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Introduction
Neisseria meningitidis is one of the main etiologic 
agents of bacterial meningitis, a disease with great 
impact on public health due to high rates of mor-
bidity and mortality associated with it.1,2 The 
main strategy for preventing infection by sero-
groups A, C, W, and Y is immunization with con-
jugate vaccines, composed of the polysaccharide 
capsule of the bacterium associated with a carrier 
protein.3 The development of this type of vaccine 
is not viable for serogroup B, given the structural 
similarity between the polysialic acids α2→8 pre-
sent in the polysaccharide capsule and the neu-
ronal cell adhesion molecule (N-CAM) present in 
human brain tissue, which results in low immu-
nogenicity and the risk of developing autoimmun-
ity.4,5 Because of that, outer membrane vesicle 
(OMV) vaccines, composed of subcapsular anti-
gens, which exhibit remarkable potential in 
immunomodulation of the immune response, 

have been developed. However, OMV vaccines 
exhibit some limitations, since most serum bacte-
ricidal activity was generated against PorA, which 
is highly variable between different strains,  
so these vaccines are indicated in epidemiological 
contexts where there is a specific circulating 
clone.6 To overcome these limitations, two vac-
cines against meningococci B, based on recombi-
nant proteins, were developed recently.7,8  
The vaccine 4CMenB/Bexsero® uses secondary 
and cross-reactivity outer membrane proteins 
(OMPs) to develop a more universal vaccine and 
to avoid the strain-specific response. This vac-
cine is composed of recombinant proteins: 
Neisseria adhesin A (NadA), factor H binding 
protein (fHbp), and Neisserial heparin bind-
ing antigen (NHBA), combined with OMVs 
from strain NZ98/254.3 The other vaccine devel-
oped, rLP2086/Trumenba®, is composed solely of 
two fHbp variants, each one belonging to the two 
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different fHbp subfamilies described.9 Continuing 
the studies of Trzewikoswki de Lima and De 
Gaspari,10 the present study aims to evaluate the 
cross-reactivity generated by immunization of 
mice with N. meningitidis B OMVs, observing the 
humoral response and antigen recognition pat-
terns after each immunization.

Material and methods

OMV isolation
OMVs from strains B:4:P1.9, B:8:P1.6 and 
B:4:nt used in this study were obtained as previ-
ously described,11 and are representative strains 
of the last period of greater incidence of MenB, 
especially in Southeastern Brazil, at the end of the 
1980s.12

Animals and immunization
Swiss mice were immunized as described in 
Trzewikoswki de Lima and De Gaspari.10 In 
brief, when mice were approximately 21 weeks 
old, they were immunized intramuscularly with 
an antigenic preparation composed of 2 µg of  
N. meningitidis OMVs from strain B:4:P1.9 and 
0.1 mM aluminum hydroxide. The animals were 
immunized again 20 and 30 days after the first 
dose. Blood was collected by the retro-orbital 
plexus puncture before immunization and after 
each dose. The Animal Ethics Committee of 
CEUA IAL/Pasteur (protocol number 2012/06) 
approved the procedures performed in this study.

SDS-PAGE
OMV proteins at a concentration of approxi-
mately 52 µg/mL were characterized by electro-
phoresis in a 10% polyacrylamide gel, in the 
presence of sodium dodecyl sulfate (SDS), fol-
lowing the protocol described by Laemmli.13 
After electrophoresis, the gel was stained with 
Coomassie Blue (PhastGel® Blue R, Pharmacia 
Biotech, Uppsala, Sweden).

Immunoblotting
A new 10% polyacrylamide gel was prepared. 
After electrophoresis, proteins were transferred 
to a 0.45 µm nitrocellulose membrane (Bio-Rad 
Laboratories, Hercules, CA, USA) at 100 V for 

18 h at 4°C. Strips, estimated to contain 14 µg of 
proteins from OMVs, were cut and blocked with 
skimmed milk (La Serenissima, Buenos Aires, 
Argentina) 5% for 2 h over agitation. Then, 
membranes were washed five times with PBS 
pH 7.2 and incubated overnight at 4°C with a 
pool of sera obtained before the immunization 
and after each dose, diluted 1:50 in 2.5% 
skimmed milk. Then, the membranes were 
washed and incubated for 2 h over agitation, 
with peroxidase-conjugated anti-mouse IgG 
(Fc specific) (Kirkegaard & Per Laboratories, 
KPL, Gaithersburg, MD, USA) 1:10,000, in 
2.5% skimmed milk. After several washes, it was 
incubated with 4-chloro-1-naphthol (Sigma-
Aldrich, St. Louis, MO, USA) for 20 min. The 
reaction was stopped by washing the membranes 
with distilled water.

ELISA
OMVs of N. meningitidis strains B:4:P1.9, 
B:8:P1.6 or B:4:nt were used as coating antigens. 
The plates were coated with 5 µg/mL of OMVs 
diluted in carbonate-bicarbonate buffer (pH 9.6) 
and incubated overnight at 4°C. After washing 
with PBS pH 7.2 containing 0.05% Tween 20, 
the plates were incubated with 5% skimmed milk 
at 37°C for 2 h. Then, the pre-immune sera and 
the sera obtained after the third immunization 
were added, which were evaluated individually, 
diluted 1:500 in 2.5% skimmed milk, and the 
plates were incubated overnight at 4°C. The next 
day, plates were washed and incubated with per-
oxidase-conjugated anti-mouse IgG whole mole-
cule (Sigma-Aldrich) diluted 1:2000 at 2.5% 
skimmed milk for 2 h at 37°C. After washing, the 
enzymatic reaction was developed with the sub-
strate tetramethylbenzidine (TMB) (Sigma-
Aldrich) for 20 min at 37°C. The reaction was 
stopped with sulfuric acid 1 N and the plates were 
read at 450 nm in a microplate reader (Labsystem 
Multiskan, Thermo Fisher, Waltham, MA, 
USA).

Statistical analyses
The results obtained by the ELISA technique 
were analyzed using one-way ANOVA test fol-
lowed by Tukey’s post-test, using the software 
GraphPad Prism 5 version. Values of p < 0.05 
were considered statistically significant.
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Results
Serum of mice immunized with three doses of an 
antigenic preparation containing N. meningitidis 
OMVs from strain B:4:P1.9 and aluminum 
hydroxide were evaluated by ELISA assay, in 
which wells were coated with OMVs from strains 
B:4:P1.9, B:8:P1.6 or B:4:nt. The evaluated 
serum presented high levels of IgG when tested 
with both homologous and heterologous strains, 
and there was no statistical difference between 
the IgG levels concerning the strain used to coat 
the plate (Figure 1). The pre-immune sera 
showed no reactivity, as expected.

The electrophoretic profile of the OMVs used in 
the present study was evaluated in a 10% poly-
acrylamide gel. The OMVs of the different strains 
presented similar electrophoretic profile; how-
ever, OMVs from strain B:4:P1.9 present more 
bands in the range of 35–40 kDa (Figure 2a).

In our previous study,10 by dot-blot ELISA, the 
presence of cross-reactivity was noticed with 
most of the evaluated strains of N. meningitidis 
from serogroups B, W, and Y. In this study, an 
immunoblotting assay was used. Unlike dot-blot, 
which uses antigens in their native structure, 

immunoblotting denatures the proteins, altering 
the antigenic conformation structure, also sepa-
rating them by molecular weight.

In sera collected after the first immunization, 
antigens were recognized in the 60–80 kDa range. 
After the second immunization, a variety of anti-
gens were recognized, with molecular weights 
ranging from 200 to 24 kDa. The recognition pat-
tern after the third immunization was similar to 
that observed after the second dose, except for 
OMVs from strain B:4:nt, in which antigen rec-
ognition was broader after the third immuniza-
tion. The pattern of antigen recognition was 
similar among the OMVs of the evaluated strains 
(Figure 2).

Discussion
The strains included in this study were chosen 
because they were prevalent in the last epidemic 
of meningococcal B disease in Brazil, and, there-
fore, are believed to be virulent strains. Besides, 
these strains have been evaluated by our group in 
other studies and proved highly immunogenic.

The major criticism of OMV vaccines is that they 
possibly do not result in protection against strains 
of different subtypes. However, studies have 
shown that these vaccines are capable of leading 
to protection against heterologous MenB 
strains.14–16 Besides, a retrospective study indi-
cated that the MenZB® vaccine, consisting of 
MenB OMVs, may have generated a protective 
effect against Neisseria gonorrhoeae.17

The importance of cross-reactivity between  
N. meningitidis strains is described in the literature 
and should be considered when choosing vaccine 
strains; OMVs from the hypervirulent strain 
B:4:P1.19,15, for example, was chosen for the 
production of vaccine VA-MENGOC-BC®, 
which controlled epidemics in Cuba and São 
Paulo, considering OMPs that could also be 
expressed by heterologous strains.18 The study by 
Williams and colleagues showed that this vaccine 
induced the production of bactericidal antibodies 
with cross-reactivity,19 directed mainly against 
the antigens Rmp, Opa, PorB, ferric binding pro-
tein A (FbpA), exopolyphosphatase (NMB1467), 
γ-glutamyltranspeptidase (NMB1057), and a 
putative cell-binding factor protein (NMB0046).

Figure 1. IgG antibodies levels, measured by ELISA, 
in pre-immune sera and sera obtained from mice 
immunized with three doses of antigenic preparation 
containing Neisseria meningitidis OMVs from strain 
B:4:P1.9 and aluminum hydroxide. The plates were 
coated with N. meningitidis OMVs from strains 
B:4:P1.9 (homologous strain), B:8:P1.6 or B:4:nt 
(heterologous strains) at a concentration of 5 µg/mL. 
The graph shows the mean of the optical densities 
obtained in sera diluted 1:500. Error bars represent 
the standard error of mean.
ELISA, enzyme-linked immunoabsorbent assay; IgG, 
immunoglobulin G; ns, not significant; OMV, outer 
membrane vesicle.
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The results obtained by the ELISA technique 
confirmed the cross-reactivity between strains, as 
well as observed in the study of Harthug and col-
leagues, who found similar immune responses 
between patients infected by different serogroups 
of meningococcus when evaluated by ELISA 
assay using coating antigens of the strain 
B:15:P1.16.20 Although there is no statistical dif-
ference, the optical density was higher when the 
heterologous strains (B:8:P1.6 and B:4:nt) were 
used as coating antigens than when homologous 
strain (B:4:P1.9) was used, which leads us to 
believe that these strains have greater expression 
of immunogenic antigens. The ELISA assay does 
not allow the verification of antibodies functional-
ity generated by immunization, but Rosenqvist 
and colleagues demonstrated that IgG antibody 
levels, detected by ELISA, following immuniza-
tion with a N. meningitidis OMV vaccine generate 
a good prediction of bactericidal activity against 
the vaccine strain, even if only a fraction of the 
antibodies are bactericidal.21 Also, in our previ-
ous study,10 it was verified that IgG antibodies 
produced after three immunizations with the 
same antigenic preparation used in the present 
study presented a high avidity index, which was 
correlated to bactericidal activity in some 
studies.22,23

In the present study, it was observed that a sec-
ond dose of antigen preparation was beneficial, 
increasing the recognition of distinct antigens. A 
third immunization did not significantly alter the 
recognition profile concerning OMVs of strains 
B:4:P1.9 and B:8:P1.6, but resulted in greater 
antigen recognition in the 24–30 kDa range con-
cerning OMVs from strain B:4:nt. Tunheim and 
colleagues also found increased antigen recogni-
tion after each immunization with meningococcal 
A and W OMVs compound vaccines.24 Rosenqvist 
and colleagues and Gioia and colleagues found 
that three doses of the vaccine MenBVac®, in 
humans, generated higher levels of IgG antibod-
ies and a decrease of the relative importance of 
specific antibodies directed to OMPs of Class 1, 
with the probable increase in cross-reactivity 
against heterologous meningococcal strains.21,25

Molecular biology techniques, mass spectrometry 
or the use of monoclonal antibodies would be 
necessary to identify which antigens are responsi-
ble for the cross-reactivity observed in this study. 
However, in many laboratories, it is not possible 
to implement these techniques, due to the 
required greater infrastructure or lack of mono-
clonal antibodies. The immunoblotting technique 
is relatively simple and can be employed in many 

Figure 2. SDS-PAGE profile, after staining with Coomassie Blue, showing MW marker and N. meningitidis 
OMVs from strains B:4:P1.9, B:8:P1.6 and B:4:nt, respectively. (a) Immunoblotting for analysis of IgG antibodies 
reactivity with OMVs from strains B:4:P1.9; (b) B:8:P1.6; (c) and B:4:nt; and (d) Strip 1: pre-immune sera; 
strip 2: sera collected after one immunization; strip 3: sera collected after two immunizations; strip 4: sera 
collected after three immunizations.
IgG, immunoglobulin G; MW, molecular weight; OMV outer membrane vesicle; SDS-PAGE, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis.
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laboratories at a relatively low cost. Although it is 
not possible to determine precisely which anti-
gens were recognized without the use of mono-
clonal antibodies, the technique allows the main 
antigens present in the sample to be estimated 
based on molecular weight.

Analyzing this data, and complementing our pre-
vious study, we observed that immunization with 
OMVs has the potential to protect against heter-
ologous strains. In the present study, we observed 
that immunization with MenB OMVs led to the 
production of antibodies that recognized antigens 
of heterologous strains. Through the experiments 
performed, it is not possible to affirm that these 
antibodies are protective, for this purpose it would 
be necessary to perform the serum bactericidal 
activity assay (SBA), which is the correlate of 
protection against meningococcal disease. In a 
previous study, it was found that mice immu-
nized with OMVs from the same strain used in 
the present study, complexed to aluminum 
hydroxide, presented serum bactericidal anti-
body titers above the levels considered as protec-
tive (manuscript in preparation). However, 
evaluation of OMV vaccines solely by inducing 
serum bactericidal activity may underestimate 
the protection offered by these vaccines, as other 
mechanisms may also contribute to protection 
against N. meningitidis.26,27 The absence of SBA 
does not necessarily indicate an absence of  
protection.27,28 As seen by several studies, 
opsonophagocytosis also appears to be important 
in protection against meningococcus.26,29–31

Finally, it is believed that the immunized mice 
produced antibodies directed to possible cross-
reactivity antigens. It demonstrates the impor-
tance of monitoring the antigenic expression in 
N. meningitidis strains prevalent in the country, 
paying attention to those associated with the 
cross-reactivity, which contributes to assessing 
antigenic preparations that are representative of 
the epidemiology of meningococcal disease in 
Brazil, and that could help predict the effective-
ness of a new vaccine in the population.
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