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Abstract: In the present study, a novel approach for mid-infrared (IR)-based prediction of bovine
milk fatty acid composition is introduced. A rapid, solvent-free, two-step centrifugation method
was applied in order to obtain representative milk fat fractions. IR spectra of pure milk lipids
were recorded with attenuated total reflection Fourier-transform infrared (ATR-FT-IR) spectroscopy.
Comparison to the IR transmission spectra of whole milk revealed a higher amount of significant
spectral information for fatty acid analysis. Partial least squares (PLS) regression models were
calculated to relate the IR spectra to gas chromatography/mass spectrometry (GC/MS) reference
values, providing particularly good predictions for fatty acid sum parameters as well as for the
following individual fatty acids: C10:0 (R2

P = 0.99), C12:0 (R2
P = 0.97), C14:0 (R2

P = 0.88), C16:0
(R2

P = 0.81), C18:0 (R2
P = 0.93), and C18:1cis (R2

P = 0.95). The IR wavenumber ranges for the
individual regression models were optimized and validated by calculation of the PLS selectivity ratio.
Based on a set of 45 milk samples, the obtained PLS figures of merit are significantly better than
those reported in literature using whole milk transmission spectra and larger datasets. In this context,
direct IR measurement of the milk fat fraction inherently eliminates covariation structures between
fatty acids and total fat content, which poses a common problem in IR-based milk fat profiling.
The combination of solvent-free lipid separation and ATR-FT-IR spectroscopy represents a novel
approach for fast fatty acid prediction, with the potential for high-throughput application in routine
lab operation.

Keywords: mid-infrared spectroscopy; attenuated total reflection; bovine milk; fatty acids; partial
least squares

1. Introduction

Milk is among the fastest growing agricultural commodities, with a worldwide pro-
duction volume of more than 8.5 × 106 tons per annum, and an expected yearly growth
rate of 1.6% until 2029 [1]. Bovine milk accounts for approximately 81% of total milk pro-
duction, and is considered to be one of the most nutritionally complete foods, with a typical
gross composition of 3.9% fat, 3.3% protein, and 4.6% lactose [2]. Milk fat predominantly
consists of triglycerides, containing more than 400 different fatty acids, but only 15 of them
with relative shares of 1% or higher. The largest fraction are saturated fatty acids (SAT,
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approximately 70%), followed by monounsaturated fatty acids (MONO, approximately
25%), and polyunsaturated fatty acids (PUFA, approximately 5%) [3]. Individual fatty acid
content in milk is influenced by different factors, such as animal genetics, stage of lactation,
and feed intake [4]. Most controversies regarding the health effects of dairy products are
associated with lipid composition [5]. SAT especially are often related with harmful effects
such as coronary heart disease, while substitution with PUFA might reduce the risk of such
disease [6].

Gas chromatography (GC) is the gold standard for milk fatty acid profiling, offering
high accuracy combined with maximum sensitivity [7]. Some of the major drawbacks are,
however, the essential derivatization step prior to analysis, high costs, and significant time
consumption, thus restricting its use for industrial purposes to a few samples from large
batches. The demand for rapid, low-cost, high-throughput fatty acid profiling methods is
consequently increasing with growing milk production.

Mid-infrared (IR) spectroscopy is a powerful tool for bioanalytical applications [8],
which has been demonstrated to present a rapid, label-free alternative to well-established
chromatographic methods for the analysis of dairy products [9]. Specific absorption
bands, arising from the rotational–vibrational transitions of molecules, allow for compound
identification as well as quantification. Important nutritional parameters such as lactose,
total fat, and total protein content are routinely detected using the commercially available
MilkoScan (Foss, Hillerød, Denmark), a Fourier-transform infrared (FT-IR) spectrometer
specifically developed for the analysis of dairy products [10]. Furthermore, novel laser-
based mid-IR transmission spectroscopy shows high potential for the quantification of
individual proteins in bovine milk [11–14].

Attenuated total reflection (ATR) is a prominent alternative probing technique to
transmission mode. Here, the incoming IR light is totally reflected in an optically denser
ATR element at the interface with a medium of lower optical density. This leads to an
evanescent field that can interact with the sample at typical penetration depths of up to
2 µm per reflection [15]. The sample is placed directly on top of the ATR element, allowing
for quick and robust measurements of troublesome liquid matrices, such as oils [16,17].

Substantial effort has been put into investigating the potential of mid-IR transmission
spectroscopy for milk fatty acid profiling [18–24]. Here, multivariate chemometric models
based on partial least squares (PLS) were established in order to relate mid-IR absorbance
spectra acquired from whole milk using the MilkoScan to GC reference data. These studies
report good accuracy in predicting the absolute concentrations of certain fatty acids in
milk, especially those available in high concentrations, such as C14:0, C16:0, and C18:1. It
has been reported that these predictions, however, are most likely based on covariation
structures between individual fatty acids and the total fat content, which may change with
factors such as breed and feed [25]. When results are stated as relative fatty acid content in
milk fat, they appear significantly poorer.

As an alternative approach, dry film FT-IR spectroscopy was introduced [26]. Here,
small milk samples were transferred into well plates, dried in a desiccator, and subsequently
measured in transmission mode. Multivariate calibrations showed better results than
those obtained from direct transmission measurements of whole milk. Here, the lipid
preconcentration step was expected to contribute to a major part of the gained prediction
improvements. Fine spectral differences associated with fatty acid composition might,
however, still be hidden by overlapping absorption bands arising from other major milk
components, such as proteins and carbohydrates. Hence, it is of major interest to investigate
techniques for lipid separation prior to spectral acquisition, in order to enable improved
prediction efficiency and avoid covariation structures with the total fat content.

Classical solvent–solvent extraction methods [27,28] are considered to be reliable for
the quantitative separation of lipids from food and animal tissues. Moreover, specific meth-
ods for milk fat extraction have been developed, standardized, and are today extensively
used in routine lab operation [29,30]. These methods, however, require large amounts of
hazardous organic solvents, and are vastly time consuming. A novel, more rapid method
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using smaller amounts of organic solvents with shorter exposure times allows for the
milk fat separation of approximately 20 samples in 30 min [31]. Alternatively, methods
based on two centrifugation steps have been successfully applied to obtain pure milk fat
without the use of organic solvents [32,33]. Thorough method validation using GC shows
that there is no difference in relative fatty acid composition in the obtained lipid fraction
compared to standard solvent–solvent extraction. These methods are consequently ideal
for applications that require a representative part the of milk lipids instead of quantitative
total fat extraction.

The aim of this study is to show the potential of ATR-FT-IR spectroscopy combined
with rapid, solvent-free lipid separation for milk fatty acid profiling. The information
content of ATR-IR spectra recorded after lipid separation was compared with the IR trans-
mission spectra of whole milk. By performing multivariate PLS analysis, good prediction
accuracy could be obtained for individual fatty acids and relevant sum parameters. PLS
calibration equations were optimized based on evaluation of the importance of individual
wavenumbers to the multivariate models. Cross-correlations between individual fatty acids
and total fat content were inherently avoided by the employed approach. The obtained re-
sults indicate several clear advantages over conventional FT-IR transmission spectroscopy
of whole milk, revealing high potential for future high-throughput applications.

2. Materials and Methods
2.1. Milk Samples

Forty-five milk samples were collected from the same number of cows in Austria
(AREC Raumberg-Gumpenstein, in mid-September 2020), containing two different cattle
breeds ( 3

4 Holstein Friesian and 1
4 Simmental) and three feeding groups. At the time of

sample collection, the averages (±standard deviation) of the milk yield, days in milk, and
lactation number were 20.7 ± 5.73 kg per day, 184 ± 5.73 kg days in milk, and 3.6 ± 2.15,
respectively, ensuring a variety of milk fat composition. The diets of the three feeding
groups were based upon ad libitum allowance of a forage mixture, which consisted of 40%
grass silage, 30% maize silage, and 30% hay on a dry matter basis. The pelleted concentrate
mixture (0%, 20%, and 40% of total feed intake, respectively) consisted of 25% maize,
24% barley, 8% wheat, 8% molasses, 5% wheat bran, 15% soy meal, and 15% rapeseed
meal. A pooled sample from morning and evening milk was collected from each cow.
Unhomogenized raw milk samples were immediately stored at −80 ◦C without further
conservation until 1 day before fat separation. A homogenized whole milk sample was
purchased from an Austrian retailer and used to acquire a mid-IR transmission reference
spectrum of whole milk.

2.2. Fat Separation

Milk fat separation was carried out according to the rapid two-step centrifugation
method proposed by Feng et al. [32] and modified by Luna et al. [33]. Frozen milk samples
were thawed overnight at 4 ◦C and subsequently tempered at room temperature for at
least 20 min. Thirty milliliter aliquots were transferred into falcon tubes and centrifuged at
17,800× g for 30 min at 20 ◦C in a Sigma 3–18k centrifuge (Sigma Laborzentrifugen GmbH,
Osterode am Harz, Germany). The fat-cake layer was transferred into microtubes and cen-
trifuged at 19,300× g for 20 min at the same temperature, resulting in three separate layers.
The upper lipid layer was removed and used for FT-IR and gas chromatography/mass
spectrometry (GC/MS) measurements.

2.3. GC/MS Analysis

Standard solutions, containing 20 mg of milk fat per mL of dichloromethane, were
prepared. For the derivatization of fatty acids, an aliquot of 50 µL of the standard solution
was transferred to a pre-cooled 1.5 mL GC vial with a 0.2 mL micro insert. Fifty microliters
of internal standard (C17:0) and the same amount of trimethylsulfonium hydroxide (TMSH,
0.25 M in MeOH, Supelco, Vienna, Austria) solution were added, and the vial was capped
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immediately. Each vial was vortexed for 5 s, and then heated for 15 min at 70 ◦C to
complete derivatization.

A GC instrument (Shimadzu GC-2010) equipped with a ZB-FAME column (30 m,
0.25 mm I.D., 0.20 µm film thickness; Phenomenex, Aschaffenburg, Germany) coupled
with a mass spectrometer (GCMS-QP2010 Plus, Shimadzu, Kyoto, Japan) was used to
determine fatty acid content and profile. One microliter samples were injected in split
mode (split 100:1) using a Shimadzu AOC-5000 Plus autosampler. The injector temperature
was 250 ◦C. The purge flow was set to 3 mL/min and the column flow to 2.14 mL/min. The
oven program was 40 ◦C initially, held for 3 min, then increased by 10 ◦C/min to 100 ◦C,
and further increased by 2 ◦C/min to 200 ◦C. The transfer line temperature of the mass
spectrometer was kept at 200 ◦C, as was the ion source temperature. After a solvent vent of
2.7 min, the detector voltage was set to 1.05 kV, and the samples were measured in scan
mode (35–500 m/z).

For quantitative analysis, a method was developed and calibrated using a 37-component
FAME mix certified reference material (TraceCERT®, Supelco, Vienna, Austria). Calibration
samples were prepared in the concentration range 20–600 mg/L. Quantitative analysis
was based on the evaluation of the quantifier ion peak area for each FAME, provided
that the ratio of quantifier and qualifier ions was within acceptable limits. Retention
times and qualifier and quantifier ions for each analyte are reported in Table S1 of the
Supplementary Materials.

2.4. FT–IR Measurements

ATR–FT–IR measurements were performed using a Bruker Tensor 37 FT-IR spectrom-
eter (Ettlingen, Germany) equipped with a mercury cadmium telluride (MCT) detector
(D* = 4 × 1010 cm Hz0.5 W−1 at 9.2 µm). The spectrometer was constantly flushed with
dry air in order to reduce the influence of water vapor from the atmosphere. One drop of
pure milk fat extract was manually placed onto a Platinum ATR single-bounce element
(Bruker, Ettlingen, Germany). Measurements were performed with a spectral resolution
of 2 cm−1, between 600 and 4000 cm−1 in double-sided, forward–backward acquisition
mode. A Blackman–Harris 3-term apodization function and a zero-filling factor of 2 were
used to calculate the final spectra. One hundred and twenty-eight scans were averaged per
spectrum, leading to an acquisition time of fifty-two seconds. After each spectral acquisi-
tion, the ATR surface was cleaned with isopropanol and dichloromethane consecutively
until recovery of the baseline signal. Transmission measurements were performed using
the same instrument parameters, by injecting homogenized whole milk into a flow cell
equipped with two CaF2 windows and a 37 µm-thick spacer. The software package OPUS
7.2 (Bruker, Ettlingen, Germany) was used for evaluation of the spectral data.

2.5. Data Analysis

Multivariate data analysis was performed in MATLAB R2020a (Mathworks Inc.,
Nattick, MA, USA) using PLS Toolbox 8.9 from Eigenvector Research Inc. (Wenatchee, WA,
USA). All ATR-IR absorbance spectra were identically preprocessed by calculation of 2nd
derivative spectra, using a Savitzky–Golay filter (window = 15 points) and mean centering.
The applied wavenumber range was individually selected for each parameter, based on the
selectivity ratio (SR) [34]. Preprocessed FT-IR spectra and GC/MS reference values were
used to develop partial least squares (PLS) regression models. Model performance was
estimated by applying a contiguous blocks cross-validation with 10 data splits, using the
full dataset. Furthermore, external validation was applied by randomly dividing the dataset
into a calibration set of 30 samples, and an external validation set, containing 15 samples.
Characteristic statistical parameters were calculated to evaluate model performance.
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3. Results and Discussion
3.1. Comparison of IR Spectra of Whole Milk and Separated Milk Fat Fraction

Milk fat triglycerides show distinctive mid-IR absorption bands that are influenced
by factors such as fatty acid chain length and degree of saturation [35]. Due to this
high sensitivity, mid-IR spectroscopy-based prediction of milk fatty acid composition
has been reported on multiple accounts and in different implementations. Particularly,
the commercially available MilkoScan instrument is widely used for the direct spectral
acquisition of whole milk [9]. With this device, FT-IR transmission spectra with a path
length of 37 µm are recorded. A limitation of this approach, however, is the limited spectral
information in certain wavenumber regions, which can be circumvented by separating the
milk fat fraction from the complex milk matrix.

In this work, milk fat was separated according to a rapid two-step centrifugation
method [33]. It was shown that the hereby obtained lipid fraction possessed a representative
fatty acid composition for the whole milk sample [32,33]. In addition to reduced workload
and high throughput, the applied separation method excels in that it completely avoids the
use of potentially hazardous or toxic solvents. This characteristic is particularly beneficial
for subsequent mid-IR spectroscopy, as small residues of organic solvents can already lead
to distinctive absorption bands that hide spectral details of the sample. This is specifically
relevant in the present application, because the routinely employed solvents for milk fat
extraction often exhibit the same functional groups (e.g., CH2, CH3) and, consequently, IR
bands as lipids. Reproducible spectral acquisition after the immediate drying of solvent-
based extracts on straight surfaces, such as the ATR crystal, is moreover restricted by the
coffee-ring effect [36], which requires complex instrumentation to be avoided [37]. The
combination of lipid separation and ATR-FT-IR spectroscopy provides the advantage that
very small amounts of sample can be measured in a robust environment by placing them
directly onto the active element. In the present study, one drop of the milk fat fraction was
sufficient to cover the surface of the ATR crystal and to record representative absorbance
spectra. Characteristic mid-IR bands of milk fat are listed in Table 1. Figure 1 displays the
typical absorbance spectra of separated milk fat measured in ATR mode (blue) and whole
milk recorded in transmission mode with a CaF2 cell and an optical path length of 37 µm
(red). Here, the wavenumber range between 1850 and 2750 cm−1 was removed due to lack
of information in this region. Visual inspection reveals that the information content of the
two IR spectra is significantly different. The whole milk sample also contains vibrational
bands from other major components of milk, such as lactose and other carbohydrates
(approximately 1000–1480 cm−1) and proteins (amide II band: 1500–1600 cm−1) [38].

Table 1. Characteristic mid-IR absorption bands of milk fat [39].

Wavenumber/cm−1 Detectable in Whole Milk * Group Mode of Vibration Functional Group

3005 no C–H sym. stretch -C=CH- (cis)
2953 yes C–H asym. stretch -CH3 (aliphatic)
2922 yes C–H asym. stretch -CH2- (aliphatic)
2853 yes C–H sym. stretch -CH2- (aliphatic)
1743 yes C=O stretch C=O ester
1655 no C=C stretch C=C (unsaturated)
1462 overlapping C–H scissoring -CH2- (aliphatic)
1377 overlapping C–H sym. deformation -CH3 (aliphatic)
1238 overlapping C–H out-of-plane bend -CH2- (aliphatic)
1162 overlapping C–O stretch C-O ester
966 no C–H out-of-plane bend -C=CH- (trans)
722 no C–H rocking -CH2- (aliphatic)

* Detection of the absorption band in a whole milk spectrum acquired in transmission mode, using CaF2 windows and an optical path
length of 37 µm. Abbreviations: sym.: symmetric; asym.: asymmetric.
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Figure 1. Comparison between the ATR-IR absorbance spectrum of separated milk fat (blue) and
whole milk recorded in transmission mode with a CaF2 cell with an optical path length of 37 µm (red).
The spectral range between 1850 and 2750 cm−1 was removed due to lack of relevant information.

The high absorbance of these components adversely affects the evaluation of the
significantly lower absorbances originating from fatty acids in these spectral regions. In
this context, the low wavenumber region overlapping with carbohydrate absorption bands
in particular has proven to be important for the quantitative prediction of individual fatty
acids (see Section 3.2.2). Furthermore, for transmission measurements with milk, large
transmission paths (>30 µm) are required in order to prevent clogging of the cell because
of the high viscosity and complex matrix of milk [40]. However, at these high optical paths,
water (HOH bending band: 1643 cm−1) totally absorbs the irradiated IR light, and thus the
spectral region between 1600 and 1700 cm−1 is not accessible. Moreover, CaF2, the typical
window material used for transmission measurements of bovine milk, has its absorption
edge at approximately 1000 cm−1 [41], meaning that IR bands at lower wavenumbers are
not accessible using this approach. In this inaccessible spectral region for transmission
measurements, there are located the C–H out-of-plane band at 966 cm−1 and the C–H
rocking band at 722 cm−1, which are well resolved in ATR-IR spectra of lipids. Due to
these limitations, for the purpose of the determination of fatty acids, the related spectral
features are better resolved in the ATR spectra, thus highlighting the advantage of the lipid
separation step.

3.2. Predicting Fatty Acid Content by Mid-IR Spectroscopy
3.2.1. Partial Least Squares Analysis

Individual PLS1 models were calculated to predict the most abundant fatty acids as
well as the relevant sum parameters. PLS is a multivariate statistical approach, capable of
calculating linear regression models from highly correlated variables, such as those usually
found in spectroscopic data [42]. In the present study, the relationship between the recorded
ATR absorbance spectra (x-matrix) and the GC/MS reference fatty acid concentration (y-
matrix) was calculated. A preprocessing routine, combining second derivative spectra
with mean centering, was applied in order to achieve optimal results. Moreover, the
included wavenumbers were individually selected for each model (see next chapter).
Table 2 provides an overview of the obtained statistical parameters. The root mean square
error of calibration (RMSEC) and the calibration coefficient of determination (R2) were
calculated by using the full dataset of available milk samples (n = 45) in order to assess
the quality of the calibration equations. For the visualization of the calibration equations,
Figure 2 shows the relationship between the measured and predicted concentrations on
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the examples of unsaturated fatty acids (UNSAT, red) and long-chain fatty acids (LCFA,
blue). In the optimal case, all points would lie on the regression line, while those above and
below indicate over- and underestimation of ATR-based predictions compared to GC/MS
reference values. The small deviation of individual data points from the regression line, as
well as the obtained R2-values of 0.99, indicate highly linear relationships and very good
description of the data by the model. Evaluation of prediction efficiency was performed
using contiguous blocks cross-validation with 10 data splits, revealing the root mean square
error of cross-validation (RMSECV) and the cross-validation coefficient of determination
(R2

CV). Furthermore, external validation was applied by randomly dividing the dataset into
a calibration set (n = 30) and an external validation set (n = 15). Table S2 shows the obtained
statistical parameters for the reduced calibration set of 30 samples. The achieved root mean
square error of prediction (RMSEP) and prediction coefficient of determination (R2

p) from
the external validation (Table 2) show similar results to the cross-validation, using the
whole dataset, indicating high robustness of the calculated prediction models. The optimal
number of latent variables (LVs), based on the lowest RMSECV, was between three and
eight, which is reasonable for milk fat, which contains a high number of different fatty acids
that can cause spectral variability in the system under study. Good prediction efficiencies
were obtained for the important health related parameters SAT (R2

CV = 0.94, R2
P = 0.95)

and UNSAT (R2
CV = 0.96, R2

P = 0.95). Further subclassification showed good prediction for
MONO (R2

CV = 0.95, R2
P = 0.94), while the much lower concentrated PUFA were predicted

with moderate accuracy (R2
CV = 0.61, R2

P = 0.27). Moreover, sum parameters regarding
fatty acid chain length were calculated. Highly concentrated medium-chain fatty acids
(MCFA, C12-C16) and LCFA (C17 and higher) were predicted with excellent accuracy
(R2

CV = 0.95/0.98, R2
P = 0.97/0.99), whereas the lower concentrated group of short-chain

fatty acids (SCFA, C4-C10) was predicted with moderate accuracy (R2
CV = 0.64, R2

P = 0.83).
In the case of individual fatty acid content, excellent predictions (R2

CV > 0.92, R2
P > 0.93)

were achieved for C10:0, C12:0, C18:0, and C18:1cis, while feasible predictions (R2
CV > 0.84,

R2
P > 0.81) were obtained for C14:0 and C16:0.

Table 2. Statistical parameters for each individual calibration equation estimating relative individual fatty acid concentration
and relevant sum parameters in g/100 g of fat.

g/100 g Fat

Full Dataset (n = 45) Split Dataset (n= 30/15)

Fatty Acid LVs Range RMSEC RMSECV R2 R2
CV RMSEP R2

P

SAT 8 61.6–74.5 0.27 0.66 0.99 0.94 0.8 0.95
MONO 8 19.8–30.3 0.28 0.57 0.99 0.95 0.74 0.94
PUFA 3 2.2–4.2 0.20 0.24 0.73 0.61 0.28 0.27
UNSAT 8 22.1–33.8 0.28 0.58 0.99 0.96 0.74 0.95
SCFA 7 14.2–21.0 0.45 0.78 0.87 0.64 0.67 0.83
MCFA 7 38.1–56.0 0.57 0.96 0.98 0.95 0.85 0.97
LCFA 7 26.4–47.7 0.43 0.76 0.99 0.98 0.65 0.99

C4:0 6 5.4–8.8 0.27 0.42 0.87 0.72 0.49 0.62
C6:0 5 3.1–5.4 0.20 0.31 0.72 0.38 0.24 0.71
C8:0 5 1.5–3.2 0.12 0.16 0.81 0.64 0.11 0.88
C10:0 7 2.1–4.9 0.05 0.11 0.99 0.97 0.10 0.99
C12:0 5 2.0–5.6 0.09 0.16 0.99 0.96 0.19 0.97
C14:0 7 7.4–13.3 0.20 0.49 0.97 0.85 0.48 0.88
C16:0 8 21.1–35.1 0.40 1.05 0.98 0.85 1.4 0.81
C16:1cis 4 1.2–3.9 0.28 0.41 0.73 0.44 0.44 0.39
C18:0 5 5.6–14.6 0.38 0.57 0.97 0.93 0.63 0.93
C18:1cis 8 14.9–27.2 0.22 0.74 0.99 0.92 0.77 0.95

Abbreviations: LVs: latent variables; RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-validation;
RMSEP: root mean square error of prediction; R2: calibration coefficient of determination; R2

CV: cross-validation coefficient of determination;
R2

P: prediction coefficient of determination; SAT: saturated fatty acids; MONO: monounsaturated fatty acids; PUFA: polyunsaturated
fatty acids; UNSAT: unsaturated fatty acids; SCFA: short-chain fatty acids (C4–C10); MCFA: medium-chain fatty acids (C12–C16); LCFA:
long-chain fatty acids (C17 and higher).
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Figure 2. Relationship between measured (GC/MS) and predicted (cross-validation, FT–IR) fatty
acid content in g/100 g fat for unsaturated fatty acids (UNSAT, left) and long-chain fatty acids
(LCFA, right).

An important parameter that can influence the quality of calibration equations is the
number of applied samples. Previously, it has been shown that that use of many different
samples can increase the predictability of milk fat composition [20]. For the present study,
only a limited set of 45 samples was available. Nevertheless, the achieved results are
clearly better than those reported for MilkoScan measurements [18,20] and ATR-FT-IR
measurements of whole milk without fat separation [43], when final concentrations are
stated in g/100 g fat. Moreover, the presented results are comparable to those obtained
from the dry film approach, where a much higher number of samples (n = 219) was
used [26]. Supposedly, an explanation for the more robust fatty acid prediction enabled by
the presented approach is the high accessibility to significant spectral features of the fat
fraction compared to (dried) whole milk samples when using ATR-FT-IR spectroscopy, as
discussed in the previous section. We expect that even better results can be achieved with
the herein presented approach of lipid separation followed by ATR-FT-IR spectroscopy
when a larger number of different milk samples are available, indicating high potential for
future applications. Finally, it should be noted that additional fatty acids were quantified
using the GC/MS reference method, which were present at low concentrations (<2 g/100 g
milk fat). However, due to the limited sensitivity of IR spectroscopy and the small sample
set, it was not possible to obtain reliable prediction equations for these analytes.

3.2.2. Selection of Wavenumber Range Based on Selectivity Ratio

FT–IR spectra were recorded in the wavenumber range between 600 and 4000 cm−1 in
order to acquire the maximal amount of information within the mid-IR region. However,
for each PLS1 model, the applied spectral region was individually selected, based on
the selectivity ratio (SR). The SR is a visualization tool to identify important variables
in a multivariate data set for predicting the target variable. A detailed description and
mathematical definition can be found elsewhere [34,44]. Briefly, it can be defined as the
ratio between explained and unexplained variance for each variable of the model. In the
case of mid-IR spectroscopy, the SR is useful for determining specific spectral features with
high correlation to the parameter of interest [45].

In this work, the following wavenumber regions without relevant information regard-
ing fatty acid composition were removed for all PLS models: 600–700, 1800–2750, and
3100–4000 cm−1. The remaining wavenumbers were individually selected for each target
parameter. Figure 3 displays the included wavenumbers for each calibration model as
calculated from the full dataset. Here, brighter regions indicate wavenumbers with low
SR, whereas dark areas highlight those with high SR. The figure shows that the signifi-
cant wavenumbers are highly different between sum parameters that describe fatty acid
saturation degree and those that describe chain length. The wavenumber range close to
3005 cm−1 has a high SR for SAT, MONO, and UNSAT, while this region is not important
for predicting the chain length. This result seems reasonable, because the associated ab-
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sorption band arises from the C–H stretching vibration of the cis double bond. Moreover,
the spectral region between approximately 2700 and 3000 cm−1, covering several C–H
stretching absorption bands, plays an important role in predicting the saturation degree.
This relationship was also observed by Christy et al. [46], who predicted the saturation
degree in different edible oils using ATR-FT-IR spectroscopy.

Figure 3. Heatmap, showing spectral regions included for each PLS model in greyscale. Bright grey:
selectivity ratio (SR) = 0–0.5; dark grey: SR = 0.5–5; black: SR = 5–15. The spectral range between
1850 and 2750 cm−1 was removed due to lack of relevant information. SAT: saturated fatty acids;
MONO: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; UNSAT: unsaturated fatty
acids; (C4–C10); MCFA: medium-chain fatty acids (C12–C16); LCFA: long-chain fatty acids (C17
and higher).

The spectral range near 1643 cm−1, not accessible in transmission measurements of
whole milk, also contains relevant information regarding the saturation degree. Even
though the C=C stretching vibration of unsaturated carbonyl compounds is barely IR-
active [47], a weak related absorption band at approximately 1655 cm−1 can be observed
in the ATR–IR spectra of some lipids. High SR in terms of saturation degree was also ob-
tained in the spectral region between approximately 1050 and 1500 cm−1, which distinctly
overlaps with other major components in whole milk transmission spectra. Moreover, the
C–H out-of-plane band at 966 cm−1 and the C–H rocking band at 722 cm−1, inaccessible
in transmission measurements using CaF2 windows, contain information regarding the
saturation degree. PLS models predicting sum parameters concerning chain length showed
particularly good results for MCFA and LCFA. Here, the spectral region below 1500 cm−1

especially contains several wavenumbers with high SR, indicating important information.
The effect of fatty acid chain length on this spectral region was thoroughly investigated by
Jones [48], concluding that various small band shifts appear with changing chain length.
For predicting individual fatty acids, similar spectral features are important.
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Generally, fatty acids with high prediction accuracy, such as C10:0 and C18:1cis, show
distinct wavenumber regions with high SR, while fatty acids with weaker prediction, such
as C6:0 and C16:1cis, show lower SR.

In conclusion, all spectral regions with medium and high SR can be assigned to
absorption bands specific to fatty acids. This verification step is crucial in order to confirm
that the information content of calibration equations is based on real absorbance of fatty
acids rather than on incidental correlations. While important spectral features are well
resolved in the ATR spectra of separated milk fat, a great part of them is hardly accessible or
completely inaccessible in whole milk transmission spectra. This evaluation, involving the
identification of relevant wavenumbers, thus demonstrates the benefit of using ATR-FT-IR
spectroscopy on the milk fat fraction.

3.2.3. Evaluation of Covariation Structures

Due to the performed analysis of the milk fat fraction after separation from the milk
matrix, the herein presented approach enables us to state the obtained results in terms
of g fatty acid/100 g fat. When comparing the results to other works reporting on mid-
IR-based predictions of fatty acids in bovine milk, it should be noted that most authors
stated their concentrations in g/100 mL of whole milk. However, it has been demonstrated
that this good prediction accuracy is indirect, and primarily based on covariation between
individual fatty acids and total fat content, whose dependencies may change with factors
such as breed and feed [25]. Covariance is a measure of the degree of association between
two random variables [49]. This issue was outlined by showing that PLS models calculated
from the milk spectra of a specific cattle breed result in biased predictions when applied
to another breed, due to different covariation structures. To further highlight this issue,
prediction was performed using a calibration set compiled from skimmed milk spiked with
three of the most abundant fatty acids at concentration values avoiding cross-correlations.
This approach resulted in significantly poorer models than those obtained for unspiked
whole milk. Prediction models, calculated from the same samples, stating the relative fatty
acid concentrations in g/100 g fat are, consequently, significantly weaker.

The presented approach, based on ATR-IR measurements, does not have the purpose
of providing information regarding total milk fat content, but rather of investigating the
relative fatty acid profile. In this way, possible covariation structures to total fat content
are inherently eliminated. Consequently, meaningful comparison to published results is
only useful for reports where the predicted fatty acid concentrations are also stated relative
to milk fat content. Correlations between individual fatty acids are, however, still a great
challenge in the spectroscopic prediction of milk fat composition. For this reason, Figure 4
shows a cross-correlation plot of the relative fatty acid content based on the GC results
of the applied dataset. For this purpose, Pearson correlation coefficients indicate highly
positive correlation (+1), no correlation (0) and highly negative correlation (−1). Here,
positively correlated fatty acids are marked in red, whereas those of negatively correlated
fatty acids are marked in blue. The plot reveals that most pairwise correlations are small,
thus indicating that the predicted concentrations of these fatty acids resulted more from
corresponding IR information than from correlations to other fatty acids. Short-chain
SAT with similar chain length (i.e., C6:0 and C8:0, C8:0 and C10:0) are, however, highly
correlated. These correlations can also be seen in their similar SR profiles in Figure 3.
Consequently, grouping similar fatty acids into sum parameters (i.e., SCFA), as was done
in this study, is highly beneficial in order to avoid high cross-correlations. Afseth et al. [26]
observed comparable correlations between fatty acids in milk with similar chain length,
and highlighted that these internal correlations can be used for reliable predictions as long
as they are within some degree of certainty valid for future samples.
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Figure 4. Cross-correlation matrix of pairwise correlations between individual fatty acids from
GC/MS reference measurements. Red color indicates positive correlation, whereas blue color
indicates negative correlation.

4. Conclusions

In this work, a new mid-IR-based approach for predicting the fatty acid composition
of bovine milk was introduced. A rapid, solvent free, two-step centrifugation method
was employed in order to obtain representative milk fat fractions. Absorbance spectra of
pure lipids were recorded using ATR-FT-IR spectroscopy, and compared to the transmis-
sion spectra of whole milk. Fatty-acid-related spectral features were distinctively better
resolved in ATR spectra, highlighting the advantage of the preceding lipid separation
step. PLS-based multivariate calibration models were calculated in order to relate IR
absorbance spectra to relative concentrations of the most abundant fatty acids and sum
parameters, obtained via a GC/MS reference method. Prediction efficiency was evaluated
by performing cross-validation on the full dataset, as well as by splitting the dataset into a
calibration and a validation set. Both methods showed excellent results, indicating high
robustness of the models. Particularly high prediction accuracies were obtained for SAT,
MONO, UNSAT, MCFA, LCFA, C10:0, C12:0, C14:0, C16:0, C18:0, and C18:1cis. Based on
a set of 45 milk samples, the obtained results were clearly better than those reported in
literature for whole milk transmission spectra when concentrations were stated in g/100 g
fat. The information content of the calibration equations was evaluated by identifying the
most important spectral features for predicting individual target variables. Here, relevant
wavenumbers were identified based on SR, and successfully assigned to absorbance bands
from milk fat. Covariation structures between total fat content and predicted parameters,
a common problem in IR-based milk fat profiling, were inherently eliminated with the
applied approach. Consequently, the presented method bears several clear advantages
over FT-IR transmission spectroscopy of whole milk, revealing its high potential for high-
throughput applications. ATR-FT-IR measurements of pure milk fat, including cleaning
procedures, can be performed in less than 2 min. When a high number of samples must
be analyzed, the two centrifugation steps (30/20 min) can be performed in parallel, and
the work flow optimized to provide maximum sample throughput. In the future, the
calibration equations might be further improved by using a higher number of different
milk samples, whereas additional automatization of the fat separation procedure could
facilitate high-throughput operation.
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