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There is increasing appreciation that, in addition to being shaped by an individual’s genotype and environment,

most complex traits are also determined by poorly understood interactions between these two factors. So-called

“genotype× environment” (G×E) interactions remain difficult to map at the organismal level but can be uncovered using

molecular phenotypes. To do so at large scale, we used TM3′seq to profile transcriptomes across 12 cellular environments in

544 immortalized B cell lines from the 1000 Genomes Project. We mapped the genetic basis of gene expression levels across

environments and revealed a context-dependent genetic architecture: The average heritability of gene expression levels in-

creased in treatment relative to control conditions, and on average, each treatment revealed new expression quantitative

trait loci (eQTLs) at 11% of genes. Across our experiments, 22% of all identified eQTLs were context-dependent, and

this group was enriched for trait- and disease-associated loci. Further, evolutionary analyses suggested that positive selection

has shaped G×E loci involved in responding to immune challenges and hormones but not to man-made chemicals. We hy-

pothesize that this reflects a reduced opportunity for selection to act on responses to molecules recently introduced into

human environments. Together, our work highlights the importance of considering an exposure’s evolutionary history

when studying and interpreting G×E interactions, and provides new insight into the evolutionary mechanisms that maintain

G×E loci in human populations.

[Supplemental material is available for this article.]

It is now clear that, in addition to being shaped by an individual’s
genotype and environment, most human complex traits are deter-
mined by poorly understood interactions between an individual’s
genetic background and his or her environment (Hunter 2005;
Thomas 2010; McAllister et al. 2017). Consequently, there has
been a strong interest in mapping “genotype× environment”
(G×E) interactions—in which genotype predicts an individual’s re-
sponse to environmental variation—and in understanding how
loci involved in G×E interactions evolve and are maintained in
our species. However, scientists have struggled in practice to map
G×E interactions in humans, largely because (1) the relevant envi-
ronmental factors are often unknown, difficult tomeasure, ormin-
imally variable within the study population and (2) large sample
sizes are needed to overcome the power limitations posed by point
1. Current state-of-the-art approaches have focused on leveraging
very large cohort studies such as the UK Biobank; however, this
body of work has uncovered only a handful of G×E interactions
for common diseases and complex traits (Tyrrell et al. 2017;
Arnau-Soler et al. 2019; Nag et al. 2019; Wang et al. 2021).

An alternative approach is to use in vitromanipulations of the
cellular environment paired with transcriptomics to map “con-
text-dependent” expression quantitative trait loci (eQTLs), de-
fined as variants that do not affect gene expression levels under
baseline conditions but become associated with transcriptional

variation following an in vitro exposure (or vice versa). This ap-
proach focuses on the cellular level as a proxy for the organismal
level in a tractable, experimental framework. Using this methodol-
ogy, thousands of G×E interactions, in the form of context-depen-
dent eQTLs, have been identified following cell treatment with
pathogens, other molecules that provoke an immune response,
drugs, hormones, chemicals, and additional stimuli (Barreiro
et al. 2012; Lee et al. 2014; Çalısķan et al. 2015; Moyerbrailean
et al. 2016; Nédélec et al. 2016; Quach et al. 2016; Kim-Hellmuth
et al. 2017; Piasecka et al. 2018; Findley et al. 2021). The represen-
tative set of studies referenced above, as well as many others using
similar designs, have consistently shown that context-dependent
eQTLs overlap genome-wide association (GWAS) hits for complex
traits and diseases; in some cases, this overlap is stronger than for
eQTLs that are constant or “ubiquitous” across cellular conditions
(Kim-Hellmuth et al. 2017; Findley et al. 2021). This body of work
has also revealed that context-dependent eQTLs revealed by im-
mune stimuli are often more strongly enriched for signatures of
past adaptation than ubiquitous eQTLs, suggesting there has
been historical selection for plasticity in immune function.

Taken together, previous studies thus argue that G×E interac-
tions and context-dependent eQTLs make important contribu-
tions to the genetic architecture of gene expression levels.
However, given the large sample sizes needed to robustlymap con-
text-dependent eQTLs, only a handful of cellular conditions are
usually explored in any single study. This leaves us with a poor un-
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cellular perturbations typically reveal new context-dependent
eQTLs (Barreiro et al. 2012; Lee et al. 2014; Çalısķan et al. 2015;
Moyerbrailean et al. 2016; Nédélec et al. 2016; Quach et al. 2016;
Kim-Hellmuth et al. 2017; Piasecka et al. 2018; Findley et al.
2021), and (2) the evolutionary forces that maintain context-de-
pendent eQTLs. In particular, although previous work has focused
on the action of positive selection in maintaining context-depen-
dent eQTLs for pathogens and immune stimuli, which have
coevolved with humans through evolutionary time, context-de-
pendent eQTLs for “evolutionarily novel” stimuli (e.g., man-
made chemicals that have only recently been introduced into
our environments) may be maintained by different forces. For ex-
ample, inefficient purifying selection may maintain G×E loci that
are in fact deleterious but are only revealed under rare or newly in-
troduced environmental conditions; in other words, these loci
may be sufficiently “hidden” from purifying selection such that
they persist in human populations despite their negative effects.
However, empirical investigations of the varied evolutionary forc-
es that maintain context-dependent eQTLs, especially in high-
powered studies exploring many types of cellular environments,
remain limited.

Here, we report a large-scale study in which we profiled ge-
nome-wide gene expression levels across 12 different cellular envi-
ronments using 544 immortalized B cell (lymphoblastoid) lines
from the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2012). We focused on unrelated European and
African individuals for whom whole-genome sequence data were
publicly available (Byrska-Bishop et al. 2022), and we used these
data to map both ubiquitous and context-dependent eQTLs across
all 12 cellular conditions. Our experimental treatments included
stimuli familiar to B cells such as immune signaling molecules
and hormones but also man-made chemicals and other novel
cell stressors that have not coevolved with human B cells through
evolutionary time.Our design thus allowedus to address three fun-
damental questions about the genetic architecture of gene expres-
sion levels: (1) To what degree is gene expression determined by
ancestry (as has been shown previously) (Nédélec et al. 2016;
Quach et al. 2016), and how environmentally robust are these ef-
fects? (2) How prevalent are context-dependent versus ubiquitous
eQTLs, and what are their respective properties and relevance to
human complex traits? (3) What are the evolutionary forces
(e.g., genetic drift, inefficient purifying selection, positive selec-
tion) that maintain context-dependent versus ubiquitous eQTLs,
and do these forces differ depending on the evolutionary history
of the cell treatment? Together, our work emphasizes the impor-
tance of G×E interactions in shaping complex traits and provides
new insight into the evolutionary mechanisms that maintain
G×E loci in humans.

Results

Diverse cell exposures induce diverse changes in gene

expression levels

We exposed 544 lymphoblastoid cell lines (LCLs) derived from in-
dividuals included in the 1000 Genomes study (The 1000
Genomes Project Consortium 2012) to 12 cellular environments,
including 10 treatment and two control conditions (Fig. 1A;
Supplemental Table S1). We chose treatments that have been pre-
viously shown to inducemoderate to strong responses in LCLs, fo-
cusing on a range of treatment types including immune- and non-
immune-related stimuli (Table 1). Specifically, we exposed cells to

the following: (1) FSL-1 and (2) gardiquimod, two synthetic mole-
cules that activate the TLR2/TLR6 and TLR7 signaling pathways,
respectively; (3) TNF superfamily member 13b (also known as B-
cell-activating factor [BAFF]), a cytokine that is a member of the tu-
mor necrosis factor family and a potent B cell activator; (4) interfer-
on gamma, a cytokine that is critical for coordinating innate and
adaptive immune responses to viral infections; (5) dexametha-
sone, a synthetic glucocorticoid hormone and anti-inflammatory
drug; (6) insulin like growth factor 1, a hormone that plays a key
role in growth-related processes; (7) tunicamycin, an antibiotic
that induces endoplasmic reticulum stress and is used as a model
for cell stressors that impact protein folding; (8) perfluorooctanoic
acid, (9) acrylamide, and (10) bisphenol A, three man-made chem-
icals and environmental contaminants; (11) water, a vehicle con-
trol for all treatments except tunicamycin and dexamethasone;
and (12) ethanol, a vehicle control for tunicamycin and dexame-
thasone but also considered a treatment with water as a control
(see Supplemental Table S2). Note that we describe our experiment
as including 12 “environments” and 11 “treatments” (i.e., all envi-
ronments except water because ethanol is both a treatment and a
control).

Following 4 h of exposure to each cellular environment, we
extracted RNA and used TM3′seq (Pallares et al. 2020) to collect
mRNA-seq data from 5223 samples (mean reads per sample ± SD
=2.199±2.731 million). We paired this mRNA-seq data with pub-
licly available genotype data for the same individuals, derived from
whole-genome sequencing to at least 30× coverage (Byrska-Bishop
et al. 2022). All individuals included in our study were unrelated
and showed ancestry of European or African origin (admixed pop-
ulations were not included in our study design) (Fig. 1B). After fil-
tering, we retained a total of 3886 mRNA-seq profiles from 500
unique individuals (Supplemental Table S3). Genotype data de-
rived from high-coverage whole-genome sequencing were also
available for 454 of these individuals (Supplemental Table S4).

We found significant differences in transcriptome dynamics
between treated and control condition cells (when analyzing
each of the 11 treatment–control pairs separately): On average,
6.39%±8.98% (SD) of all 10,157 tested genes responded to a given
treatment, with a maximum of 31.64% genes differentially ex-
pressed in response to dexamethasone (limma FDR<10%)
(Supplemental Table S5). Gene set enrichment analyses (GSEA) re-
vealed overrepresentation of differentially expressed genes in ex-
pected biological pathways. For example, gardiquimod induced
differential expression of genes involved in immune system pro-
cesses such as “cytokine production” (enrichment score = 0.536,
q=0.055), “toll-like receptor signaling pathway” (enrichment
score = 0.507, q=1.03×10−2), and “activation of immune re-
sponse (enrichment score = 0.457, q =1.03×10−2). Similarly,
IFNG treatment activated expression of genes related to “response
to virus” (enrichment score = 0.583, q=0.066), “type I interferon
production” (enrichment score = 0.540, q=0.066), and “regula-
tion of innate immune response” (enrichment score = 0.462, q =
0.066). Finally, the strongest pathways induced by tunicamycin
were related to endoplasmic reticulum stress, such as “endoplas-
mic reticulum unfolded protein response” (enrichment score =
0.581, q=0.189) and “ER overload response” (enrichment score =
0.844, q =0.189) (Supplemental Fig. S1; Supplemental Table S6).
These results suggest that our experimental cell treatments in-
duced appropriate biological responses.

When we used an empirical Bayes approach to perform joint
analyses across our entire data set (Urbut et al. 2019), we found that
across all 11 treatments only 136 genes were generally
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environmentally responsive and differentially expressed (mashR
LFSR<10% and all posterior effect size estimates within a factor
of two) (see Fig. 1C; Supplemental Fig. S2; Supplemental Table
S7). Gene Ontology analysis (Eden et al. 2009) of these genes did
not reveal any significant (FDR<10%) biological pathways or
functions; however, the Gene Ontology term with the strongest
enrichment was “multicellular organismal response to stress”
(fold enrichment =19.6, P=4×10−4). In contrast, most genes
showed some degree of context-dependency: 23.93% of differen-

tially expressed genes were unique to
a single treatment (mashR LFSR<10%
and no posterior effect size estimates
within a factor of two), and 42.44%
were shared between two and 10 treat-
ments (Fig. 1D). Together, these results
emphasize the environmental depend-
ency of gene expression, as well as the
fact that diverse experimental treatments
generally provoke nonoverlapping cellu-
lar responses.

Genetic ancestry controls the

expression of immune-related genes

across cellular conditions

We next explored transcriptional varia-
tion as a function of ancestry, comparing
individuals of African versus European
descent. Of the 10,157 genes we tested,
an average of 3.59%±2.80% (SD) genes
were differentially expressed between an-
cestry groups (limma FDR<10%) (Sup-
plemental Table S8). Joint analyses
(Urbut et al. 2019) revealed that these an-
cestry-associated genes were generally
shared across conditions, with 69.20%
of ancestry-associated genes displaying
similar effect sizes across all 12 condi-
tions and 98.92% displaying similar ef-
fect sizes across more than two out of
three conditions (Fig. 2A,B; Supplemen-
tal Fig. S2; Supplemental Table S7). In
agreement with previous work (Nédélec
et al. 2016), we found that the set of
genes controlled by ancestry across
conditions were most strongly enriched
for immune system processes such as
“cytokine-mediated signaling pathway”
(enrichment score = 0.311, q =0.160),
“response to virus” (enrichment score =
0.419, q=0.160), and “inflammatory re-
sponse” (enrichment score = 0.350, q =
0.160) (Fig. 2C; Supplemental Table S9).
Further, we downloaded publicly avail-
able sets of genes that are thought to lie
along the causal pathway linking genetic
variation, gene expression, and human
complex traits (inferred throughprobabi-
listic transcriptome-wide association
studies [PTWAS]) (Zhang et al. 2020)
and tested for overlap with our set of an-
cestry-associated genes. Here, we found

that ancestry-associated genes were enriched for complex traits
and diseases with immune involvement, such as lymphocyte
counts (fold enrichment =1.10, q =0.098), platelet counts (fold
enrichment =1.08, q =0.098), inflammatory bowel disease (fold
enrichment =5.59, q= 0), and Crohn’s disease (fold enrichment =
5.59, q=0) (Supplemental Table S10). Many of these phenotypes
are known to differ in prevalence and/or etiology between individ-
uals of African versus European ancestry (Reddy and Burakoff
2003; Coates et al. 2020).

Figure 1. Study overview and environmental effects on gene expression. (A) Lymphoblastoid cell
lines (LCLs) derived from individuals included in the 1000 Genomes Project were obtained from
Coriell Institute. Specifically, we obtained lines derived from individuals of European and African ancestry
as noted on themap (abbreviations for included populations are as follows: [CEU] Utah residents [CEPH],
[GWD] Gambian Mandinka, [GBR] British, [IBS] Iberian, [MSL] Mende, [FIN] Finnish, [TSI] Toscani, [ESN]
Esan, [YRI] Yoruba, and [LWK] Luhya) (see also Supplemental Table S1). Each cell line was exposed to 12
cellular environments for 4 h, after which we harvested the RNA and performed mRNA-seq. These data
were used to understand differential expression as a function of environmental context and ancestry
([AFR] African, [EUR] European), as well as to map ubiquitous and context-dependent eQTLs. (B)
Principal components analysis of genotype data for individuals included in this study (colors are as in
A). Individual used in this analysis are those for which paired RNA-seq and genotype data were available
(Supplemental Table S4). (C) Number of differentially expressed (DE) genes shared between N environ-
ments using a mashR, joint analysis approach. N is plotted on the x-axis and ranges from one (i.e., the
gene is DE in response to only one environmental treatment) to 11 (i.e., the gene is DE in response to
all 11 environmental treatments) (see also Supplemental Table S5). The low number of genes when N
=2 is driven by a large number of dexamethasone (DEX)-specific genes, such that 93.7% of the N=1
genes are DEX-specific; when DEX is excluded from the data set, most genes are shared between three
or more environments (Supplemental Fig. S8). (D) Number of DE genes shared between a given pair of
environmental treatments using amashR, joint analysis approach. The diagonal represents the number of
DE genes in response to the focal environmental treatment. Abbreviations are as in Table 1.
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We hypothesized that the observed
transcriptional differentiation between
African and European individuals was
controlled by genetic variation (Nédélec
et al. 2016; Quach et al. 2016), and per-
formed two sets of analyses to address
this possibility. First, we followed the ap-
proach of Nédélec et al. (2016) and asked
whether genes with ancestry effects
showed higher FST values between
African and European populations rela-
tive to non-ancestry-associated genes.
We found that this was indeed the case
for genes with shared effects across more
than two-thirds of conditions (Wilcoxon
signed-rank test, P=1.91×10−4), as well
as for the total set of genes with effects
in any condition (Wilcoxon signed-rank
test, P=2.79×10−4; Fig. 2D); we note the
effect size here is small, but very similar
to previous work (Nédélec et al. 2016).
Further, when analyzing genes with an-
cestry effects in one or more conditions,
we found that the degree of genetic differ-
entiation was positively correlated with
the number of conditions inwhich an an-
cestry effect was found (linearmodel, beta
=3.69×10−4, P=7.85×10−5), suggesting
that genes with ancestry effects that are
unmodified by treatment may be under
the strongest genetic control. Second, we
compared PST values for ancestry-associat-
ed genes identified in one or more condi-
tions versus genome-wide FST values to
understand whether ancestry-related vari-
ation in the transcriptome (i.e., putatively
genetically controlled) showed evidence
for being driven by genetic drift (PST=
FST), diversifying selection (PST>FST), or

stabilizing selection (PST<FST) (Lamy et al. 2012; Leinonen et al.
2013). Our analyses point toward diversifying selection at ances-
try-associated genes (all PST>FST), suggesting that there has been se-
lection for different local optima in African versus European
populations (Fig. 2E; Supplemental Fig. S3).

Consistentwith the high degree of effect size similaritywe ob-
served for ancestry effects analyzed across cellular environments,
we did not find any compelling evidence for ancestry × treatment
effects on gene expression levels using several analysis approaches
(seeMethods, “Testing the degree to which ancestry and genotype
affect the response to treatment”). Although previous work has
found that ancestry predicts the magnitude of the response to ex-
perimental infection in macrophages and peripheral blood mono-
nuclear cells (PBMCs) (Nédélec et al. 2016; Quach et al. 2016;
Harrison et al. 2019), we note that our treatments induced much
smaller overall transcriptional shifts in LCLs relative to these previ-
ous studies in primary cells, which likely affects our power to
detect interaction effects at genome-scale. Further, LCLs are de-
rived from B cells, which are a key component of the adaptive im-
mune system; in contrast, previous work has found that ancestry
effects on the response to infection largely involve innate immune
system cell types and processes (Nédélec et al. 2016; Quach et al.
2016; Harrison et al. 2019).

Table 1. Cellular environments

Environment Abbreviation Treatment category

Gardiquimod GARD Immune stimulant
Fibroblast-stimulating

lipopeptide 1
FSL-1

Interferon gamma IFNG
TNF superfamily

member 13b
TNFSF13B

Dexamethasone DEX Hormone
Insulin like growth

factor 1 IGF1

Acrylamide ACRYL Novel contaminant or cell
Perfluorooctanoic acid PFOA stressor
Bisphenol A BPA
Tunicamycin TUNIC

Ethanol ETOH Novel contaminant or cell
stressor (and vehicle
control)

Water H2O Vehicle control

A

C

E

B D

Mean FST

F
S

T

TNFSF13B

IL
10

Figure 2. Ancestry effects on gene expression. (A) Number of ancestry-associated (AA) genes shared
between N environments using a mashR, a joint analysis approach. N is plotted on the x-axis and ranges
from one (i.e., the gene is AA in only one cellular environment) to 12 (i.e., the gene is AA in all 12 cellular
environments). (B) Example of an AA gene. The y-axis shows the mean, normalized IL10 gene expression
levels estimated in each environment, after regressing out three surrogate variables. (C) Results from
gene set enrichment analyses testing for overrepresentation of particular Gene Ontology categories
among AA genes (note that genes were sorted by average AA effect size across all 12 cellular environ-
ments, and only the top 15 most significant categories are shown). Enrichment map was created with
the emapplot function in the R package enrichplot. (D) Distribution of average per-gene FST values for
genes that (1) were found to be AA in most (more than two of three) cellular environments or (2) had
no effects on ancestry in any cellular environment (results are from a mashR, a joint analysis approach).
(E) Phenotypic differentiation (in gene expression; PST) versus genetic differentiation (FST) for AFR versus
EUR samples. Plots show the distribution of PST values for (1) AA genes identified in the H2O cellular en-
vironment (blue) and (2) a same-sized set of randomly selected genes (gray). Themean genome-wide FST
value comparing genetic divergence between AFR and EUR samples is noted on the x-axis with an arrow.
We find that all AA genes show PST > FST, indicative of diversifying selection (Lamy et al. 2012; Leinonen
et al. 2013). In this panel, we show the H2O environment as a representative example: The results are
similar across all 12 environments, and these results are shown in Supplemental Figure S3.
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Cellular perturbations reveal many context-dependent eQTLs

The primary goal of this studywas to understand the genetic archi-
tecture of gene expression levels, including the degree towhich ge-
netic effects are context-dependent versus unperturbed by
environmental challenges. Consistent with previous studies
(Grundberg et al. 2012; Wright et al. 2014; Wheeler et al. 2016),
we found that there is a substantial genetic component to gene
expression levels in LCLs, with an average heritability of 0.111±
0.250 (SD) in unstimulated cells. However, we found that this ge-
netic component changed following cell treatments, such that
mean per-gene heritability estimates were higher in almost all
treatment conditions relative to their respective controls.
Specifically, mean heritability estimates increased in nine of 11
treatments, with an average fold increase of 1.736±0.955 (SD)
across all 11 treatments (Fig. 3A; Supplemental Table S5).
Further, the difference in mean per-gene heritability estimates be-
tween treatment and control conditions remained after account-
ing for the sample size used to estimate heritability in each
condition (linear model: β=2.94×10−2, P=2.90×10−13) and after
subsampling all environments to an identical sample size (Fig. 3B;
Supplemental Table S5). Together, these results are consistent with
an increase in additive genetic variation for gene expression levels
when cells are perturbed. This result parallels observations of in-
creased heritability for human complex traits in recent decades,
despite minimal changes in the genetic makeup of populations
(Jelenkovic et al. 2016; Athanasiadis et al. 2022); such environ-
mentally induced increases in heritability are consistent with the
idea that cryptic alleles are revealed by environmental perturba-
tions and lead to an increase in additive genetic variance.

We confirmed that the genetic architecture of gene expres-
sion levels changes following cellular perturbations by mapping
cis eQTLs in each of the 12 control or treatments conditions and
comparing their effect sizes. These analyses revealed extensive ge-
netic control of gene expression: 11.07%±7.64% (SD) of genes
contained at least one eQTL (matrixeQTL FDR<10%), with this
number increasing to 15.72%±3.69% (SD) when considering
only the conditions with the largest sample sizes (Supplemental
Table S8). Further, when we pooled our data and performed one
analysis using samples from all conditions, we found that almost
all genes (92% of those tested) had at least one eQTL

(matrixeQTL FDR<10%). The observa-
tion that most genes have an eQTL is
consistent with analyses of the
Genotype-Tissue Expression (GTEx)
data set and other large-scale eQTL stud-
ies (GTEx Consortium 2017; Urbut et al.
2019). Further, this result is robust to dif-
ferent statistical thresholds: 91% and
80% of genes have one or more eQTLs
when using a 5% and 1% FDR threshold,
respectively.

When we performed joint analyses
(Urbut et al. 2019) to identify ubiquitous
and context-dependent eQTLs, we found
that 77.53% of significant eQTLs were
shared across all 12 conditions, whereas
6.70%were condition specific and the re-
maining 15.78% were shared between
two and 11 conditions (mean=10.40±
3.42 [SD] conditions) (for general pat-
terns, see Fig. 4A–C; for example eQTLs,

see Fig. 4D,E). We also found substantial evidence for a subset of
context-dependent eQTLs known as “response eQTLs,” which
we define as SNPs that do not affect gene expression levels in the
control condition but for which genetic effects are revealed by ex-
perimental treatment (or vice versa) (Supplemental Table S5). On
average, we found that 11.28%±2.91% (SD) of all tested genes
contained at least one response eQTL for a given treatment–con-
trol pair, with the strongest evidence for response eQTLs observed
for the treatment that induced the largest overall shift in transcrip-
tome dynamics (i.e., dexamethasone, which revealed response
eQTLs at 14.98% of genes).

Bothubiquitous and context-dependent eQTLswere identified
formany phenotypically and clinically relevant genes. For example,
we identified four eQTLs that regulate the expression of NFKB1;
three of these eQTLs are ubiquitous (Chr 4: 102692410,
102700807, 102711391), whereas one is condition specific and
only observed in GARD-stimulated cells (Chr 4: 103062159;
mashRLFSR=0.042 andposterior effect size =−0.165). Key immune
genes were also found to harbor context-dependent eQTLs. For ex-
ample, we identified two SNPs associated with TLR10 expression
only in FSL1-stimulated cells (Chr 4: 38601324 and 38687410;
LFSR=0.029 and 0.023; posterior effect size =−0.128 and −0.173).
Similarly, several interferon regulatory factors harbor both ubiqui-
tous eQTLs (IRF2: Chr 4: 184215264, 184515101, and 184747221;
IRF3: Chr 19: 49960725 and 49225171; IRF7: Chr 11: 1078619,
354014, 377139, 537130, 636702, 658618, and 840034), as well
as genetic effects that are only found following biologically relevant
treatments such as IFNG and dexamethasone (IRF2: Chr 4:
184883814 and 184877973; IRF3: Chr 19: 49723947; IRF7: Chr
11: 755659, 793588, and 786452).

To validate and contextualize the eQTLs we identified, we
performed two follow-up analyses: (1) we tested for an expected
mechanistic pattern, namely, enrichment of eQTLs within ac-
cessible chromatin regions and active regulatory regions, and (2)
we tested for overlap between our eQTL-containing genes
(“eGenes”) and eGenes identified by theGTEx Project in untreated
LCLs (GTEx Consortium 2017). First, as others have observed
(Nédélec et al. 2016; GTEx Consortium 2017), we found that
SNPs within accessible chromatin regions were more likely to be
identified as ubiquitous (P=0.042, hypergeometric test) and con-
text-dependent eQTLs (P=4.01×10−4; enrichment analyses

A B

TNFSF13B

Figure 3. Environmental perturbations increase the heritability of gene expression levels. The y-axis
shows themean per-gene heritability estimated in each environment, using (A) the total available sample
size for each environment or (B) a subsample of n =100 from each environment (plot shows the average
of five subsamples).
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performed using publicly available ATAC-seq data [Buenrostro
et al. 2013] from untreated LCLs [Banovich et al. 2018]). We also
found that both ubiquitous and context-dependent eQTLs were
mostly enriched within ENCODE-defined chromatin states associ-
ated with active gene regulation and transcription, such as “active
promoter” and “strong enhancer” (Supplemental Fig. S4; The
ENCODE Project Consortium 2012). Second, we found that genes
containing ubiquitous eQTLs overlapped significantly with GTEx
LCL eGenes (P=6.22×10−3, hypergeometric test), suggesting
there is a core set of eQTLs identified across study designs and
cell states. However, genes containing context-dependent eQTLs
did not overlap with GTEx LCL eGenes (P=0.465), suggesting
that our cellular perturbations revealed previously uncharacterized
genetic effects on gene expression. In support of this idea, genes
with evidence for eQTLs in our data set, but not in GTEx, were en-
riched for genes that responded to at least one experimental treat-
ment (P=4.66×10−4).

Phenotypic relevance of ubiquitous and

context-dependent eQTLs

Our next goal was to understand the phenotypic relevance of con-
text-dependent versus ubiquitous eQTLs and to test the hypothe-
sis that context-dependent eQTLs are especially important for
human diseases and adaptively relevant traits. To do so, we asked
whether our context-dependent and ubiquitous eQTL SNP sets (or
their associated genes) were enriched within three publicly avail-
able data sets: (1) GWAS hits for human traits and diseases
(Hindorff et al. 2009); (2) sets of genes that are thought to lie along
the causal pathway linking genetic variation, gene expression, and

114 complex traits and diseases (inferred through PTWAS) (Zhang
et al. 2020); and (3) loss-of-function,mutation-intolerant genes (as
curated by ExAC) (Lek et al. 2016).

First, we found that both context-dependent and ubiquitous
eQTLswere enriched for loci previously implicated inGWAS of hu-
man complex traits and diseases, although contrary to our expec-
tations, these results were slightly stronger for ubiquitous
compared with context-dependent eQTLs (P-value=5.74×10−15

and <10−16 for context-dependent and ubiquitous eQTLs, respec-
tively, hypergeometric test) (Fig. 5C). Second, we found that con-
text-dependent eGenes were enriched for 11 complex traits,
largely focused on immune system traits and disorders such as
platelet counts (q =2.47×10−4, hypergeometric test), neutrophil
counts (q =0.086), and rheumatoid arthritis (q = 0.086) (Supple-
mental Table S10). In contrast, ubiquitous eGenes were enriched
for approximately half the number of complex traits (n =6), again
includingmany immune phenotypes such as inflammatory bowel
disease (q <10−16) and lymphocyte counts (q =0.053) (Fig. 5A;
Supplemental Table S10).

Finally, we tested whether ubiquitous or context-dependent
eGenes were enriched for mutation-intolerant genes, which are
thought to be phenotypically relevant and essential for life given
that no adult humans (in a large population sample known as
ExAC) contain mutations that would result in a truncated or
loss-of-function protein (Lek et al. 2016). Here, we found that con-
text-specific eGenes were enriched among mutation-intolerant
genes (odds =1.306, P=5.45×10−8, Fisher’s exact test), but ubiqui-
tous eGenes were not and even trended toward being under en-
riched (odds =0.982, P=0.8102) (Fig. 5C). These results parallel
those obtained by the GTEx project: eGenes that were shared

Figure 4. Environmental variation reveals context-dependent eQTLs. (A) Number of eQTLs shared between N environments using a mashR, a joint
analysis approach. N is plotted on the x-axis and ranges from one (i.e., the eQTL is present in only one cellular environment) to 12 (i.e., the eQTL is present
in all 12 cellular environments). (B) Same plot as in A, but sharing is defined at the gene rather than the SNP level. (C) Number of eQTLs shared between a
given pair of cellular environments using amashR, a joint analysis approach. The diagonal represents the number of eQTLs in the focal cellular environment.
Note that ACRYL, BPA, PFOA, and FSL-1 had lower sample sizes than the other eight cellular environments, and their clustering thus reflects differences in
power. (D,E) Examples of ubiquitous and context-dependent eQTLs, identified using a mashR, a joint analysis approach. The y-axis shows the mean, nor-
malized expression levels for a given gene estimated in each environment, after regressing out three surrogate variables.
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across many tissues were significantly depleted for loss-of-func-
tion, mutation-intolerant genes, whereas tissue-specific eGenes
were significantly enriched (GTEx Consortium 2017). These re-
sults were interpreted as evidence for purifying selection on regu-
latory variants that involve many tissues and are thus more likely
to have deleterious, pleiotropic effects. In contrast, tissue-specific
eQTLs, and in our case, context-dependent eQTLs, appear to be
more likely to “escape” the effects of purifying selection and to per-
sist in loss-of-function, mutation-intolerant genes.

Evolutionary forces maintaining ubiquitous and context-

dependent eQTLs

The analyses described in the previous section point toward nega-
tive selection as a key evolutionary force that patterns genetic ef-
fects on gene expression. However, several previous studies of
context-dependent eQTLs uncovered by immune stimulation
have instead emphasized a role for positive selection (Nédélec
et al. 2016; Quach et al. 2016; Kim-Hellmuth et al. 2017;
Harrison et al. 2019). For example, Kim-Helmuth and colleagues

(2017) found that monocyte eQTLs with differential effect sizes
in baseline versus immune-stimulated conditions were enriched
among genomic regions with recent signatures of positive selec-
tion; a similar result was found for ubiquitous eQTLs, although
the enrichment was weaker. Drawing on this work and our results
thus far, we weremotivated to further explore the role of both pos-
itive and negative selection in generating context-dependent and
ubiquitous eQTLs.

To do so, we first drew on publicly available measures
of sequence conservation across mammals to understand whether
context-dependent and ubiquitous eQTLs fall in rapidly
evolving versus conserved regions of the human genome.
We found that ubiquitous eGenes showed both lower phastCons
(P=1.765×10−5, Wilcoxon signed-rank test) and phyloP scores
(P=1.749×10−4) than background expectations, indicating that
ubiquitous eGenes are underrepresented in evolutionarily con-
served genes. In contrast, context-dependent eGenes showed
higher phastCons (P=5.01×10−3, Wilcoxon signed-rank test)
and phyloP scores (P=1.35×10−4) (Fig. 5D) than background ex-
pectations, indicating that they are overrepresented in conserved
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Figure 5. Phenotypic relevance and evolution of context-dependent eQTLs. (A) Diseases and heath conditions for which associated genes (identified
via PTWAS) (Zhang et al. 2020) are enriched among genes with one or more context-dependent or ubiquitous eQTLs. The x-axis represents the fold en-
richment estimate from a Fisher’s exact test. (B) Evolutionary forces that potentially maintain context-dependent eQTLs: (1) positive selection on beneficial
mutations (yellow) or (2) inefficient purifying or negative selection that fails to remove deleterious mutations (red). (C) Overlap of ubiquitous, context-de-
pendent, and all (ubiquitous and context-dependent) eQTLs with (1) the full catalog of GWAS-associated loci (Hindorff et al. 2009), (2) iHS outlier loci
(Johnson and Voight 2018), and (3) genes annotated as loss of function and mutation intolerant (Lek et al. 2016). The y-axis represents fold enrichment
from a Fisher’s exact test, with error bars denoting the 95% confidence interval for each estimate. (D) Distribution ofmean per-gene phastCons and phyloP
scores for genes with no eQTLs, one or more ubiquitous eQTLs, and one or more context-dependent eQTLs. (E) Overlap of response eQTLs, identified in a
given condition, with iHS outlier loci (Johnson and Voight 2018). The y-axis represents fold enrichment from a Fisher’s exact test, with error bars denoting
the 95% confidence interval for each estimate.
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genes. Similar to our results using mutation-intolerant gene anno-
tations, these analyses suggest that, in highly conserved and puta-
tively essential genes, ubiquitous eQTLs are selected against and
depleted, whereas context-dependent eQTLs are “hidden” from se-
lection and persist (Fig. 5B).

Next, we explicitly investigated a role for positive selection by
obtaining per-site estimates of the integrated haplotype score
(iHS), a commonly usedmeasure of within-population recent pos-
itive selection (Voight et al. 2006; Johnson and Voight 2018). We
obtained genome-wide iHS estimates for each of the populations
included in our study and identified putative selection candidates
as loci that fell in the more than 99th percentile of |iHS| values in
two or more populations (as in Nédélec et al. 2016; Kim-Hellmuth
et al. 2017). When we overlapped these selection outliers with our
eQTLs, we found that loci that functioned as eQTLs (in all or fewer
than 12 cellular environments) were more likely to show signa-
tures of positive selection (odds =1.332, P=3.702×10−13, Fisher’s
exact test). This result was especially strong for ubiquitous eQTLs
(odds = 1.389, P=1.688×10−13) but less so for context-dependent
eQTLs (odds =1.152, P=0.086) (Fig. 5C), in contrast to patterns ob-
served in previous work focusing on immune stimulations
(Nédélec et al. 2016; Kim-Hellmuth et al. 2017). Given that our
study focuses on a more diverse set of environmental perturba-
tions, we wondered whether heterogeneity between treatments
could explain the lack of enrichment of iHS outliers in the total
set of context-dependent eQTLs. When we analyzed each condi-
tion separately, we found statistically significant enrichment of
iHS outliers in response eQTLs for two immune stimuli, namely,
FSL-1 (odds =1.362, P=0.036) and TNFSF13B (odds =1.512, P=
0.031), although we note these effect sizes were small. Further,
we found that these enrichment effect sizes were similar for im-
mune versus hormone treatments (β=0.065, P=0.297) (Fig. 5E)
but that immune response eQTLs were more strongly enriched
for iHS outliers than environmental contaminant and cell stressor
response eQTLs (β=0.246, P=5.82× 10−4, linearmodel). Thus, our
data are consistent with the hypothesis that positive selection has
played a greater role in shaping loci involved in the response to im-
mune and hormone molecules relative to loci involved in the re-
sponse to man-made chemicals and novel cell stressors.

Discussion

Despite major advances in genomic technologies, understanding
the genetic basis of human complex traits remains a challenge.
Although decades of GWAS have uncoveredmany loci for common
diseases and health-related traits, there is a general consensus that
mapping additive effectswill not allow us to account for the total es-
timated genetic component of most phenotypes. This problem is
known as the “missing heritability” problem and has been used to
argue for a critical role for G×E interactions (Manolio et al. 2009).
More specific support that G×E interactions contribute to human
complex traits comes from analyses of variance and observations
that the heritability of key traits has increased in recent decades, de-
spite minimal changes in the genetic makeup of populations
(Jelenkovic et al. 2016; Czamara et al. 2019; Dahl et al. 2020; Sulc
et al. 2020).However, despitemultiple lines of evidence thatG×E in-
teractions are likely important, we havemade little progress inmap-
ping the specific loci involved inG×E interactions. This reality limits
our ability to understand their distribution, effect sizes,mechanisms
of action, and evolution.

Here, we use a cell culture model to overcome issues faced by
observational studies and tomaximize our power to detect G×E in-

teractions in the form of context-dependent eQTLs. Specifically,
we exposed cells from genetically well-characterized individuals
to 12 controlled, in vitro environments and asked whether genetic
variation predicted individual responses at the transcriptional lev-
el. We found that diverse environmental perturbations induced
diverse gene regulatory programs, whereas the genetic control of
gene expression levels was more environmentally robust: at least
70% of ancestry effects on the transcriptomewere consistent in ef-
fect size across environments, as were 78% of eQTLs. These results
agree with previous work using smaller sample sizes, fewer envi-
ronments, as well as cross-tissue comparisons (Moyerbrailean
et al. 2016; Nédélec et al. 2016; Quach et al. 2016; GTEx
Consortium 2017).

Nevertheless, our experiments do show that a nonnegligible
portion of the transcriptome’s genetic architecture is environmen-
tally sensitive: 16%of eQTLswere only shared between two and 11
conditions, whereas 6% were specific to a single condition.
Further, we found that our observed patterns of cis eQTLs sharing
generally mimicked the bimodal distribution observed by GTEx
for cross-tissue comparisons (GTEx Consortium 2017). In other
words, the largest categories of cis eQTLs were those shared across
all 12 environments, followed by those that were specific to a sin-
gle environment (Fig. 4A–C). Many of the eQTLs revealed by our
environmental treatments were both uncharacterized (e.g., unan-
notated in GTEx LCLs) (GTEx Consortium 2017) and putatively
phenotypically relevant (Fig. 5A,C), arguing that environmental
diversity should be incorporated into eQTL mapping studies
whenever possible (e.g., Moyerbrailean et al. 2016). In fact, al-
though an estimated 88% of all genetic variants associated with
complexhuman traits anddiseases lie outside of protein-coding re-
gions (Edwards et al. 2013; MacArthur et al. 2017), the most com-
prehensive eQTL studies to date (e.g., GTEx) (GTEx Consortium
2017) have only accounted for about one-half of known regulatory
GWAS hits. This state of affairs has motivated recent calls to ex-
pand the set of cellular conditions under which we study links be-
tween genotype, gene regulation, and disease (Umans et al. 2021);
our study design provides one feasible avenue for doing so.

Although previous work has applied in vitro environmental
manipulations to study G×E interactions (Barreiro et al. 2012;
Lee et al. 2014; Çalısķan et al. 2015; Moyerbrailean et al. 2016;
Nédélec et al. 2016; Quach et al. 2016; Kim-Hellmuth et al. 2017;
Piasecka et al. 2018; Findley et al. 2021), the number of environ-
ments we assay here using genome-wide data sets and appreciable
sample sizes is unprecedented. Further, previous experiments have
focused heavily on environmental manipulations involving path-
ogens and other immune stimuli, and we speculate that context-
specific eQTLs in the immune system may manifest and evolve
in different ways than context-specific eQTLs for other stimuli, es-
pecially stimuli that have not been common throughout human
evolutionary history. According to evolutionary theory, most
new mutations are overall deleterious (e.g., because of their pleio-
tropic effects) and will be selected against; in contrast, context-de-
pendent regulatory mutations can provide more targeted fitness
benefits and are thus thought to play a key role in the evolution
of adaptively relevant trait (Carroll 2000; Wray 2007; Umans
et al. 2021). In support of this argument, several studies have
shown that eQTLs that control the gene regulatory response to in-
fection are under positive selection (Nédélec et al. 2016; Quach
et al. 2016; Kim-Hellmuth et al. 2017; Harrison et al. 2019).
However, it is unlikely that natural selection has similarly shaped
eQTLs that control the response to stimuli recently introduced
into human environments (e.g., man-made chemicals). In line
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with this thinking, we find little evidence that positive selection
has shaped G×E loci revealed by novel cell stressors or chemicals,
but we do find evidence for this pattern for immune-responsive
loci (Fig. 5). Our results point toward amodel inwhich cellular per-
turbations with distinct evolutionary histories may produce con-
sistently divergent patterns (although this model needs further
confirmation). Moving forward, we argue for greater consideration
of the evolutionary history of a given environmental exposure
when studying and interpreting G×E interactions.

There are several limitations to the present study, as well as
open directions for future work. First, our sample sizes were more
than reasonable for eQTL mapping in all 12 cellular environments,
however, they were not identical. Nevertheless, our use of a
Bayesian joint analysis framework (i.e., mashR) to pool information
across conditions should circumventmany potential issues associat-
ed with variable sample sizes; this is because the original sample size
for a given environment does not reflect the “effective” sample size
used by the program, which provides power gains from sharing in-
formation (Urbut et al. 2019). In support of this point, previous
analyses of GTEx data with mashR found that genetic effects on
gene expression estimated across dozens of tissues in the body clus-
tered by organ system (e.g., brain regions all clustered together) rath-
er than sample size (Urbut et al. 2019). Second, althoughmany SNPs
in thehumanspecies haveminor allele frequencies <5%, our sample
sizes were not sufficient to assess the contribution of these rare var-
iants. Emerging evidence suggests these rare variants explain ∼25%
of the heritability of gene expression levels (Hernandez et al. 2019),
and as future studieswith larger sample sizes are performed, it will be
exciting to assess their context-dependency. Third, our study design
relied on Epstein–Barr virus transformed LCLs, because they are a re-
plenishable and shareable resource and are commercially available
for genetically well-characterized individuals (The 1000 Genomes
Project Consortium 2012). They have also been used extensively
for functional genomic work (Stranger et al. 2007; Veyrieras et al.
2008; Pickrell et al. 2010; Bell et al. 2011; Mangravite et al. 2013),
and previous studies have shown that (1) genomic results from
LCLs replicate in primary tissues (Stranger et al. 2007; Veyrieras
et al. 2008; Pickrell et al. 2010; Bell et al. 2011; Mangravite et al.
2013) and (2) gene expression levels in newly established LCLs
maintain a strong individual signature (Çalısķan et al. 2011).
However, gene regulation in LCLs is not identical to their progenitor
B cells, and the transformation process is known to induce certain
artifacts (Redon et al. 2006; Akey et al. 2007). Thus, althoughwe be-
lieve LCLs represent a powerful model for high-throughput and
large-scale G×E mapping, future work in primary tissues or induced
pluripotent stem cells will be important for corroborating the pat-
terns we see here. Finally, we did not generate environment-specific
data on additional gene regulatorymechanisms such as DNAmeth-
ylation, chromatin accessibility, or chromatin state. Although this
work was beyond the scope of the present study, it is a key avenue
for future research and for understanding the molecular mecha-
nisms that generate context-dependent eQTLs (e.g., environmental-
ly dependent transcription factor binding). Although functional
fine-mapping of individual G×E interactions can be laborious and
difficult, several recent studies offer promising new avenues for us-
ing gene regulatory assays to understand the path from genotype
to phenotype (Johnson et al. 2018;Garske et al. 2019), includingun-
der diverse environmental conditions.

Technological advances have fueled the ascent of personal
genomics and the promise of precision medicine. However, to
unlock this potential, we must first understand how the environ-
mental and genetic interactions unique to each individual contrib-

ute to variation in complex traits. Our study provides a
comprehensive window into the environmental dependency of
the human transcriptome, including genetic effects that are only
revealed by environmental change—a class of variants known as
“cryptic genetic variation” (Gibson and Dworkin 2004; Paaby
and Rockman 2014). Cryptic alleles likely drive the significant in-
crease in heritability we observe following cellular treatments, and
could play a major role in explaining the “missing heritability”
problem; again, these results argue for a critical role for G×E inter-
actions in driving variation in complex traits.

Methods

Cell culture, experimental cell treatments, and mRNA-seq

LCLswere obtained for 544 unrelated individuals from10 different
African and European populations included in the 1000 Genomes
study (The 1000 Genomes Project Consortium 2012). Population-
specific panels were immortalized by different 1000 Genomes
investigators at different times, and thus, batch effects could con-
found population-level analyses of differential expression; howev-
er, we instead focus here on differences between broad ancestry
groups (African vs. European) in an effort to circumvent issues
with analyzing individual populations. Further, all cell lines were
cultured in a controlled setting before our experiments. All cell
lines were ordered from Coriell Institute, and live cultures were
shipped overnight to Princeton University in randomized batches
of 25 (Supplemental Table S1). Cells were cultured in parallel for 5–
11 d until 12 million cells were available to seed (at a density of 1
million cells/2.5 mL of media in a 12-well plate). After an over-
night incubation period, 12 environmental treatments (Table 1;
Supplemental Table S2) were added to each of the 12 wells (for
treatment concentrations, see Supplemental Table S2). We note
that, following previous in vitro exposure studies (Barreiro et al.
2010; Nédélec et al. 2016; Snyder-Mackler et al. 2016; Harrison
et al. 2019), we did not choose our treatment concentrations to
be physiologically realistic; instead, we chose treatments concen-
trations that induced robust gene expression responses across all
environments in order to reveal G×E interactions (Table 1). After
4 h, cells were washed, harvested, and preserved in lysis buffer
for downstream RNA work. We chose a 4-h exposure to capture
the early stages of gene expression responses to perturbation and
to ensure that cellular processes that occur on longer timescales
(e.g., cell divisions, replication, and death) would minimally im-
pact our results. This timescale has also been used successfully in
previous studies of response eQTLs in immune cells (Barreiro
et al. 2010; Pai et al. 2016; Khan et al. 2020).

Total RNA was extracted from each sample using Zymo’s
Quick-RNA 96 kit, following the manufacturer’s instructions.
mRNA-seq libraries were prepared using the published TM3′seq
protocol (Pallares et al. 2020) and a CyBio FeliX liquid handling ro-
bot (Analitik Jena). The total data set (n=5223 libraries) was se-
quenced across four runs of the Illumina NovaSeq platform.
Each sample was sequenced to a mean depth of 2.199± 2.731
(SD) million reads using 100-bp single-end sequencing. We note
that, because we are using a 3′ rather than a full transcript ap-
proach, this amount of sequencing is adequate. For example, pre-
vious work has shown that ∼1 million reads provide accurate and
reproducible estimates of gene expression levels using TM3′seq
(Pallares et al. 2020). This is because the 3′ approach targets only
the ends of transcripts (near the poly(A) tail), and consequently,
fewer reads are needed to estimate the expression of a given gene
because reads are concentrated in a small amount of sequence
(rather than being distributed across the entire transcript).
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Additional information relating to cell culture, experimental
cell treatments, and mRNA-seq data generation is available in the
Supplemental Materials.

Low-level processing of mRNA-seq and genotype data

Following sequencing, we trimmed FASTQ files (Martin 2011),
mapped the filtered reads to the human reference genome
(hg38) (Dobin et al. 2013), extracted counts of mapped reads
(Anders et al. 2015), and filtered out low-coverage samples and
genes (Supplemental Table S3). Next, we normalized the count
data (Law et al. 2014), conducted surrogate variable (SV) analysis,
and regressed out three SVs to remove batch and technical effects
(Leek and Storey 2007). Phased genotype calls derived from about
30× whole-genome sequence data were downloaded for 454 indi-
viduals included in our study (Supplemental Table S4; Byrska-
Bishop et al. 2022). We used PLINK (Purcell et al. 2007) to remove
low-quality and low-MAF SNP and to perform LD filtering (Purcell
et al. 2007). We used a set of 7,205,828 filtered SNPs to generate a
PCA in PLINK (Purcell et al. 2007), as well as a genetic relatedness
matrix (GRM) inGCTA (Yang et al. 2011). Finally, to prepare for cis
eQTL mapping, we extracted the 1,950,183 SNPs that fell within
500 kb of the transcription start or end site of protein-coding
genes. Additional information relating to low-level processing of
mRNA-seq and genotype data is available in the Supplemental
Materials (see also Supplemental Figs. S5, S6).

Testing for ancestry and treatment effects on gene expression

levels

To identify genes for which gene expression was predicted by an-
cestry within a given condition,we used linearmodels implement-
ed in limma (Law et al. 2014). Specifically, for each of the 12
cellular environments, we ran the following model on the SV-cor-
rected residuals for each gene:

yi = m+ aiba + ei, (1)

where yi is the gene expression level estimate for sample i, μ is the
intercept, ai represents ancestry of the focal sample (AFR or EUR),
βa is the corresponding estimate of the ancestry effect, and ei repre-
sents environmental noise.

To identify genes for which gene expression was significantly
affected by a given treatment, we used a similar modeling ap-
proach again implemented in limma (Law et al. 2014).
Specifically, for each of the 11 treatments, we ran the following
model on the SV-corrected residuals for each gene:

yi = m+ cibc + aiba + ei, (2)

where all variables are as described above, with the addition of ci,
which denotes the condition (treatment or control), and βc, which
is the corresponding estimate of the treatment effect. After run-
ning both models 1 and 2, we extracted the P-value associated
with the effect of interest (ancestry or treatment, respectively)
and corrected for multiple hypothesis testing using a Storey–
Tibshirani FDR approach (Storey and Tibshirani 2003). A summary
of the results of these analyses is provided in Supplemental Tables
S5 and S8. We also extracted the effect size and standard error esti-
mates associated with the effects of interest for downstream
analyses.

Testing for cis eQTL effects on gene expression levels

We used the R package matrixeQTL (Shabalin 2012) to test for cis
eQTLs (within 500 kb) that affected gene expression variation in
each cellular environment separately. Specifically, for each of the

12 environments, we ran the followingmodel on the SV-corrected
residuals for each gene:

yi = m+ gibg +
∑5

k=1

pkibk + ei, (3)

where gi denotes the genotype of individual i in terms of number of
copies of the minor allele (zero, one, or two), and βg is the corre-
sponding estimate of the genotype effect. pki is the loading for
principal component k for individual i (from a PCA on the filtered
genotype matrix, as described above), and βk is the estimate of the
principal component effect. For each gene–SNP combination, we
extracted the P-values, effect sizes, and standard error estimates as-
sociated with the genotype effect. We then used a Storey–
Tibshirani FDR (Storey and Tibshirani 2003) to correct formultiple
hypothesis testing. Results are summarized in Supplemental
Table S8.

We also ran a second analysis, using the same approach de-
scribed above, but pooling the data across all 12 conditions. For
this analysis, condition was also included as a covariate in the fol-
lowing model:

yi = m+ cibc + gibg +
∑5

k=1

pkibk + ei. (4)

Finally, we note that we explored an alternative analysis strat-
egy, in which we regressed out one to 20 principal components
from the normalized (but not SV-corrected) gene expression ma-
trix before fitting the models described in Equation 3 (as in
Nédélec et al. 2016; GTEx Consortium 2017). We did not find
that this approach consistently increased our power to detect
eQTLs across the 12 cellular environments and therefore opted
for using the SV-corrected data in which a consistent pipeline
could be applied to the full data set.

Estimating sharing of ancestry, treatment,

and genotype effects

To understand the degree to which treatment, ancestry, or geno-
type effects mapped across different conditions have shared versus
context-dependent effects, we used the empirical Bayes approach
implemented in the R package mashR (Urbut et al. 2019).
Although previous studies have instead used linear models to (1)
test for interaction effects between condition and genotype or an-
cestry or (2) test for ancestry or genotype effects on the fold change
in gene expression levels estimated between treatment and control
conditions (Nédélec et al. 2016; Kim-Hellmuth et al. 2017;
Harrison et al. 2019), joint analysis via mashR is more appropriate
to our design and provides many advantages. mashR is explicitly
designed for quantitative assessment of effect size heterogeneity
across conditions, increases power via joint analysis, and exploits
patterns of similarity to provide improved estimates of effect size
in each condition. It also provides a common framework for com-
paring effect sizes across many conditions rather than relying on
the comparison of many different “significant” lists derived from
arbitrary P-value or FDR cutoffs. Similar meta-analytic approaches
have been successfully applied to other high-dimensional data
sets, such as GTEx (GTExConsortium 2017).We used similar pipe-
lines to estimate sharing of treatment, ancestry, and genotype ef-
fects using mashR (Urbut et al. 2019), with small modifications
appropriate to each predictor variable.

First, using our multitreatment (n=11) estimates of environ-
mental effect sizes, we evaluated effect size concordance between
all pairwise combinations of treatment–control pairs. Here, we fol-
lowed the pipeline provided by the mashR investigators for data
sets that use the same reference or control condition samples
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across multiple comparisons (https://stephenslab.github.io/
mashr/articles/intro_correlations.html). Specifically, we corrected
for correlations among conditions in our data and then used a
combination of canonical and data-driven covariance matrices to
fit the mashR model. From the mashR output, we extracted the
posterior mean effect size and local false sign rate (LFSR) estimates.
Following the investigators’ recommendations, we considered a
gene to have “shared” treatment effects across an arbitrary number
of treatment if it has a LFSR<10% for at least one treatment and
posterior effect sizes of similar magnitude (within a factor of
two) for the other treatments. We always used the treatment
with the lowest LFSR as the reference for the effect size comparison
(we note that similar results were obtained when we used the me-
dian effect size across all treatments with LFSR<10%). In cases in
which the treatment effect was shared across all 11 treatment–con-
trol pairs (aka “ubiquitous”), we considered the treatment effect to
be “context-dependent.” Finally, we considered a gene to show a
special case of context-dependency, namely, “condition-specific”
effects, if it had evidence for treatment effects at a LFSR<10%
and the posterior effect size estimate was not within a factor of
two of any other treatment.

Second, using our multicondition (n=12) estimates of ances-
try effect sizes, we evaluated effect size concordance between
all pairwise combinations of conditions. To do so, we follow-
ed the standard pipeline provided by the mashR investiga-
tors (https://stephenslab.github.io/mashr/articles/intro_mash_dd
.html), which uses a combination of canonical and data-
driven covariance matrices to fit the mashR model. From the
mashR output, we again extracted the posterior mean effect size
and LFSR estimates and used the same approach described above
to identify ubiquitous, context-dependent, and condition-specific
effects.

Finally, we assessed effect size sharing for cis eQTLs mapped
across all 12 cellular environments. In this case, there were too
many tested gene–SNP pairs to evaluate all of them in the
mashR framework (n=8,109,941), so we followed the investiga-
tors’ recommendations and focused on 66,614 gene–SNP pairs
with some evidence for cis eQTLs from matrixeQTL (Shabalin
2012) (FDR<10% in at least one condition). We followed the
pipeline suggested for eQTLs (https://stephenslab.github.io/
mashr/articles/eQTL_outline.html) and used a combination of
canonical and data-driven covariance matrices derived from
50,000 randomly chosen gene–SNP pairs to fit the mashR model.
We then computed posterior summaries for the 66,614 gene–SNP
pairs of interest using the model fit to randomly selected
data. Finally, we extracted the posterior mean effect size and
LFSR estimates and used the same definitions described above
to identify ubiquitous, context-dependent, and condition-specif-
ic treatment effects. In some cases, we also summarized our eQTL
results at the gene rather than the SNP level; in these cases, we
report the number of unique genes that have at least one eQTL
that is shared between a given number of conditions (12=ubiq-
uitous and one to 11= context-dependent). We note that with
these definitions a given gene can be reported in more than
one category.

A summary of the mashR treatment, ancestry, and cis eQTL
results are provided in Supplemental Tables S5 and S8. An over-
view of our analysis pipeline is provided in Supplemental Figure
S7. All estimates of LFSR and posterior mean effect sizes are avail-
able on GitHub and as Supplemental Data. To understand the ro-
bustness of our conclusions, we also (1) repeated our treatment
and ancestry analyses after randomly down-sampling our data to
n=120 per environment (Supplemental Fig. S8), (2) compared
our treatment effect size estimates to previous work
(Supplemental Fig. S9), and (3) performed follow-up analyses to

understand which treatments were driving the sharing patterns
we observed (Supplemental Fig. S10).

Testing the degree to which ancestry and genotype affect the

response to treatment

We also used mashR to understand whether (1) individuals of
African versus European ancestry responded differently to a given
treatment and (2) genotype affects the response to a given treat-
ment, as evidence for both phenomena has been shown in previ-
ous work (Nédélec et al. 2016). To test point 1, we asked whether
the posterior mean estimates of the ancestry effect were different
between the treatment and control conditions for all 11 treat-
ments; if so, this would indicate an effect of ancestry on the re-
sponse to a given treatment. We used the same pipeline
described for estimating sharing of treatment effects, and we con-
sidered a gene to show differential responses to treatment as a
function of ancestry if the LFSR was <10% in either the treatment
or control condition (or both) and the posterior mean effect size
estimates were not within a factor of two of one another. Using
this approach, we found no evidence for ancestry effects on the re-
sponse to treatment (except for one gene in the IGF1 data set). To
validate this result, we also ran models in limma (Law et al. 2014)
that included an explicit interaction effect (βcxa) between treat-
ment and ancestry. Specifically, for each of the 11 treatments,
we ran the following model on the SV-corrected residuals for
each gene:

yi = m+ cibc + aiba + (ci ∗ ai)bcxa + ei. (5)

These results revealed no significant ancestry × treatment
(βcxa) effects at a 10% FDR. We note that if we apply mashR to
the interaction effect itself (βcxa), we do find a modest result
(mean± SD of 210.18±106.73 genes with a LFSR<10% per treat-
ment). However, it is not recommended to perform joint analysis
when there is no initial evidence for the effect of interest, and we
therefore caution that the mashR analysis of βcxa is exploratory.

To test point 2, we asked whether the posterior mean esti-
mates of the genotype effect were different between the treatment
and control condition for all 11 treatments; if so, this would indi-
cate an effect of genotype on the response to a given treatment.We
used the same pipeline described for estimating sharing of cis eQTL
effects, and we considered a gene to show differential responses to
treatment as a function of genotype if the LFSR was <10% in either
the treatment or control condition (or both) and the posterior ef-
fect size estimates were not within a factor of two of one another.
We found several thousand response eQTLs for each treatment,
and these results are summarized in Supplemental Table S5.

Relationship between FST and ancestry-associated gene

expression variation

Wewere interested in testing the hypothesis that genetic variation
contributes to the observed differentiation in gene expression be-
tween African and European individuals. To do so, we followed the
approach of Nédélec et al. (2016) and asked whether genes with
ancestry effects show higher FST values between African and
European populations relative to non-ancestry-associated genes.
To do so, we first calculate the FST for all 7,205,850 variants in
our pre-LD filtered genotype data set.We then generated gene-spe-
cific estimates by averaging FST values for variants within 5 kb (up-
stream or downstream) of the transcription start site of a given
gene. Next, we used a Wilcoxon signed-rank test to ask whether
FST values differed between genes with no evidence for an ancestry
effect (LFSR>10% in all conditions) and (1) genes with any evi-
dence for an ancestry effect in any condition or (2) genes with
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evidence for an ancestry effect in at least two-thirds of conditions.
In a second approach, we also used linear models to test whether
the number of cellular environments a gene showed significant
ancestry effects in was predictive of the gene’s average FST value.

To further understand the contribution of genetic variation
and selection to population differences in gene expression, we
compared PST values for ancestry-associated genes to FST estimates
between African and European individuals. PST is a phenotypic an-
alog of FST (and a proxy forQST), and comparisons between the two
measures can thus provide evolutionary insight (Lamy et al. 2012;
Leinonen et al. 2013). Specifically, PST > FST is interpreted as evi-
dence for diversifying selection, indicating different local optima
for different populations. In contrast, PST < FST signifies uniform se-
lection (also known as homogeneous, convergent, or stabilizing
selection) and PST = FST suggests that phenotypic divergence be-
tween populations mimics neutral genetic divergence and is thus
largely controlled by genetic drift. We used the R package Pstat
(Da Silva andDa Silva 2018) to calculate PST for ancestry-associated
genes identified in each condition (FDR<10%), as well as a ran-
dom sample of 500 genes. We compared these values to the
genome-wide average of FST estimates between African and
European individuals included in our data set (for whom we also
had whole-genome sequencing data, n =454) (see Fig. 2E;
Supplemental Fig. S3). To estimate 95% confidence intervals for
themean genome-wide FST estimate, we performed 1000 replicates
of bootstrap resampling.

Evolutionary analysis of ubiquitous and context-dependent

eQTLs and eGenes

We performed two sets of analyses to address the roles of positive
and negative selection in maintaining ubiquitous and context-de-
pendent eQTLs. First, we obtained two publicly available estimates
of sequence conservation: phyloP scores (Pollard et al. 2010) and
phastCons scores (Spieth et al. 2005). The phyloP score measures
the evolutionary conservation at each individual alignment site,
with a positive sign indicating conservation and slower evolution
than chance expectations, whereas a negative sign indicates re-
laxed constraint or positive selection and faster evolution than ex-
pected by chance. The phastCons score measures the probability
that each nucleotide belongs to a conserved element, with a higher
phastCons score representing greater sequence conservation. We
obtained the per-site phyloP and phastCons scores from the 100-
way vertebrate comparison available via the UCSC Genome
Browser (Karolchik et al. 2014). Following the methods of Shang
et al. (2020), we averaged the per-site measures across all exons
in each protein-coding gene to obtain per-gene phyloP and
phastCons scores. Finally,we compared themeanper-gene conser-
vation scores for ubiquitous eGenes and context-dependent eQTL
genes to non eGenes using a Wilcoxon signed-rank test.

Second,we investigated a role for positive selection by obtain-
ing per-site estimates of the iHS, a commonly used measure of
within-population recent positive selection (Voight et al. 2006;
Johnson and Voight 2018). We obtained genome-wide iHS esti-
mates for each of the 10 populations included in our study from
Johnson and Voight (2018) and identified putative selection can-
didates as loci that fell in themore than 99th percentile of |iHS| val-
ues in two or more populations (as in Nédélec et al. 2016; Kim-
Hellmuth et al. 2017). We then used Fisher’s exact tests to test
for enrichment of iHS outliers in our ubiquitous and context-de-
pendent eQTL sets, as well as the sets of response eQTLs identified
in each condition separately. Finally, we grouped the results of the
response eQTL enrichment analyses into three treatment catego-
ries (immune stimuli, hormones, and environmental contami-
nants/novel cell stressors) (see Table 1) and used a linear model

to askwhether the enrichment effect sizes consistently differed be-
tween the immune stimuli treatments and the other two treatment
categories.

All statistical analyses were performed in R version 4.1.2.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE207049. Code is available at GitHub (https://github.com/
AmandaJLea/LCLs_gene_exp) andas SupplementalCode.Most sup-
porting data files are available on GitHub, but larger files are posted
to Zenodo (https://zenodo.org/record/6595427#.YrnVKJPMJuU).
The supporting data files fromGitHub andZenodo are also available
as Supplemental Data.
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