#video1
https://elifesciences.org/articles/69734/figures#video2
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Figure 5. Liquid chromatography–mass spectrometry (LC–MS/MS) analysis of proteins affected by EWSR1- FLI1 expression in developing zebrafish. (A) 
Heat map representing the differentially expressed proteins dysregulated by EWSR1- FLI1 at 24 and 48 hpf. (B) Quantitative analysis of the differentially 
expressed proteins at 24 and 48 hpf. (C, D) Gene ontology (GO) analysis of differentially expressed proteins at 48 hpf. (E) Volcano plot of significantly 
downregulated and upregulated proteins in EWSR1- FLI1- expressing embryos. (F) Heatmap of the most differentially expressed proteins involved in 
proteoglycan metabolism in human Ewing sarcoma compared to normal tissue (GSE17674).

https://doi.org/10.7554/eLife.69734
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in proteoglycan catabolism were also significantly differentially expressed in embryos expressing 
EWSR1- FLI1 (Figure 5E). Among the top identified hits was N- sulfoglucosamine sulfohydrolase (sgsh), 
the enzyme involved in heparan sulfate proteoglycan catabolism (Figure 5E). We also found upreg-
ulated gnsb and gnsa (N- acetylglucosamine- 6- sulfatase) enzymes involved in hydrolysis of heparan 
sulfate chains.

To compare results obtained from proteomics data of Ewing sarcoma zebrafish model with those 
from human Ewing sarcoma, we analyzed the profile of proteins associated with proteoglycan metab-
olism from microarray data of 44 Ewing sarcoma samples and 18 normal tissue samples (GSE17674). 
Expression of enzymes involved in proteoglycan metabolism was strongly upregulated in tumor 
samples compared to normal tissue (Figure  5F). Specifically, we found upregulation of enzymes 
involved in the catabolism of heparan sulfate proteoglycans (including SGSH, GNS, HS3ST4, HS3ST1, 
HS2ST1, and HS6ST1) in human Ewing sarcoma (Figure 5F). Furthermore, proteoglycan metabolism 
was also strongly dysregulated in Ewing sarcoma tissues.

Taken together, our genetic model of Ewing sarcoma revealed that EWSR1- FLI1 expression 
dysregulates normal protein expression starting from early zebrafish development. The expression 
of EWSR1- FLI1 is associated with strong upregulation of ECM proteins and, most notably, enzymes 
involved in heparan sulfate proteoglycan catabolism. Supporting these data, we show that the genes 
involved in proteoglycan metabolism are strongly upregulated in human Ewing sarcoma tumors.

Surfen inhibits proteoglycan-mediated activation of ERK1/2
Proteoglycans play a key regulatory role in the interactions of cells with ECM proteins, growth factors, 
and cytokines, and thus have major influence on cell signaling pathways that directly affect cancer 
growth (Edwards, 2012; Iozzo and Sanderson, 2011; Multhaupt et al., 2016; Mythreye and Blobe, 
2009). Our finding that EWSR1- FLI1 expression is associated with altered proteoglycan expression 
and metabolism suggests that dysregulation of proteoglycans may contribute significantly to growth 
promoting signaling pathways in Ewing sarcoma, including ERK signaling. Thus, proteoglycan metab-
olism could serve as a novel target for Ewing sarcoma. To test these possibilities, we performed 
treatment of Ewing sarcoma cell lines with the small molecule surfen (bis-2- methyl- 4- amino- quinolyl- 
6- carbamide). Surfen is a sulfated heparan sulfate antagonist with a high affinity to all sulfated GAGs 
(Schuksz et al., 2008). Surfen blocks sulfation and degradation of GAG chains in vitro and affects 
growth factor binding and proteoglycan- mediated signal transduction through certain cell surface 
growth factor receptors (Schuksz et al., 2008).

First, we tested whether surfen can block proteoglycan- mediated activation of ERK1/2 signaling in 
the TC32 and EWS502 Ewing sarcoma cell lines. To reduce the basal level of ERK1/2 phosphorylation 
we performed pretreatment of cells with serum- free media for 4 hr, and then replaced serum- free 
media with the full- media in the presence of 1% DMSO or 2.5, 5, or 10 μM surfen. After 30 min of 
treatment, cell lysates were prepared and analyzed by immunoblotting. Samples were normalized 
to the value of total ERK1/2. As expected, the introduction of serum led to the activation of ERK1/2 
signaling (Figure 6, B). Addition of 5 or 10 μM surfen strongly significantly inhibited ERK1/2 phosphor-
ylation (Figure 6A, B). Thus, blocking proteoglycan metabolism impairs ERK1/2 signaling in Ewing 
sarcoma cells.

We next tested the effect of surfen treatment on the proliferation rates of TC32 and EWS502 cells 
exposed to surfen or DMSO vehicle. Treatment with surfen significantly reduces the proliferation rates 
of Ewing sarcoma cells (Figure 6C). Importantly, treatment of cells with surfen at 10 μM resulted in a 
decrease of TC32 proliferation by 62.7%, and EWS502 by 63.4% compared to control cells treated 
with 0.2% DMSO (Figure 6C). Surfen treatment caused morphological changes in TC32 and EWS502 
cells (Figure 6D), consistent with predicted effects on cell adhesion.

To estimate cell survival and the ability of a single cell to grow into a colony we performed a clono-
genic assay under low- adhesive conditions. We seeded 500 cells/well in a 24- well low- adhesive plate 
treated with surfen or 1% DMSO, under serum- deprived conditions. Serum was added 12 hr later 
to stimulate growth factor- mediated signaling. The colony number was analyzed after 2 or 3 weeks 
of incubation for TC32 and EWS502, respectively. Treatment of cells with surfen led to a significant 
reduction in colony number for both cell lines (Figure 6, F). More specifically, the treatment of TC32 
cell with 2.5 μM surfen led to a 90.3% decrease of colony number while treatment of EWS502 cells 
with 2.5 μM surfen resulted in a 97.8% decrease of colony forming units. Thus, surfen targets the 

https://doi.org/10.7554/eLife.69734
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heparan sulfate proteoglycan- mediated activation of ERK1/2 signaling in Ewing sarcoma cells, inhib-
iting cancer cell proliferation and cell survival.

Surfen inhibits EWSR1-FLI1-mediated growth in zebrafish model
We next tested whether surfen could inhibit the formation of EWSR1- FLI- driven outgrowths in vivo 
in our zebrafish model. As described above, we generated fish mosaically expressing EWSR1- FLI1. 
Fish with eGFP- positive outgrowths were identified at 24 hpf and treated with 0.2 μM surfen or 0.2% 
DMSO. Fish were imaged after 24 and 48 hr of treatment (Figure 7A). Consistent with results on human 
cells, surfen inhibited outgrowth development in the zebrafish embryo model of Ewing sarcoma.

Next, we determined whether surfen and MEK inhibitor trametinib have comparable effects on 
outgrowth formation (Figure 7—figure supplement 1). To determine the experimental concentra-
tion of trametinib, we treated embryos at 24 hpf with 1, 10, or 20 μM trametinib, as well as 0.2 μM, 

Figure 6. Surfen treatment impairs ERK1/2 signaling and growth of Ewing sarcoma cells. (A) Immunoblot analysis of pERK1/2, ERK1/2, and tubulin levels 
in TC32 and EWS502 cells treated with surfen or DMSO. (B) Immunoblot quantification of pERK1/2 expression level relative to ERK1/2 in TC32 and 
EWS502 cells treated with surfen or DMSO vehicle control. Error bars represent standard error of the mean (SEM), N = 3, *p < 0.05, **p < 0.01, based on 
one- way analysis of variance (ANOVA) test. (C) Proliferation rates of TC32 and EWS502 cells treated with surfen or DMSO. Error bars represent SEM, N = 
3, **p < 0.01, ***p < 0.001, ****p < 0.0001 based on one- way ANOVA test. (D) Morphological changes in TC32 and EWS502 cells after surfen or DMSO 
treatment. (E) Clonogenic assay and (F) clonogenic assay quantification of TC32 and EWS502 cells treated with surfen or DMSO. Error bars represent 
SEM, N = 4, ***p < 0.001, ****p < 0.0001 based on one- way ANOVA test.

https://doi.org/10.7554/eLife.69734
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1 μM surfen, or 0.25% DMSO for 96 hr. We found that survival rate of embryos treated with 1 and 
10 μM trametinib was not significantly different from survival rate of embryos treated with 0.2 μM 
surfen or 0.05% DMSO (Figure 7—figure supplement 1A). Next, we tested whether treatment of 
embryos with 1 μM trametinib and 0.2 μM surfen have effects on ERK phosphorylation. We treated 
WT embryos at 24 hpf with 1 μM trametinib, 0.2 μM surfen or 0.05% DMSO for 24 hr. Embryos were 

Figure 7. Surfen inhibits EWSR1- FLI1- mediated growth in the zebrafish model. (A) Surfen inhibits the development of EWSR1- FLI1- driven outgrowths 
in zebrafish larvae. (B) Surfen inhibits progression of EWSR1- FLI1- driven tumors. Animals with eGFP- positive tumors were grouped for treatment with 
surfen (N = 4) or DMSO (N = 4). Each group had tumors similar in size and location. (C) Quantification of changes in tumor size based on fluorescence 
intensity. Error bars represent SD, **p < 0.01 based on two- way analysis of variance (ANOVA) test.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Targeting ERK signaling pathway in embryonic model of Ewing sarcoma.

Figure supplement 2. Changes in the fin shape driven by EWSR1- FLI1 expression as a readout for drug screening.

Figure supplement 3. Surfen inhibits progression of EWSR1- FLI1- driven tumors.

https://doi.org/10.7554/eLife.69734
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used for western blot analysis. We found that trametinib strongly decreased the total level of ERK1/2 
phosphorylation (Figure 7—figure supplement 1B). In contrast, surfen did not affect the total level 
of ERK1/2 phosphorylation in normal fish (Figure 7—figure supplement 1B), likely reflecting the fact 
that not all MAPK signaling is controlled by proteoglycans. To look specifically at cells expressing 
EWSR1- FLI1 we generated fish mosaically expressing EWSR1- FLI1, sorted embryos at 24 hpf based on 
eGFP expression, and treated them with 0.2 μM surfen, 1 μM trametinib, or 0.05% DMSO. After 24 hr 
of treatment we fixed embryos in 4% PFA and performed immunofluorescent staining for eGFP and 
pERK1/2. Consistent with our previous data, we found that cells expressing EWSR1- FLI1 are positive 
for pERK1/2, however treatment of embryos with 0.2 μM surfen or 1 μM trametinib abrogates ERK1/2 
phosphorylation in EWSR1- FLI1- positive cells (Figure 7—figure supplement 1C).

To compare the effect of MEK inhibitor trametinib and surfen on outgrowth formation we gener-
ated fish mosaically expressing EWSR1- FLI1 and sorted them based on the presence of eGFP- positive 
outgrowths at 24 hpf. Prior the treatment we documented the eGFP fluorescence in all outgrowths. 
We treated fish with outgrowths with 0.2 μM surfen, 1 μM trametinib, or 0.05% DMSO and analyzed 
the size of the outgrowth 24 hr later. We found that treatment of outgrowths with 1 μM trametinib or 
0.2 μM surfen has comparable effects on outgrowth formation (Figure 7—figure supplement 1D).

To quantify the effect of surfen, we took advantage of the changes in fin morphology driven by the 
EWSR1- FLI oncofusion during the first 3 days of zebrafish development. We noticed that EWSR1- FLI1 
expression is reproducibly associated with distortion of the normally straight appearance of the dorsal 
fin border (Figure 7—figure supplement 2A). To quantify this effect we calculated the coefficient of 
curvature (Ccurv), which measures the degree of deviation of the border from a straight line; more 
irregular fins are characterized by higher Ccurv (Figure 7—figure supplement 2B, C). We hypothe-
sized that treatment of fish with drugs targeting EWSR1- FLI1- related pathways would result in the 
rescue of the fin phenotype (Figure 7—figure supplement 2B).

Applying this metric, surfen did not affect the fin shape of control fish (Figure 7—figure supplement 
2D). EWSR1- FLI1 expression strongly increased the Ccurv, and surfen treatment of fish expressing 
EWSR1- FLI1 resulted in significant rescue of the phenotype (Figure 7—figure supplement 2D).

Finally, we aimed to investigate how surfen affects established tumors in our genetic model of 
Ewing sarcoma. We generated fish mosaically expressing EWSR1- FLI1 and sorted animals with EWSR1- 
FLI1- induced, eGFP- positive tumors 2 months later. We split tumor- bearing animals into two balanced 
groups for treatment with surfen (N = 4) or DMSO (N = 4) (see Methods for treatment scheme). 
Each group had tumors similar in size and location. Prior the treatment we documented the eGFP 
expression in all tumors. We found that surfen significantly reduced the tumor size by 30% during 
the first 15 days while tumors treated with DMSO showed increase in tumor size by 46% (Figure 7B, 
C; Figure 7—figure supplement 3A, B). Based on that we conclude that surfen is effective both 
preventing the outgrowth formation in embryonic model of Ewing sarcoma and tumor progression in 
older fish.

Taken together, these results suggest that surfen may affect Ewing sarcoma growth via modulation 
of ERK1/2 signaling. However, it is possible that the growth- suppressive effects of surfen are due to 
surfen’s effects on other signaling pathways affected by heparan sulfate proteoglycans.

Discussion
Although Ewing sarcoma was first described over 100 years ago, there are few if any molecularly 
targeted therapies for patients with metastatic or relapsed disease. Fewer than 30% of patients 
presenting with metastases survive for 5 years (Riggi et al., 2021). While great progress has been 
made using cells, xenografts and PDX models, the development of complementary Ewing sarcoma 
animal models remains crucial for the understanding of disease biology in the complex develop-
mental microenvironment. The importance of tumor microenvironment and communication between 
cancerous and host cells has become evident as essential for tumor formation and invasion. A better 
understanding of such mechanisms will support the development of new approaches, targeting not 
just cancer cells, but the environment around them.

Previous attempts by multiple groups to generate a mouse model of Ewing sarcoma were compli-
cated by the high embryonic toxicity of the driver oncofusion (Minas et al., 2017). Consistent with this 
experience, we have tested a panel of ubiquitous and tissue- specific promoters to drive EWSR1- FLI1 
expression in zebrafish embryos (Figure  1—figure supplement 1). We found that in most cases, 
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expression of the oncogene causes cellular apoptosis, embryonic lethality, or developmental defects. 
Cre- inducible expression of EWSR1- FLI1 under cmv and b- actin ubiquitous promoters did not result 
in a high incidence of tumor development. This result supports the importance of the level and timing 
of EWSR1- FLI1 expression for efficient modelling of tumorigenesis. Despite the fact that cmv, b- actin, 
and ubi promoters drive ubiquitous gene expression they have slightly different efficiency, tissue 
tropism and timing of expression. However, we discovered that Cre- inducible expression of human 
EWSR1- FLI1 under the ubiquitin promoter was associated with less oncofusion toxicity in zebrafish 
larva. The pattern of Cre- induced eGFP- 2A- EWSR1- FLI1 expression was consistently different from 
Cre- induced eGFP expression driven by the same ubiquitin promoter (Figure 3B), suggesting that 
EWSR1- FLI1 can be tolerated by certain cell types while being toxic for others.

Human Ewing sarcoma can occur in any part of the body in bone or soft tissue. It most commonly 
involves the pelvis and proximal long bones (Riggi et  al., 2021). In our model, based on mosaic 
integration of human EWSR1- FLI1 into the zebrafish genome, formation of tumors was observed in 
association with fish skeleton at the regions proximal to the base of pectoral, anal, and caudal fins, and 
at supraneurals. Fifty- eight percent of fish had more than one tumor (Figure 1—figure supplement 
3A). Interestingly, we observed the formation of ectopic fins driven by EWSR1- FLI1 (Figure 1—figure 
supplement 3B) suggesting that EWSR1- FLI1 may potentially redirect the differentiation program 
of transformed cells. This model presents several advances over our previously reported zebrafish 
mosaic model of Ewing sarcoma (Leacock et al., 2012). In that model, on a wild- type background 
only 0.6% of fish developed tumors during the 15 months, and tp53 deficiency was required for more 
penetrant tumor formation (Leacock et al., 2012). We found that 40% of affected fish developed 
leukemia- like tumors rather than sarcomas. In our new Cre- inducible mosaic model, 34% of fish devel-
oped tumors and only 1 fish out of 77 developed a leukemia- like SRBCT (Figure 1C). These findings 
highlight that the level and spatiotemporal distribution of EWSR1- FLI1 expression plays an importaint 
role in efficient tumor generation.

To characterize tumors, we performed IHC staining for markers commonly used in diagnosis of 
human Ewing sarcoma. Staining of zebrafish tumors with antibodies against FLI1 showed that cells 
have different expression level of EWSR1- FLI1 (Figure 2D), consistent with recent reports of cell- to- 
cell heterogeneity which affects proliferative and migratory potential of Ewing sarcoma cells (Fran-
zetti et al., 2017). While silencing of transgene expression in individual cells may occur, the fact that 
eGFP and EWSR1- FLI1 are expressed from a single mRNA transcript, and eGFP expression is widely 
retained throughout the tumor, makes this possibility less likely. Staining for CD99 and PAS are widely 
used for Ewing sarcoma diagnosis in patients (Muhammad et al., 2012). CD99 is a cell surface trans-
membrane protein highly expressed in all Ewing’s sarcomas. Zebrafish tumor cells were positive for 
CD99 (Figure 2A). Additionally, consistent with human data zebrafish tumors were positive for PAS 
which stains glycogen and polysaccharides enriched in Ewing sarcoma (Figure 2B). We showed that 
the expression of nr0b1 in tumor tissue is strongly upregulated resembling the human phenotype 
(Kinsey et al., 2006). Altogether, zebrafish tumors are positive for known Ewing sarcoma markers 
recapitulating the main features of the human disease.

Previous studies established that 91% of human tumors had proliferating populations of cells posi-
tive for the proliferation marker, KI67. A high proliferation index was predictive of poor overall survival 
independent of tumor site, tumor volume, or metastasis at diagnosis (Brownhill et al., 2014). We 
identified increased proliferation in EWSR1- FLI1- driven outgrowths in the earliest stages of tumor 
formation. In a wide variety of cancers, the ERK1/2 signaling pathway is known to control cell prolif-
eration. Moreover, it was shown that ERK1 and ERK2 are constitutively activated in NIH- 3T3 cells 
expressing EWSR1- FLI1 as well as in several human Ewing’s sarcoma tumor- derived cell lines (Silvany 
et al., 2000). Consistent with these data, we identified activated phosphorylation of ERK1/2 in both 
EWSR1- FLI1- expressing outgrowths and tumors in the in vivo zebrafish model (Figure 4). In summary, 
tumorigenesis in fish is associated with activation of ERK1/2 signaling.

To study the mechanisms underlying the activation of ERK1/2 triggered by EWSR1- FLI1 we 
performed LC–MS/MS analysis. We discovered that that EWSR1- FLI1 affects expression of proteins 
involved in ECM reorganization and proteoglycan catabolism (Figure 5A, C and D). It is known that 
tumors leverage ECM remodeling to create a microenvironment that promotes tumorigenesis and 
metastasis. These tumor- driven changes support tumor growth, migration, and invasion. Our data 
show that expression of EWSR1- FLI1 is associated with the strong production of collagens col1a1b, 
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col1a2, col2a1a, col9a1b, col9a2, and col28a2a both in embryos and in advanced tumors (data not 
shown), suggesting the importance of specific matrix for tumor development. We found a strong 
upregulation of proteins involved in proteoglycan catabolism in human Ewing sarcoma (Figure 5F). 
Interestingly, the upregulation of heparanase, the enzyme involved in cleavage of the side chains of 
heparan sulfate proteoglycans, was reported in Ewing sarcoma tumors correlating with poor prog-
nosis in patients (Shafat et al., 2011). Thus, Ewing sarcoma oncogenesis is associated with dysregu-
lation of proteoglycan turnover.

Proteoglycans are important components of extracellular matrix regulating Wnt, Hedgehog, TGF-β, 
FGFR, and other signaling pathways. Proteoglycans stabilize ligand–receptor interactions, creating 
potentiated ternary signaling complexes that regulate the signaling pathways involved in cell prolifer-
ation, migration, adhesion, and growth factor sensitivity (Elfenbein and Simons, 2010). For example, 
binding of FGF to its signaling receptor requires prior binding to the heparan sulfate side chains of 
the proteoglycans (Mythreye and Blobe, 2009). Thus, dysregulation of proteoglycan catabolism can 
result in aberrations in signal transduction from cell surface receptors.

To block the aberrantly activated proteoglycan- mediated pathways in Ewing sarcoma we targeted 
the binding of GAG chains with the ligands and signal molecules. Surfen (bis-2- methyl- 4- amino- 
quinolyl- 6- carbamide) binds to heparan sulfate and other GAGs blocking the sulfation and degrada-
tion of GAG chains in vitro (Schuksz et al., 2008). Surfen also affects responses dependent on heparan 
sulfate such as growth factor binding and activation of downstream signaling pathways (Schuksz 
et al., 2008). To target proteoglycan- mediated activation of ERK1/2 signaling we treated TC32 and 
EWS502 cells with surfen. Surfen impaired Ewing sarcoma cell proliferation at all doses tested, with 
the strongest effects at 5 and 10 μM (Figure 6C). Concomitant with the effect on proliferation, ERK1/2 
phosphorylation was downregulated at these doses of surfen, indicating that Ewing sarcoma cell lines 
are very sensitive to surfen- mediated blockage of cell surface receptor signaling.

To test whether surfen is effective in vivo in the zebrafish model we treated fish with outgrowths and 
established tumors via aqueous exposure to surfen or DMSO. Surfen demonstrated remarkable inhibi-
tion of outgrowth development and tumor progression in genetic zebrafish model of Ewing sarcoma 
(Figure 7A, B). Thus, surfen is effective against human Ewing sarcoma cells in vitro and against tumor 
growth in the zebrafish model in vivo. Surfen was originally developed for use in humans to facilitate 
depot insulin deposition (Umber et al., 1938), and has been tested as an agent against glioblastoma 
tumor cells (Logun et al., 2019). Thus, targeting glycosaminoglycan metabolism may represent a new 
therapeutic opportunity for Ewing sarcoma. We quantified the effect of surfen in vivo using the fin 
coefficient of curvature Ccurv (Figure 7—figure supplement 2). As a complement to studies using 
tumor cell outgrowths, this flexible and quantifiable assay has great potential for high- throughput 
screening to identify additional drugs targeting proteoglycan- mediated signaling in Ewing sarcoma.

Overall, here we present a new inducible zebrafish model of Ewing sarcoma. The advantage 
of the model is the opportunity to study tumorigenesis in vivo, in a complex developmental back-
ground. The system further allows study of tumor cell behavior using high- resolution imaging and is 
effective for high- throughput drug screening. Our findings suggest that the temporal expression of 
EWSR1- FLI1 is crucial for tumor development, supporting the existence of a specific cell or lineage 
of origin for Ewing sarcoma. Our new EWSR1- FLI1 zebrafish model of Ewing sarcoma emphasizes the 
role of proteoglycans mediating ERK1/2 signaling and growth of tumor cells. Further investigation of 
the interactions between Ewing sarcoma and the tumor microenvironment in vivo can provide critical 
insights that may lead to new therapies of the disease.

Materials and methods
Zebrafish husbandry
Danio rerio were maintained according to industry standards in an AALAAC- accredited facility. WIK 
wild- type fish were obtained from the ZIRC Zebrafish International Resource Center (https://zebrafish. 
org).

Plasmids and cloning
Human EWSR1- FLI1 coding sequence was provided by Chris Denny, University of California- Los 
Angeles, USA (Leacock et  al., 2012). The Gateway expression system (Invitrogen) was used for 
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generation of all constructs for expression in zebrafish (Kwan et al., 2007). EWSR1- FLI1 flanked by 
attB2r site (at 5′ primer) and attB3 site (at 3′ primer) was cloned into a 3′ entry vector according to 
the provided protocol (Kendall and Amatruda, 2016). The plasmids containing a stop- dsRed- stop 
sequence were a generous gift from Eric Olson. Likewise dsRed- STOP- eGFP- 2A-EWSR1- FLI1 coding 
sequence flanked by attB1 and attB2 sites was cloned into a middle entry vector (Kwan et al., 2007). 
The ubi promoter was a kind gift from Len Zon (Addgene #27320) (Mosimann et al., 2011). The fli1 
promoter was provided by Nathan Lawson (Addgene #31160 and #26031), and the mitfa promoter 
by James Lister (Addgene #81234) (Kendall et al., 2018). The beta actin promoter, cmv promoter 
were used for plasmids generation and expression in zebrafish. The plasmids containing a eGFP- 2A 
sequence were a kind gift from Steven Leach, and were subcloned into a middle entry Gateway 
expression system (Kendall et  al., 2018). The destination vector pDestTol2pA2 and 3′ SV40 late 
poly A signal construct, were used for construct generation by an LR reaction with LR Clonase II Plus 
(Invitrogen) (Kwan et al., 2007). Transposase, Cre, and GFP RNAs were synthesized from plasmids 
pCS2FA,  pCS2-  Cre. zf, and pCS2- GFP accordingly using the mMessage mMachine kit (Applied Biosys-
tems/Ambion, Foster City, CA). The constructs generated include: beta- actin- eGFP2A- pA (Genevieve 
Kendall), beta- actin- eGFP2A- EWSR1- FLI1, ubi- eGFP- 2A, ubi- eGFP2A- EWSR1- FLI1, cmv- eGFP- 2A, 
cmv- eGFP2A- EWSR1- FLI1, fli- eGFP- 2A, FLI- eGFP2A- EWSR1- FLI1, mitfa- eGFP- 2A, mitfa- eGFP2A- 
EWSR1- FLI1, beta- actin- dsRed- stop- eGFP- 2A- pA, beta- actin- dsRed- stop- eGFP- 2A- EWSR1- FLI1, 
ubi- dsRed- stop- eGFP- 2A, ubi- dsRed- stop- eGFP- 2A- EWSR1- FLI1, cmv- dsRed- stop- eGFP- 2A, cmv- 
dsRed- stop- eGFP- 2A- EWSR1- FLI1, fli- dsRed- stop- eGFP- 2A, fli- dsRed- stop- eGFP- 2A- EWSR1- FLI1, 
mitfa- dsRed- stop- eGFP- 2A, and mitfa- dsRed- stop- eGFP- 2A- EWSR1- FLI1.

Zebrafish injections
Zebrafish embryos were injected at the single- cell stage. The injection mixes contained 50  ng/µl 
of Tol2 transposase mRNA, 10–50 ng/µl of described DNA constructs, 0.1% phenol red, and 0.3× 
Danieau’s buffer. The injection mixes containing beta- actin- dsRed- stop- eGFP- 2A- pA, beta- actin- 
dsRed- stop- eGFP- 2A- EWSR1- FLI1, ubi- dsRed- stop- eGFP- 2A, ubi- dsRed- stop- eGFP- 2A- EWSR1- FLI1, 
cmv- dsRed- stop- eGFP- 2A, cmv- dsRed- stop- eGFP- 2A- EWSR1- FLI1, fli- dsRed- stop- eGFP- 2A, fli- 
dsRed- stop- eGFP- 2A- EWSR1- FLI1, mitfa- dsRed- stop- eGFP- 2A, and mitfa- dsRed- stop- eGFP- 2A- 
EWSR1-FLI1 also contained 0.5 ng of Cre_RNA or GFP_RNA.

Zebrafish embryo survival
For survival analysis of embryos, fish were injected with ubi:RSG- EWSR1- FLI1; Cre_RNA or control 
mixes ubi:RSG- EWSR1- FLI;GFP_RNA ubi:RSG;Cre_RNA. The total number of injected fish was 
counted (the exact number of fish for each condition is indicated in the respective legend), and then 
the resulting alive embryos subsequently determined during first 10 days. Survival curves were plotted 
using GraphPad Prism 8.4.3. Biological replicates N = 3.

Protein identification by LC–MS
Zebrafish embryos were injected with ubi:RSG- EWSR1- FLI1;Cre_RNA or ubi:RSG;Cre_RNA. Embryos 
were sorted for eGFP at 24 and 48 hpf time points. Sorted embryos were dechorionated, dissociated 
by pestle homogenizer in RIPA buffer supplemented with 1× inhibitor of proteases (Mini Protease 
Inhibitor Cocktail, cOmplete). Additionally, tumor or normal tissue from dorsal, caudal, and pectoral 
fins were dissected and processed in an analogous way. Protein levels were analyzed using the BCA 
protein assay Kit (Thermo Scientific). Lysates were heated at 95°C for 5 min and loaded on a 12% gel 
(BioRad). Gels were stained with Coomassie Blue. Stained 1 cm bands were cut out of gels, sliced into 
1 mm cubes and transferred to 1.5 Eppendorf tubes for submission. Data were preproceeded and 
provided by the UT Southwestern Proteomics Core. Data were analyzed using an R package ROTS 
(Suomi et al., 2017) and visualized in R. GSEA was performed using the GSEA software according the 
instructions provided https://www.gsea-msigdb.org/gsea/index.jsp. The experiment was performed 
in three technical replicates for embryo samples and three biological replicates for tissue samples.

https://doi.org/10.7554/eLife.69734
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Zebrafish tumor collection, processing for histology, and tumor 
incidence
Zebrafish were screened under a Nikon SMZ25 fluorescent stereomicroscope for the presence of 
eGFP- positive tumors. Fish with tumors were humanely euthanized and fixed in 4% PFA/1× phosphate- 
buffered saline (PBS) for 48 hr at 4°C. They were decalcified in 0.5 M EDTA (Ethylenediaminetetraacetic 
Acid) for 5 days, processed and mounted in paraffin blocks for sectioning and further experiments. For 
tumor incidence curves, zebrafish were injected and sorted for eGFP at 14 dpf and monitored for 4 
months. Zebrafish with no eGFP fluorescence were considered as negative for EWSR1- FLI- dependent 
tumor formation. Zebrafish with tumors were collected and processed as described earlier for hema-
toxylin and eosin staining. All tumors were reviewed by an experienced sarcoma pathologist.

Immunofluorescence
Embryos at 72 hpf were fixed overnight at 4°C in 4% PFA in 1× PBS and processed according to 
a published protocol for immunofluorescence staining (Verduzco and Amatruda, 2011). Zebrafish 
embryos were stained with primary antibodies directed against Phospho- p44/42 MAPK (Erk1/2) 
Thr202/Tyr204 (4370 S, Cell Signaling) at 1:200, GFP (4B10) (2955, Cell Signaling) at 1:300, or 
Phospho- Histone H3 (Ser10) (D7N8E) (53348, Cell Signaling) at 1:500. The secondary antibodies used 
were Goat anti- Mouse IgG (H + L) Alexa Fluor Plus 488 (# A32723, Thermo Fisher), Donkey anti- Rabbit 
IgG (H + L) Alexa Fluor 546 (A10040, Thermo Fisher), and Goat anti- Rabbit IgG(H + L) Alexa Fluor 405 
(A31556, Thermo Fisher) at 1:500. The staining was repeated at least three times.

IHC staining
Slides with paraffin embedded tissue sections were baked for 60 min at 60°C, immersed with xylene, 
100% ethanol, 95% ethanol, 75% ethanol, distilled H2O two times each for 5  min each. Antigen 
retrieval was performed in Trilogy reagent (920 P, Sigma) for 10 min in the pressure cooker. Slides 
were cooled and blocked with 3% H2O2 for 30 min, followed by blocking with 1%BSA/1× PBST for 
1 hr. Slides were incubated with primary antibodies Anti- CD99 antibody (ab108297, Abcam) at 1:200, 
Anti- FLI1 (ab15289, Abcam) at 1:100, anti- Phospho- p44/42 MAPK (Erk1/2) Thr202/Tyr204 (4370 S, 
Cell Signaling) at 1:200 overnight. Secondary antibodies used were Anti- rabbit IgG, HRP- linked 
Antibody (7074  S, Cell Signaling), Anti- mouse IgG, HRP- linked Antibody (7076  S, Cell Signaling). 
SignalStain DAB Substrate Kit #8059 was used for chromogen staining according to the manufactur-
er’s instructions. Slides were also stained with hematoxylin and eosin, dehydrated, and mounted with 
permount mounting media. The staining was repeated more than three times.

Imaging
Embryos were imaged at 12 hpf, 24 hpf, 48 hpf, 72 hpf, and 5 dpf on Nikon SMZ25 fluorescent stereo-
microscope. Images of whole mount immune- stained zebrafish were taken on a Keyence BZ- X700 
fluorescent microscope and Leica STELLARIS 5. Slides were imaged on a Keyence BZ- X700 fluorescent 
microscope, Leica DM4000B and Zeiss LSN710.

RNA extraction, cDNA synthesis, and qRT-PCR
Fresh eGFP- positive tumor tissues or sorted dechorionated embryos were snap frozen in liquid 
nitrogen. Frozen tissues and embryos were subjected to total RNA isolation using the RNeasy Microkit 
manufacturer’s instructions (Qiagen). The RT2 HT First Strand Synthesis kit (QIAGEN) was used for 
cDNA reverse transcription from 200 ng to 1 µg of total RNA. qRT- PCR (quantitative Real Time Poly-
merase Chain Reaction) was performed on a CFX384 Touch Real- Time PCR Detection System using 
the SYBRGreen Master Mix (BioRad). See for primer sequences. Error bars indicate standard devi-
ation. To determine significance a Student’s t- test was performed on normalized Ct replicates. The 
RT- PCR analysis was performed at least three times for each experiment in three technical replicates 
for each condition.

Whole mount in situ hybridization
For the in situ hybridization, we used the RNA scope approach (Wang et al., 2012). Embryos at 24 
hpf were fixed in 4% PFA and used for double RNAscope staining for nkx2.2a (529751- C2 RNAscope 
Probe – Dr- nkx2.2a- C2) and eGFP (538851 RNAscope Probe – EGFP- O4). Staining was performed 
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based on the RNAscope assay on Whole Zebrafish embryos protocol with the following modifica-
tions. All hybridization steps were performed in a 40°C water bath. Samples were washed twice each 
washing step using 1 ml of 1× Wash Buffer for 5 min each time with gentle shaking.

Cell culture
TC32 and EWS502 cell lines were the kind gift of Dr. Angelique Whitehurst. All cell lines were authen-
ticated by STR genotyping and regularly confirmed to be free of mycoplasma contamination. TC32 
was maintained in RPMI 1640 GlutaMAX with 10% fetal bovine serum (Sigma) and 1× Antibiotic–Anti-
mycotic (Gibco) at 37°C in 5% CO2. EWS502 was maintained in RPMI 1640 GlutaMAX with 15% FBS 
(Sigma) and 1× Antibiotic–Antimycotic (Gibco) at 37°C in 5% CO2.

Surfen treatment
Surfen hydrate, ≥98% was obtained from Sigma- Aldrich (S6951). Because Surfen binds avidly to 
plastic, it is necessary to use glass vessels or precoat all plasticware with serum before use. Surfen 
stock solutions were prepared in DMSO (dimethyl sulfoxide) at 1, 4, and 5 mM, aliquoted and stored 
in glass containers at −20°C in the dark.

Zebrafish treatment with surfen and trametinib
For zebrafish treatment working solutions were prepared by diluting stock solutions of surfen (1 and 
4 mM) or trametinib (20 and 100 mM) in E3 medium. Final concentrations for treatments were deter-
mined as 0.2 μM for surfen hydrate (S6951, Sigma- Aldrich) and 1 μM for trametinib (GSK1120212, 
Selleck Chemicals) (Figure 7—figure supplement 1A). Embryos were injected, screened for eGFP at 
24 hpf, dechorionated and incubated in 20 ml of E3 medium containing appropriate amount of DMSO 
or surfen/trametinib in a glass beaker. All solutions were changed daily. Biological replicates N = 4. 
The exact number of fish for each condition is indicated on figure legend.

The scheme of treatment for zebrafish with tumors included 6 days with 0.2 μM surfen, 3 days with 
0.8 μM surfen, 3 days drug holiday with no drug, and 3 days with 0.8 μM surfen. Control group was 
treated with DMSO. Total duration of the experiment was 15 days.

Protein extraction and western blots
Cells or tumor tissues were harvested and lysed in RIPA buffer complemented with cOmplete Mini 
Protease Inhibitor Cocktail inhibitors and Phosphatase inhibitor cocktails (Sigma). Lysates were dena-
tured by boiling in 1× Laemmli buffer at 95°C for 5 min and loaded on a 4–20% gradient gel (BioRad). 
PVDF (polyvinylidene difluoride) membranes were used for proteins wet transfer (BioRad). Membranes 
were blocked in Casein + 0.1% Tween- 20 (Thermo), and incubated overnight at 4°C with the primary 
antibodies Phospho- p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (4370 S, Cell Signaling) at 1:2000, p44/42 
MAPK (Erk1/2) (137F5) (4695 S, Cell signaling) at 1:2000, β-Actin Antibody (4967 S, Cell Signaling) at 
1:2000, and α-Tubulin Antibody (2144 S, Cell Signaling) at 1:2000. Secondary antibody used were Anti- 
rabbit IgG, HRP- linked Antibody (7074 S, Cell Signaling) at 1:5000, and Anti- mouse IgG, HRP- linked 
Antibody (7076 S, Cell Signaling) at 1:5,000. Signal was detected using SuperSignal West Pico Chemi-
luminescent Substrate (Fisher). BioRad GelDoc XR was used for membranes imaging. The western 
blot analysis was performed at least three times for each experiment in three technical replicates.

Cellular proliferation assays
For proliferation TC32 and EWS502 were seeded at 2000 cells per well of 96- well plate with three 
replicas per time point in 10% and 15% RPMI 1640 GlutaMAX media supplemented with 1× Antibi-
otic–Antimycotic (Gibco). Cells were treated with 1.75, 2.5, 5, and 10 μM of Surfen or 0.025%, 0.05%, 
0.1%, and 0.2% DMSO on second, fourth, sixth, and eighth days. The number of cells at each point 
was measured using the hemocytometer at first, third, fifth, seventh, and ninth days. The proliferation 
assay was performed at least two times. Three technical replicates were performed per condition.

Colonyformation assay
For colony formation assay 500 of TC32 and EWS502 cells were seeded per well of 24- well low- 
adhesive plate treated with 0.5, 1, 1.5, 2, and 2.5 μM of surfen or 1% DMSO under serum- deprived 
conditions. Serum was added 12 hr later. Medium with surfen or DMSO was changed three times a 
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week. The colony number was analyzed on days 14 and 21 for TC32 and EWS502 accordingly. For 
imaging media was removed, cells were prefixed and stained with 0.5% crustal violet. The colony 
formation assay was performed at least two times. Four technical replicates were performed per 
condition.

Ccurvature calculation
To measure the distortion of the fin we introduced the coefficient of curvature Ccurv = (L1 − L0)/L0 
× 100, where L1 is the length of the fin border between points A and B and L0 is the length of the 
straight line between those two points (Figure 7C).

Statistics
Statistical analysis for embryonic survival, tumor incidence curves, proliferation curves, colony forma-
tion, and relative gene expression, were performed using GraphPad Prism 8.4.3 (La Jolla, CA). The 
number of individual experiments, replicas, and samples analyzed, and significance is reported in 
the figure legends. Statistical significance was calculated by Student’s t- test for two- group compar-
ison, one- way analysis of variance for comparison of multiple groups with one control group and for 
comparison between different experimental groups. p > 0.05 = n.s., *p < 0.05, **p < 0.01, ***p < 
0.001, and ****p < 0.0001.
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