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ReVieW

INtRODUctiON
Tumors derived from neuroepithelial cell are collectively re-
ferred to glioma, which account for 50% to 60% of the primary 
central nervous system tumors and is the most common intra-
cranial malignancies.1 In terms of current treatment methods, 
surgical treatment is the primary treatment for patients with 
glioma. Although most postoperative patients receive follow-
up radiotherapy and chemotherapy, the recurrence rate is still 
high and the prognosis is poor.2,3

At present, gas gradually shows its enormous therapeutic 
potential in nervous system,4,5 cardiovascular diseases6 and 
cancers.7 Anesthetic gases are administered as the primary 
therapy for sedation in the perioperative setting and critical 
care. Compared with current intravenous sedation agents, 
anesthetic gases-induced sedation may provide superior awak-
ening and extubation times. Although they have been widely 
used, the mechanism by which they induce and maintain 
anesthesia has not been clarified. On the one hand, they can 
reduce presynaptic excitation and neurotransmitter release 
through inhibition of sodium (Na+) and several isoforms of 
calcium (Ca2+) voltage-gated channels; on the other hand, 
they also reduce neurotransmitter activity in the postsynaptic 
membrane by γ-aminobutyric acid, glycine, nicotinic acetyl-
choline, serotonin type 3, glutamate, N-methyl-D-aspartate, 
and α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid 
receptors.8,9

Numerous studies have found that anesthetic gases may 
influence tumor recurrence, metastasis, and long-term sur-
vival.10,11 Due to the high degree of malignancy and recur-
rence rate of glioma, the application of anesthetics in glioma 
has also received more and more attention. In this article, 
we intend to summarize the previous studies and explain the 
effects of anesthetic gases on glioma, providing evidence for 
future gas therapy.

At present, sevoflurane and isoflurane are the two com-

monly used anesthetic gases in clinic. Due to research and 
space limitations, we only discuss the above two anesthetic 
gases in this review.

SeaRch StRateGY
PubMed database was searched up to May 2019. The term 
“anesthetics” (including anesthetic gases, sevoflurane, or iso-
flurane) as a medical subject heading (MeSH) and key word, 
was combined with the term “glioma” as a medical subject 
heading (MeSH) and key word.

ANesthetics Gases
sevoflurane
Sevoflurane, a volatile anesthetic, is used to induce and 
maintain general anesthesia for outpatients and inpatients.12 

It has stable physical properties, rapid induction and minimal 
inhibitory effects on circulation. After being applied in more 
and more research, its special effects on cancer and tumors 
are discovered. For instance, it is well known that sevoflurane 
can play a protection for the lungs during surgery, and can 
also reduce the metastasis of cancer cells caused by surgery 
by promoting apoptosis of A549 cells (the human pulmonary 
adenocarcinoma cell line).10 Fan et al.13 have found that sevo-
flurane can reduce the metastasis and invasion of colorectal 
cancer cells.

isoflurane
Isoflurane, a structural isomer to enflurane, is also a commonly 
used volatile anesthetic. But unlike enflurane, isoflurane car-
ries a strong pungent odor that makes it difficult to use for 
inhalational induction of general anesthesia.14 In addition to 
inducing anesthesia, isoflurane also shows the function of pro-
tecting organs from damage in hypoxic ischemic brain injury 
and myocardial ischemia-reperfusion injury.15,16 The study has 
found that isoflurane can inhibit the expression of phosphati-
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dylinositol 3-kinase and protein kinase B (AKT) and reduce 
the activity of nuclear factor kappa-B to inhibit the metastasis 
and invasion of liver cancer cells, and also can induce caspase 
3 activation in cancer cells to induce apoptosis.17 In addition, 
it also has a role in soft nest cancer18 and lupus nephritis.19

eXPeRiMeNtal StUDies OF ANesthetics Gases iN 
GliOMa
It is well known that a treatment must be verified by large 
number of basic experiments before being applied to clinic. 
However, different studies may show different results. We 
collect several experiments related to gliomas and anesthetic 
gases and summarize the outcomes in this article (Table 1). 
Yi et al.20 found that after sevoflurane treatment, the migra-
tion and invasion abilities of glioma cells were significantly 
reduced,17 with increasing concentration. In another study, 
sevoflurane was found to inhibit the matrix metalloprotein-
ase-2 (MMP-2) activity in glioma cells and reduced their 
metastasis and invasion.21 Meuth et al.22 and O’Leary et al.23 
found that isoflurane could promote the death of glioma 
cells. By comparing the effects of isoflurane, enflurane and 
sevoflurane on glioma cells, isoflurane is found to have the 
best anti-proliferative effect on C6 glioma, while sevoflurane 
has the worst. In addition to inhibition, some studies have 
the opposite conclusion. Shi et al.24 found that sevoflurane 
promoted the production of hypoxia-inducible factors in a 
concentration-dependent manner and up-regulated the level 
of p-AKT, thereby promoting the proliferation of glioma 
stem cells. The same was true for isoflurane that exposure 
to isoflurane could promote the proliferation, survival and 
migration distance of human glioblastoma stem cells.25 These 
conflicting results may be attributable to the heterogeneity 
of responses to the anesthetics gases depending on cell type, 
concentration, duration of exposure, or all.

cliNical APPlicatiONs
Currently, most studies are limited to cellular levels. Although 
rats were used in one study, the anesthetic gas was not directly 
applied to rats with glioma.25 Instead, the glioma cells were 

pretreated with anesthetic gas and injected into the right stria-
tum to quantify the migratory potential capacity of cells in 
vivo. The results showed that the migration ability of glioma 
stem cells pre-exposed to 1.2% isoflurane was significantly 
enhanced. In addition to ethical reasons, one important reason 
is that the research is not yet mature. First, there are many 
types of gliomas, and the characteristics of each are different. 
Therefore, different anesthetic gases may have different effects 
on different types of tumors. Secondly, the gas concentration, 
exposure time and adverse reactions are difficult to control. 
Therefore, further relevant research is needed.

MechaNisMs OF ANesthetics Gases iN GliOMa 
Metastasis and invasion are main causes of poor prognosis and 
relapse in patients suffering from glioma, and are receiving 
more and more attention in scientific and clinical research.26,27 
Anesthetics gases show an effective inhibitory effect on the 
survival, metastasis and invasion of glioma cells. However, due 
to the complexity of the processes, the molecular mechanisms 
have not been fully elucidated.

MicroRNAs (miRNAs) are a class of small noncoding RNAs 
with 21–25 nucleotides, which regulate the target gene expres-
sion by repressing translation or regulating mRNA degradation 
via binding to the 3′ untranslated region of their target genes.28 
They have important impacts on the progression of prolifera-
tion, migration and invasion.29-31 A large number of studies 
have found that the effect of anesthetic gases on cancer cells 
is related to miRNAs.13,32 And the same is true for gliomas. 
MiR-637 is considered to be an inhibitor of hepatocellular 
carcinoma and pancreatic cancer.33 AKT is a target protein 
of miR-637, and AKT phosphorylation may promote tumor 
development and progression.34 Compared to normal brain 
tissue, the level of miR-637 in glioma cells is low, and the 
combination of miR-637 and AKT is reduced in gliomas.35 

After treatment with sevoflurane, miR-637 is significantly 
up-regulated, and the expression and activity of AKT are also 
inhibited.20 At the same time, metastasis and invasion of glioma 
cells are also inhibited. Emerging evidence has suggested that 
the pathogenesis of anesthetic gases on cancer cells is related 

table 1: the effects of aesthetic gases in glioma

Study Year Cells lines Gases Dose Duration Main results

Yi et al.20 2016 Human glioma cell 
line U251

Sevoflurane 1.7%, 3.4%, 
5.1%

6 h The U251 cells treated with sevoflurane exhibited a 
significantly decreased migratory and invasive ability 
in a dose-dependent manner.

Hurmath 
et al.21

2016 Human glioma 
cells U87MG

Sevoflurane 2.50% 1.5 h Sevoflurane could inhibit the migration and matrix 
metalloproteinase-2 activity in glioma cells. 

Zhu et 
al.25

2016 Human 
glioblastoma cell 
line U251

Isoflurane 0.6%, 1.2%, 
2.4%

3–12 h Isoflurane could increase glioma cells proliferation 
and decrease their apoptosis rate in a dose-dependent 
manner.

Shi et 
al.24

2015 Human primary 
glioma stem cells 

Sevoflurane 1–6% 0–6 h Sevoflurane promoted the growth of glioma stem cells 
and increased hypoxia-inducible factors and p-protein 
kinase B expression in a dose-dependent manner.

Meuth et 
al.22

2008 Human glioma cell Isoflurane 1.00% Unclear Isoflurane reduced the survival rate of glioma cells.

O’Leary 
et al.23

2000 C6 glioma cells Isoflurane, 
enflurane, 
sevoflurane

0–2.0 mM 48 h All three anesthetic gases could inhibit the 
proliferation of glioma cells.
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to a group of miRNAs, not individual. Therefore, there may 
be more miRNAs involved.

Besides AKT, considerable evidence suggests that MMP-
2 plays an important role in the metastasis and invasion of 
glioma cells.36 In addition, MMP-2 is involved in the degrada-
tion of the blood-brain barrier, which will cause hematogenous 
metastases of cancer cells to form new cancer foci that cannot 
be distinguished by naked eye.37 Therefore, the high expres-
sion of MMP-2 is an indication of poor prognosis. Moreover, 
there is also a close relationship between MMP-2 and AKT 
in gliomas.38 Many substances can upregulate the expressions 
of MMP-2 through AKT signaling pathway in gliomas.39 

However, whether sevoflurane can affect the expression of 
MMP-2 through the AKT pathway needs further verification.

In addition to targeting proteins, anesthetic gases can also 
act on glioma cells by inhibiting the channel.40 It is well 
known that ion channels are also involved in the migration and 
proliferation of tumor cells.41 So they have been identified as 
promising therapeutic targets of brain tumor. One of the most 
important glioma-related channels is Ca2+-activated K+ chan-
nels, being overexpressed in glioma patients.42,43 Currently, 
there are some drugs targeting this channel for the treatment 
of gliomas. For example, Oxaliplatin, a third-generation 
organoplatinum, can suppress the amplitude of glioma cell 
K+ currents by inhibiting Ca2+-activated K+ channels, thereby 
affecting cell activity. 

The above mechanism is mainly to explain the beneficial 
aspects of anesthetic gases, while one study has found that 
anesthetic gas can stimulate the proliferation of glial stem cells 
by up-regulating the expression of AKT.24,25 And in addition to 
glioma, the effect on other tumors is not consistent. Therefore, 
the mechanism of anesthetic gases on glioma requires more 
types, more rigorous and more detailed research.

cONclUsiON
Although anesthetic gases have been used for decades, most 
of them are used as anesthesia inducers. So far, most of the 
experiments on gliomas are limited to the cell stage, and the ap-
plication to the living body has not been reported. Anesthetics 
may have side effects on brain function due to its toxicity.44-46 
For example, it may cause apoptosis of normal nerve cells 
and affect the learning and behavior of humans and animals.14 
Therefore, there are still great challenges in the application 
of living organisms. As far as current research is concerned, 
different anesthetic gases have different effects on different 
types of glioma cells. 

Moreover, there is also no consensus on the optimal concen-
tration of the application. Clinically, the choice of anesthetic 
dose is based on the minimum alveolar concentration. It is 
defined as the concentration of inhaled anesthetic within the 
alveoli at which 50% of people do not move in response to a 
surgical stimulus. Many variables can alter minimum alveolar 
concentration, such as age, temperature and pregnancy.47-49 
Therefore, the minimum alveolar concentration should be 
monitored and adjusted to the appropriate range during seda-
tion. Since most of the current studies are still limited to the 
cellular level rather than the living body, a fixed concentration 
is given, which leads to differences in the dose of intervention 

and application in clinic. 
Therefore, whether in vitro or in vivo, research will con-

tinue. Through the above introduction, anesthetic gas may 
become an emerging treatment of glioma. Although there are 
still many questions and problems at present, one day it will 
come to a conclusion.
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