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Nuclear EGFR signalling network in cancers: linking EGFR pathway
to cell cycle progression, nitric oxide pathway and patient survival
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Emerging evidences suggest the existence of a new mode of epidermal growth factor receptor (EGFR) signalling pathway in which
activated EGFR undergoes nuclear translocalization and subsequently regulates gene expression and potentially mediates other
cellular processes. This signalling route is distinct from the better-characterized, traditional EGFR pathway that involves transduction
of mitogenic signals through activation of multiple signalling cascades. Transcriptional activity of nuclear EGFR appears to depend on
its C-terminal transactivation domain and its physical and functional interaction with other transcription factors that contain DNA-
binding activity. Likely via its ability to upregulate gene expression, nuclear EGFR pathway is associated with major characteristics of
more aggressive tumours: increased proliferative potential, nitric oxide synthesis, and accelerated G1/S cell cycle progression. A role
of nuclear EGFR in prognostic prediction is further suggested in patients with breast carcinomas and oropharyngeal squamous cell
carcinomas. It is noted that significant advances were made towards the knowledge of the nuclear EGFR pathway; however, many
aspects of this new pathway remain unresolved and will be discussed in this review. As a number of other receptor tyrosine kinases
(RTKs) and cytokine receptors also undergo similar nuclear translocalization, a better understanding of the physiological and malignant
nature of the nuclear EGFR pathway will likely shed light into the biology of cancer with nuclear RTKs.
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Albeit very little is known about physiological function and cancer
relevance of the nuclear EGFR pathway until recent years, EGFR
has been consistently detected in the nuclei of cancer cells and
primary tumour specimens of various origins as well as in those of
other highly proliferative tissues (Marti et al, 1991; Cao et al, 1995;
Lin et al, 2001; Lo et al, 2005a, b). Increased expression of nuclear
EGFR is linked to poor clinical outcome in patients with breast
carcinomas (Lo et al, 2005c) and oropharyngeal squamous cell
carcinomas (Psyrri et al, 2005). Consistently, nuclear accumulation
of EGFR correlates with increased expression of cyclin D1,
inducible nitric oxide synthase (iNOS) and B-Myb, all of which
are frequently overexpressed in human cancers and associated
with increased cell proliferation (Lin et al, 2001; Hanada et al,
2005; Lo et al, 2005a). Furthermore, most recent reports indicate a
plausible mechanism underlying nuclear EGFR-mediated gene
regulation, which involves a physical interaction with other
transcription factors, signal transducer and activator of transcrip-
tion 3 (STAT3) and E2F1 (Hanada et al, 2005; Lo et al, 2005a). A
cellular mechanism that can potentially account for nuclear import
of receptor tyrosine kinases (RTKs) is also proposed recently (Giri
et al, 2005). It is important to note that nuclear import is not only
observed with EGFR but also with many other RTKs, including
mouse erbb1, HER-2, rat p185neu, HER-3, truncated C-terminal
HER-4, and fibroblast growth factor receptor (FGFR) and cytokine

receptors (Marti et al, 1991; Xie and Hung, 1994; Lin et al, 2001; Ni
et al, 2001; Offterdinger et al, 2002; Schausberger et al, 2003; Wang
et al, 2004; Krolewski, 2005). As RTK-mediated pathways are
frequently deregulated in many human cancers and are closely
linked to tumorigenesis and tumour progression, it is thus an
urgent task to better understand the nature of these nuclear RTKs
and, more importantly, to determine the extent to which they
contribute to the malignant biology and therapeutic response of
human cancers.

DETECTION OF NUCLEAR EGFR

Nuclear detection of EGFR was first reported in hepatocytes that
underwent regeneration and in primary adrenocortical carcinomas
more than a decade ago (Kamio et al, 1990; Marti et al, 1991).
Nuclear expression of EGFR was further detected in other cell
types and tissues, such as placentas, thyroids and immortalized
epithelial cells of ovary and kidney origins (Cao et al, 1995; Lin
et al, 2001; Marti et al, 2001; Lo et al, 2005a). High levels of EGFR
was also found in the nuclei of many tumours, including those of
skin, breast, bladder, cervix, adrenocorticord, thyroid and oral
cavity (Kamio et al, 1990; Lipponen and Eskelinen, 1994; Lin et al,
2001; Marti et al, 2001; Lo et al, 2005a, c; Psyrri et al, 2005). In
addition, EGFR has been shown to localize in the inner nuclear
membrane (Cao et al, 1995; Klein et al, 2004). Nuclear counterpart
of EGFR appears to be the full-length receptor and likely, in the
phosphorylated form, as shown by a number of studies (Cao et al,
1995; Lin et al, 2001; Cordero et al, 2002; Dittmann et al, 2005a;
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Lo et al, 2005a, c). Consistently, EGF and pro-TGF-a were found to
translocate into the nucleus of proliferating hepatocytes (Raper
et al, 1987; Schausberger et al, 2003). In addition to ligand
stimulation, nuclear translocalization of EGFR can be initiated by
irradiation, heat shock, H2O2 and cisplatin (Cao et al, 1995; Lin
et al, 2001; Dittmann et al, 2005a). Conversely, EGF- and
irradiation-induced EGFR nuclear transport can be blocked by
1,25-dihydroxyvitamin D (Cordero et al, 2002) and anti-EGFR
antibody, C225/Cetuximab (Dittmann et al, 2005b), respectively.

NUCLEAR EXISTENCE OF OTHER RTKS

Nuclear translocalization is not a unique event with EGFR but
rather a universal phenomenon occurring to many other cell-
surface receptors. In addition to EGFR and its mouse homologue
erbb1, all other receptors in the ErbB family have also been
detected in the nucleus (Xie and Hung, 1994; Lin et al, 2001; Ni
et al, 2001; Offterdinger et al, 2002; Schausberger et al, 2003; Wang
et al, 2004; Krolewski, 2005). Rat p185neu, HER-2 and HER-3
receptors exist as full-length receptors in cell nucleus (Xie and
Hung, 1994; Offterdinger et al, 2002; Wang et al, 2004) whereas
HER-4 undergoes g-secretase-mediated cleavage and the C-

terminal 80-kDa fragment translocates into the nucleus (Ni et al,
2001). Several other RTKs, including TrkA,B/NGFR, FGFR, VEGF
receptor 2 (VEGFR-2) and type I TGF-b receptor also undergo
nuclear transport (Rakowicz-Szulczynska et al, 1988; Maher, 1996;
Zwaagstra et al, 2000; Pillai et al, 2005). Inflammatory cytokine
receptors, such as, those of interleukin-1 (IL-1), IL-5 and
interferon-g (IFN-g) also exist in the nuclear compartment (Curtis
et al, 1990; Jans and Hassan, 1998; Larkin et al, 2000). In line with
these observations, ligands to most of these receptors were also
found in the nucleus (Raper et al, 1987; Curtis et al, 1990; Jans and
Hassan, 1998; Schausberger et al, 2003).

POTENTIAL MECHANISMS FOR NUCLEAR–
CYTOPLASMIC TRANSPORT OF CELL-SURFACE
RECEPTORS

Several lines of evidences suggest that many nuclear RTKs can be
originated from the cell-surface counterparts and exist as un-
cleaved full-length receptors, including EGFR, HER-2, HER-3, and
FGFR1 (Maher, 1996; Lin et al, 2001; Offterdinger et al, 2002; Wang
et al, 2004; Dittmann et al, 2005a; Giri et al, 2005; Lo et al, 2005c)
(Figure 1). VEGFR2 (Shay-Salit et al, 2002), IFNgR-1, IFNgR-2
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Figure 1 Cytoplasmic/traditional and nuclear modes of the EGFR signalling pathway. The EGFR signalling pathway exerts its biological effects via two
major modes of actions, namely, cytoplasmic/traditional (A) and nuclear (B) modes. (A) The cytoplasmic EGFR pathway is consisted of four major modules:
PLC-g-CaMK/PKC, Ras-Raf-MAPK, PI-3K-Akt-GSK and STATs. Activation of these signalling modules often leads to tumorigenesis, tumour proliferation,
metastasis, chemoresistance and radioresistance. (B) The nuclear EGFR pathway can be initiated by ligand binding and exposure to vitamin D, radiation,
cisplatin, heat and H2O2. Following nuclear translocalization, nuclear EGFR interacts with DNA-binding transcription factors, E2F1 and STAT3, and activates
expression of B-Myb and iNOS, respectively. Nuclear EGFR also upregulates cyclin D1 gene expression. Increased expression of cyclin D1 and B-Myb
contributes to accelerated G1/S cell cycle progression and, on the other hand, elevated iNOS is associated with tumour proliferation and metastasis. Upon
DNA damage and oxidative/heat stress, EGFR enters the cell nucleus and interacts with DNA-PK, leading to DNA repair and radioresistance.
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(Jans and Hassan, 1998; Larkin et al, 2000), IL-1R (Curtis et al,
1990) also localize in the nucleus as intact receptors. Spliced
variants of cell-surface FGFR1 and the intracellular domain of
HER-4 have been found to enter the cell nucleus (Stachowiak et al,
1997; Ni et al, 2001, 2003); however, it is yet clear whether TrkA,
TrkB (Zhang et al, 2003), type I TGF-b receptor (Zwaagstra et al,
2000) and IL-5R (Jans et al, 1997) undergo nuclear translocaliza-
tion as full-length receptors. While the mechanisms underlying
nuclear import of the intracellular domain of HER-4 are better-
characterized (Ni et al, 2001, 2003), those account for full-length
receptors remain less clear as they are complicated by the
membrane-associated nature of the full-length receptors.

Nuclear import of cell-surface receptors has been shown to
occur in ligand-dependent and -independent manners. Ligand
stimulation activates nuclear translocalization of many cell-surface
receptors including EGFR, FGFR, IFN-gR, IL-1R, type I TGF-b
receptor and IL-5R (Curtis et al, 1990; Jans and Hassan, 1998;
Larkin et al, 2000; Zwaagstra et al, 2000; Lin et al, 2001). In the case
of HER-2 which lacks the domain/ability for ligand-binding, its
kinase activity is required for nuclear entry (Wang et al, 2004).
Nuclear import of EGFR and type I TGF-b receptor can occur
in a ligand-independent manner (Zwaagstra et al, 2000; Dittmann
et al, 2005a). In contrast, heregulin b1 activates nuclear export of
HER-3 in mammary epithelial cells, which contain high levels of
nuclear HER-3 under normal growth conditions (Offterdinger
et al, 2002).

For those cell-surface receptors that undergo nuclear import
following ligand binding, it is speculated and supported by several
recent reports that receptor internalization may serve as an initial
step for its transit from the cell-surface to the nucleus, as ligand
activation is coupled with receptor internalization (Bryant and
Stow, 2005). Blocking receptor internalization/endocytosis using
Dynamin II mutant, Dynamin II K44A, prevents nuclear import of
EGFR, HER-2 and FGFR (Bryant et al, 2005; Giri et al, 2005; Lo
et al). However, it is yet clear with regard to the individual
contribution of clathrin-, lipid raft- and caveolin-dependent
endocytosis to this process. Several lines of evidences further
suggest the possibility that endocytic sorting machinery may be
utilized to shuttle internalized receptors to the perinuclear and
nuclear regions (Bryant et al, 2005; Giri et al, 2005).

In the light of the observation that many cell-surface receptors
with nuclear–cytoplasmic shuttling appear to exist as non-
membrane-bound receptors in the nucleus, it is thus speculated
that cells may utilize a general mechanism for extracting these
transmembrane receptors prior to its passage through the nuclear
pore complex (NPC). However, such mechanism has not yet
identified. Nevertheless, it is becoming clear that several cell-
surface receptors are capable of interacting with nuclear transport
receptors, importins a/b and exportins, and thus enter and exit the
cell nucleus, respectively (Reilly and Maher, 2001; Giri et al, 2005).
Association with importin b1 is important for nuclear import of
HER-2 and FGFR (Reilly and Maher, 2001; Giri et al, 2005) whereas
EGFR has been shown to interacts with both importin b1 and
importin a (Dittmann et al, 2005a; Lo et al). Blockage of RanGDP
and importin b1 by dominant-negative mutant and siRNA,
respectively, also inhibits nuclear transport of HER-2, suggesting
that NPC is involved in the process (Giri et al, 2005).

Nuclear localization signals (NLSs) within EGFR, HER-2, HER-3
and HER-4 have been identified (Offterdinger et al, 2002; Wang
et al, 2004; Williams et al, 2004; Lo et al, 2005a). Interestingly,
EGFR, HER-2 and HER-4 contain their NLSs within the
juxtamembrane region whereas HER-30s NLS is located in the
C-terminal region. On the other hand, very little is known about
the nuclear export process. Recent evidences suggest that nuclear
export of EGFR, HER-2 and HER-3 may involve exportin CRM1
(Offterdinger et al, 2002; Giri et al, 2005; Lo et al). Existence of
nuclear export sequences within these cell-surface receptors,
however, has not been demonstrated.

NUCLEAR EGFR AND HER-2 AS TRANSCRIPTIONAL
REGULATOR

A role of nuclear ErbBs in transcriptional regulation was first
shown by the observation that cytoplasmic domain of rat p185neu
contains transactivational activity when tested in a GAL4-reporter
system (Xie and Hung, 1994). More recently, transactivational
domains within EGFR, HER-2 and HER-4 were also found to be
functional (Lin et al, 2001; Ni et al, 2001; Wang et al, 2004). Using
unbiased approaches, nuclear EGFR and HER-2 were further
shown to associate with specific DNA sequences designated AT-
rich sequence (ATRS) and HER-2-associated sequence (HAS),
respectively (Lin et al, 2001; Wang et al, 2004). Promoters that are
targeted by nuclear EGFR are those of cyclin D1, iNOS and B-Myb
(Lin et al, 2001; Hanada et al, 2005; Lo et al, 2005a). Nuclear HER-2
binds to promoters of cyclooxygenase-2 (COX-2), PRPK, MMP-16
and DDX-10, whereas nuclear HER-4 associates with that of
b-casein (Wang et al, 2004; Williams et al, 2004).

Given the notion that ErbB receptors lack a putative DNA-
binding domain, it is suspected that these receptors first associate
with DNA-binding transcription factors and then enhance target
gene transcription via their intrinsic transactivational activity. In
this regard, nuclear EGFR interacts with STAT3 and coregulates
iNOS expression (Lo et al, 2005a). Nuclear EGFR/E2F1 complex
activates expression of B-Myb, a positive regulator of G1/S cell
cycle progression (Hanada et al, 2005). Nuclear HER-4 forms a
complex with STAT5a and coactivates b-casein gene promoter
(Williams et al, 2004). However, it is suggested that HER-4 may
have a weak transactivational activity and requires interaction with
a strong transcription coactivator YAP for its gene regulatory
function (Komuro et al, 2003). In line with this observation,
nuclear FGFR associates with and activates transcription coacti-
vator CBP to upregulate gene promoters (Fang et al, 2005). Known
targets of nuclear FGFR include FGF-2, neurofilament-L and
tyrosine hydroxylase (Peng et al, 2001, 2002; Stachowiak et al,
2003). In support of this notion, EGF, EGFR, TrkA/NGF receptor
and the ligand NGF have been shown to bind to chromatins
(Rakowicz-Szulczynska et al, 1988; Kamio et al, 1990) and
Schwannoma-derived growth factor, a ligand for EGFR, bound to
AþT-rich DNA sequences (Kimura, 1993). Together, these data
suggest an emerging role that nuclear receptors play in transcrip-
tional regulation.

LINKING NUCLEAR EGFR TO PATHWAYS THAT ARE
IMPORTANT FOR TUMOUR BIOLOGY

Transcriptional targets of nuclear EGFR and HER-2, those
identified thus far, are closely involved in tumorigenesis, and
tumour proliferation and progression (Lin et al, 2001; Wang et al,
2004; Hanada et al, 2005; Lo et al, 2005a). Both cyclin D1 and B-
Myb are positive regulators of G1/S progression (Lin et al, 2001;
Joaquin and Watson, 2003). COX-2 and iNOS are enzymes that
produce prostagladins and nitric oxide, respectively, and emerge
as major targets for chemoprevention and chemotherapy (Gupta
and Dubois, 2001; Xu et al, 2002). Consistently, a positive
correlation has been found between nuclear EGFR and cyclin
D1/iNOS in a cohort of breast carcinomas (Lo et al, 2005a, c). In
the same tumour cohort, high levels of nuclear HER-2 associate
with COX-2 overexpression (Wang et al, 2004). Furthermore,
nuclear expression of EGFR positively correlates with that of Ki-67,
an indicator of active proliferation (Lo et al, 2005c). A casual
correlation of nuclear accumulation of EGFR/mouse erbb1 and
their ligands EGF/TGF-a with cell proliferation/DNA synthesis has
been reported by several studies (Marti et al, 1991; Schausberger
et al, 2003). In agreement with its role in proliferation/DNA
synthesis, EGFR undergoes nuclear translocalization in regenerat-
ing livers (Marti et al, 1991), pregnant uterus and proliferative
basal cells within normal mouth mucosa (Lin et al, 2001). A
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potential role of nuclear EGFR in DNA damage/repair in response
to irradiation/oxidative stress has also been suggested (Dittmann
et al, 2005a, b).

Furthermore, nuclear import of FGFR is associated with
proliferation (Reilly and Maher, 2001), which is in line with the
observation that nuclear FGFR enhances c-jun expression (Reilly
and Maher, 2001). Also suggested by accumulating evidences is
that nuclear FGFR mediates cAMP-activated expression of
neurofilament-L and, thus, is important for cAMP-induced dif-
ferentiation of neuronal progenitor cells into neurons (Stachowiak
et al, 2003).

While the pathological significance of nuclear RTKs remains
elusive, two recent reports suggest the potential use of nuclear
EGFR as a prognostic indicator for poor clinical outcome (Lo
et al, 2005c; Psyrri et al, 2005). In a cohort of 130 breast
carcinomas, an inverse correlation was found between nuclear
EGFR, but not the non-nuclear counterpart, and overall patient
survival (Lo et al, 2005c). This observation is consistent with
the notion that total EGFR levels serve as a moderate prognostic
indicator in breast cancer patients and thus suggests a novel
prognostic value of nuclear EGFR in these patients. A positive
association was also observed between non-nuclear/nuclear
EGFR and overall survival of patients with oral squamous cell
carcinomas (Lo et al, 2005c). Using a cohort of 95 patients with
oropharyngeal squamous cell carcinomas, Psyrri et al (2005) found
that both total and nuclear EGFR levels predict poor clinical
outcomes as measured by local recurrence and poor disease-free
survival. However, no significant correlation was found between
EGFR, total and nuclear expression, and overall survival rates in
these patients (Psyrri et al, 2005). Despite with relatively small
cohorts, these studies provided rationales for future extensive
research that examines the prognostic value of EGFR in larger
population with various cancer types. This task is particularly
important and of cancer-relevance because of the following
reasons: (i) the EGFR signalling pathway is highly de-regulated
in many human cancers and is an attractive target for anti-tumour
therapy, (ii) anti-EGFR therapy are only effective to certain
patients, (iii) a correlation is often lacking between EGFR
expression and tumour responsiveness to anti-EGFR treatments,
and (iv) previously overlooked nuclear EGFR pathway is linked to
aggressive tumour biology.

Moreover, in the light of the report showing that 1,25-
dihydroxyvitamin D inhibited EGF-induced EGFR nuclear trans-
port, vitamin D1 may in part exert its anticancer effect via blocking
the nuclear EGFR pathway (Cordero et al, 2002). Similarly, anti-
EGFR antibody (C225/Cetuximab) blocks radiation-induced
nuclear EGFR transport and its interaction with DNA-dependent
protein kinase, an enzyme involved in DNA-repair, and thus may
lead to radiosensitization (Dittmann et al, 2005a, b). Interestingly,
in women with breast cancer, nuclear HER-4 has been recently
shown to associate with poor survival compared to those who had
membrane HER-4 expression (Junttila et al, 2005). Together, these
reports suggest that nuclear EGFR may play a potential important

role in the aggressive biology of cancers, radiosensitivity and
clinical outcomes.

CONCLUSIONS

Accumulating reports reveal a new EGFR signalling pathway that
escapes the traditional transduction cascades but involves direct
shuttling of activated EGFR into the cell nucleus. Nuclear existence
of EGFR has been observed for more than a decade in normal cells
undergoing active proliferation and in cancerous cells. The
physiological function of nuclear EGFR, however, was not
elucidated until recently to involve regulation of gene transcription
and possibly other nuclear events. Nuclear EGFR, HER-2, HER-4
and FGFR contain intrinsic ability to enhance gene transcription.
In addition to transcriptional regulation, nuclear RTKs may have
other functions such as DNA damage/repair. Mechanistic studies
further provide plausible mechanisms by which nuclear EGFR/
HER-4 turn on gene expression, which involve their intrinsic
transactivation domain and physical interaction with other
transcription factors that contain DNA-binding domains. STAT3
and E2F1 have been identified as transcription co-factors of
nuclear EGFR whereas STAT5a partners with nuclear HER-4. Via
the ability of nuclear EGFR to associate with STAT3 and E2F1 and
to upregulate expression of cyclin D1, iNOS and B-Myb, a new link
is established that associates EGFR with several cellular processes
such as cell cycle progression and nitric oxide pathway. Consistent
with the role in liver regeneration, nuclear EGFR accumulation is
associated with increased proliferation in cancer cells and
hepatocytes. Albeit correlative studies suggest an inverse associa-
tion of high nuclear EGFR and poor clinical outcome, the
pathological role of nuclear EGFR remains largely unknown and
is in need of further investigations. For instance, it is yet to be
determined whether nuclear EGFR plays a crucial role in the
genesis, progression, metastatic growth and/or therapeutic re-
sponses of human cancers. Also elusive is the pathological
involvement of nuclear HER-2, HER-3 and HER-4 in human
cancers. All these unaddressed issues will be crucial in advancing
our knowledge of the malignant nature of the nuclear RTK
pathways. In summary, emerging new evidences provide impor-
tant insights into a signalling path that has been overlooked for
past decades and thus prompt for an urgent need to further
unravel the physiological and oncogenic properties of the nuclear
EGFR pathway.
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