
ARTICLE

Improved state-level influenza nowcasting in the
United States leveraging Internet-based data and
network approaches
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Mauricio Santillana1,5

In the presence of health threats, precision public health approaches aim to provide targeted,

timely, and population-specific interventions. Accurate surveillance methodologies that can

estimate infectious disease activity ahead of official healthcare-based reports, at relevant

spatial resolutions, are important for achieving this goal. Here we introduce a methodological

framework which dynamically combines two distinct influenza tracking techniques, using an

ensemble machine learning approach, to achieve improved state-level influenza activity

estimates in the United States. The two predictive techniques behind the ensemble utilize

(1) a self-correcting statistical method combining influenza-related Google search fre-

quencies, information from electronic health records, and historical flu trends within each

state, and (2) a network-based approach leveraging spatio-temporal synchronicities observed

in historical influenza activity across states. The ensemble considerably outperforms each

component method in addition to previously proposed state-specific methods for influenza

tracking, with higher correlations and lower prediction errors.
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The Internet has enabled near-real time access to multiple
sources of medically relevant information, from cloud-
based electronic health records to environmental condi-

tions, social media activity, and human mobility patterns. These
data streams, combined with an increase in computational power
and our ability to process and analyze them, promise to revolu-
tionize the identification and delivery of community-level inter-
ventions in the presence of health threats. As the field of precision
medicine1 continues to yield important medical insights as a
consequence of improvements in the quality and cost of genetic
sequencing as well as advances in bioinformatics methodologies,
precision public health efforts aim to eventually provide the right
intervention to the right population at the right time2. In this
context, real-time disease surveillance systems capable of deli-
vering early signals of disease activity at the local level may give
local decision-makers, such as governments, school districts, and
hospitals, valuable and timely information to better mitigate the
effects of disease outbreaks. Our work focuses on a methodology
aimed at achieving this for influenza activity surveillance.

Influenza has a large seasonal burden across the United States,
infecting up to 35 million people and causing between 12,000 and
56,000 deaths per year3. Limiting the spread of outbreaks and
reducing morbidity in those already infected are crucial steps for
mitigating the impact of influenza. To guide this effort, public
health officials, as well as the general public, should have access to
localized, real-time indicators of influenza activity. Established
influenza reporting systems currently exist over large geographic
scales in the United States, coordinated by the Centers for Disease
Control and Prevention (CDC). These systems provide weekly
reports of influenza statistics, aggregated over the national,
regional (10 groups as defined by the Health and Human Ser-
vices), and starting in fall 2017, state level. Of particular interest,
US Outpatient Influenza-like Illness Surveillance Network (ILI-
Net) records the percentage of patients reporting to outpatient
clinics with symptoms of influenza-like illness (ILI), which is
defined by fever over 100 °F in addition to sore throat or cough,
over the total number of patient visits4. While these measure-
ments are an established indicator of historical ILI activity, they
are frequently revised and require around a week to collect from
healthcare providers across the country, analyze, and report. This
delay and potential subsequent revisions can reduce the utility of
the system for real-time situational awareness and data analysis.

To address this delay, research teams have devised methods to
estimate ILI a week ahead of healthcare-based reports and in
near-real time, termed nowcasting, at the national and regional
levels. These methods incorporate a variety of techniques from
statistical modeling and machine learning5–8, to mechanistic and
epidemiological models8–10. Many utilize web-based data sources
such as Internet search frequencies and electronic health records5.
Some have also taken into account historical spatial and temporal
synchronicities in influenza activity11,12 to improve the accuracy
of existing influenza surveillance tools13,14. However, since
influenza transmission occurs locally and is spread from person
to person, the timing of outbreaks and resulting infection rate
curves can significantly differ from state to state. As a result, these
successes at nowcasting in national and regional spatial resolu-
tions are likely not enough to aid decision-making at smaller
geographic scales, since important information about local con-
ditions is lost in regional or national aggregates.

The first influenza nowcasting system at the state level across
the United States was Google Flu Trends (GFT), which operated
from 2008 to 2015. GFT reported numerical indicators each week
representing influenza activity for each state as well as other
geographic resolutions, using Google search activity as a pre-
dictor. While innovative at the time, studies have pointed out its
large prediction errors when tested in real time and proposed

alternative methodologies that can incorporate Google searches
more effectively at the national level6,15–17. A model replacing
GFT for influenza detection, at the state level, was published in
2017 by Kandula, Hsu, and Shaman, who presented retrospective
out-of-sample influenza estimates, over the 2005–2011 influenza
seasons, using a random forest methodology based on Google
searches and historical influenza activity as predictors18. While
this study showed promise, the authors did not report significant
improvements to GFT and provided only aggregate distributional
metrics to evaluate the performance of their models over con-
glomerates of states (as opposed to state-level metrics), making it
challenging to replicate or improve their results for any given
state. A detailed statistical analysis by Dukic, Lopes, and Polson
(2012) presented a Bayesian state-space SEIR model over nine
states but did not attempt out-of-sample prediction19. Other
studies have demonstrated the feasibility of influenza estimation
at smaller spatial scales20–23, though they have not yet extended
their results to multiple locations.

In this study, we present a solution for localized influenza
nowcasting by first extending to each state a proven methodology
for inferring influenza activity, named AutoRegression with
General Online information (ARGO), which combines informa-
tion from influenza-related Google search frequencies, electronic
health records, and historical influenza trends5. Next, we develop
a spatial network approach, named Net, which refines ARGO’s
influenza estimates by incorporating structural spatio-temporal
synchronicities observed historically in influenza activity. Finally,
we introduce ARGONet, a novel ensemble approach that com-
bines estimates from ARGO and Net using a dynamic, out-of-
sample learning method. We produce retrospective estimates
using ARGO from September 2012 to May 2017 and show that
ARGO alone demonstrates strong improvement over GFT and an
autoregressive benchmark. Then we generate retrospective
influenza estimates using ARGONet from September 2014 to
May 2017 and show further improvement over ARGO in over
75% of the states studied. We present detailed metrics and figures
over each state to enable analysis as well as future refinement of
our methods.

Results
State-level ARGO models outperform existing benchmarks. We
first adapted the ARGO methodology for state-level influenza
detection. ARGO has previously demonstrated the ability to infer
influenza activity with high precision over a variety of geo-
graphical areas and scales5,23,24. The adapted model dynamically
fits a regularized multivariable regression on state-level Google
search engine frequencies, electronic health record reports from
athenahealth, and historical CDC %ILI estimates (see Methods
section). We trained a separate ARGO model for each state and
used them to generate retrospective out-of-sample estimates from
September 30, 2012 to May 14, 2017 for each state in the study.

To assess the predictive performance of ARGO, we produced
retrospective estimates for two benchmarks: (a) GFT: the Google
Flu Trends time series for each state, fitted to match the scale of
each state’s CDC %ILI; and (b) AR52: an autoregressive model
built on the CDC %ILI using the previous 52 weeks to predict %
ILI of the current week (see Methods section). Since autoregres-
sion is an important component of ARGO itself, improvement
over AR52 indicates the effective contribution of real-time Google
search and electronic health record data. Figure 1a compares the
performance of ARGO, AR52, and GFT for each state over the
time period when GFT estimates were available (September 30,
2012 to August 15, 2015). The three panels display the root mean
square error (RMSE), Pearson correlation, and mean absolute
percent error (MAPE). ARGO models outperform GFT in RMSE
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in every state, in correlation in all but one state, and in MAPE in
all but two states. Furthermore, ARGO reduces the RMSE of GFT
by >50% in 23 states and increases correlation by >10% in
25 states. ARGO also performs comparably or better in RMSE
and correlation than AR52, although it does not generally
outperform AR52 in MAPE. In all but eight states, ARGO beats
AR52 in a majority (2 or all 3) of metrics (Fig. 1b).

Attention to influenza activity is typically heightened during
influenza seasons (between approximately week 40 of one year
and week 20 of the next), as the majority of seasonal influenza
cases occur within this time frame. We assessed ARGO
performance over each influenza season within the same time
period, namely the 2012–13 to 2014–15 seasons inclusive. With
three seasons where comparison with GFT is available and
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Fig. 1 Summary of ARGO performance benchmarked with GFT and AR52. a State-level performance of ARGO and benchmarks, as measured by RMSE
(top), Pearson correlation (middle), and MAPE (bottom), over the period from September 30, 2012 to August 15, 2015. Extreme GFT error values are
displayed up to a cutoff point. States are ordered by ARGO performance relative to the benchmarks to facilitate comparison. b The proportion of states
where ARGO outperforms GFT (top) or AR52 (bottom) in 0, 1, 2, or all 3 metrics. c The distribution of values for each metric for each model, over the 111
state-seasons during the same period. The embedded boxplots indicate median and interquartile ranges. Numerical values are reported in Supplementary
Table 1. d The distribution of ranks attained by each model over the 111 state-seasons for each metric
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37 states, this yields 111 state-seasons. Of these, ARGO outper-
forms GFT in 94 state-seasons in RMSE, 69 in correlation, and 97
in MAPE. ARGO also surpasses AR52 in 83 state-seasons in
RMSE, 104 in correlation, and 47 in MAPE (aggregated from
Supplementary Table 4). Correspondingly, ARGO outperforms
the benchmarks in terms of median and interquartile range over
the seasons, with the exception of MAPE against AR52 (Fig. 1c),
and ranks first over the majority of state-seasons in RMSE and
correlation (Fig. 1d). Interestingly, despite poorer quartile values,
GFT has a better tail spread than ARGO in terms of correlation.

Incorporating spatio-temporal structure in influenza activity.
Because ARGO models the influenza activity within a given state

using only data specific to that state, a natural question is whether
information from other states across time can be used to improve
the accuracy of influenza predictions. As shown in Fig. 2a, his-
torical CDC %ILI observations show synchronous correlations
between states. The clustering of intercorrelated states from the
same regions (Fig. 2b) suggests that geographical spatio-temporal
structure can be exploited as a correctional effect.

Inspired by this finding, we developed a network-based model
on each state, which incorporates multiple weeks of historical %
ILI activity from all other states in a regularized multivariable
regression. Out-of-sample estimates from this model, denoted
Net, improve on the RMSE of ARGO on half of the states over the
period of September 28, 2014 to May 14, 2017, but show a
comparable increase in error on the other half of the states
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Fig. 2 Motivation for developing spatio-temporal network and ensemble approaches. a Heatmap of pairwise %ILI correlations between all states in the
study over the period September 30, 2012 to May 14, 2017. Five clusters of intercorrelated states are denoted by black boxes. b Geographic distribution of
the five identified clusters. c RMSE improvement of Net over ARGO over the period September 28, 2014 to May 14, 2017. The improvement of Net is here
defined as the inverse RMSE ratio of Net and ARGO, so values above 1 indicate improvement. d RMSE improvement of ARGONet over ARGO over the
same period
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(Fig. 2c). Because ARGO and Net dramatically outperform each
other over distinct states, we investigated whether an ensemble
combining the relative strengths of each model could lead to
significant improvement.

ARGONet ensemble improves on state-level ARGO models.
Our proposed ensemble, denoted ARGONet, dynamically selects
either ARGO’s or Net’s prediction in each week and state based
on the past performance of each model over a tuned training
space (see Methods section for details). Over the period where
ARGONet estimates were generated (September 28, 2014 to May
14, 2017 after a 2-year training window), we found that this
approach resulted in out-of-sample improvement in RMSE over
ARGO in all but eight states (Fig. 2d). Furthermore, in these eight
states, the error increase of ARGONet is relatively controlled
compared to the error increase of Net.

In addition to RMSE, ARGONet also displays general
improvement in correlation and MAPE over both ARGO and
the AR52 benchmark (Fig. 3a). We previously noted that ARGO
did not outperform AR52 in MAPE despite being superior in
terms of RMSE, which suggests that ARGO is more accurate than
AR52 during periods of high influenza incidence and less accurate
during low influenza incidence. On the other hand, by
incorporating spatio-temporal structure, ARGONet is able to
achieve lower MAPE than AR52 over both the entire time period
of September 2014–May 2017 and the 108 state-seasons within
this period (three states are missing %ILI data for the
2016–17 season, resulting in fewer state-seasons compared to
the previous analysis) (Fig. 3a–c). Note that while ARGO and Net
outperforms the AR52 benchmark by a majority of metrics in 32
and 30 states, respectively, ARGONet does the same in 36 out of
37 states (Fig. 3b).

Interestingly, the performance increase of ARGONet does not
appear to stem from being simultaneously more accurate than
ARGO and Net over a majority of state-seasons. Note in Fig. 3d
that while ARGONet tends to rank first in a smaller proportion of
state-seasons than ARGO or Net, ARGONet ranks either first or
second in a far larger proportion of state-seasons than the other
two models, indicating that the ensemble’s overall success comes
from increased consistency. Finally, Fig. 3e subdivides the states
by the fraction of seasons (out of 3) where each model
outperforms AR52. We see that ARGONet performs favorably
(wins 2 or 3 out of 3 seasons) in the vast majority of states, with
considerably better distribution in terms of MAPE than ARGO or
Net. Refer to Supplementary Table 4 for numerical metrics over
each state and season.

Detailed time series comparisons of ARGO and ARGONet
relative to the official CDC-reported %ILI values are shown in
Fig. 4. Note that our models consistently track the CDC %ILI
curve during both high and low periods of ILI activity, whereas
GFT often significantly overpredicts during season peaks. Time
series plots specifically comparing ARGONet and ARGO over
September 2014–May 2017 are presented in Supplementary
Figure 1 and better enable the reader to visually inspect
ARGONet’s improvement over ARGO. In concordance with
previous results, ARGONet tracks the CDC %ILI curve more
accurately than ARGO over some periods of time, while over
other periods the curves are identical. This is an expected result of
our winner-takes-all ensemble methodology. The heatmaps under
each time series plot in Supplementary Figure 1 indicate which
input model was selected by ARGONet in each week.

Discussion
Our ensemble, ARGONet, successfully combines Google search
frequencies and electronic health record data with spatio-

temporal trends in influenza activity to produce forecasts with
higher correlation and lower errors than all other tested models
for current ILI activity at the state level. We believe that the
accuracy of our method involves a balance between responsive-
ness and robustness. Real-time data sources such as Google
searches and electronic health records provide information about
the present, allowing the model to immediately respond to cur-
rent influenza trends. On the other hand, using the values of past
CDC influenza reports in an autoregression adds robustness by
preventing our models from creating outsize errors in prediction.
Similarly, incorporating spatial synchronicities adds stability by
maintaining state-level inter-correlations evident in historical
influenza activity. Our results suggest that dynamic learning
ensembles incorporating real-time Internet-based data sources
can surpass any individual methods in inferring influenza activity.

Previous work has shown the versatility of ARGO, one of the
component models in our ensemble, over a variety of disease
estimation scenarios23,25,26. At the state level, as shown in this
study, it clearly outperformed existing benchmarks over the study
period, namely Google Flu Trends and an autoregression. While
ARGO alone performs better than the benchmarks, we also found
that spatio-temporal synchrony could be used to improve model
accuracy (Net). Combining web-based data sources with this
structural network-based approach (ARGONet) further improves
prediction accuracy and suggests the future study of synchronous
network effects at varying geographical scales. Future work may
explore adding similar approaches to influenza nowcasting sys-
tems at finer spatial resolutions, such as the city level. While
previous studies have established the feasibility of city-level flu
nowcasting21–23, the results from this study suggest that ensemble
methodologies incorporating flu activity from neighboring cities
may improve prediction stability and accuracy at such spatial
resolutions as well. This would be of particular interest given that
finer spatial resolutions experience fewer numbers of flu cases,
which in turn makes the process of finding a meaningful signal in
Internet-based data sources a bigger challenge.

A large factor determining the success of our approach is
whether covariates that have a strong association with the
response variable, over the training set (up to 2 years prior),
maintain their behavior in the present. This may be especially
important in the network approach, because the selected pre-
dictors capture underlying historical geographical relationships.
The ILI between two neighboring states may be highly correlated
over some seasons, but changes in influenza dynamics over the
next season may induce their ILI trends to behave differently. In
such cases, the relationship apparent in the older data would
provide an inaccurate picture of the present.

Accurate influenza monitoring at the state level faces chal-
lenges due to higher variance in data quality across states. The
ILINet reporting system within each state varies in reporting
coverage and consistency, and thus the magnitudes of influenza
activity may not reflect actual differences of influenza activity
between states. The quality of Google Trends frequencies and the
prevalence of clinics reporting to athenahealth (the provider of
our electronic health record data) also vary considerably from
state to state, affecting the ability of our models to extract useful
information from these data sources. Thus, we examined whether
geographical improvement of ARGONet over the benchmark
AR52 (as defined by percent reduction of RMSE) are associated
with proxies of Google Trends or athenahealth data quality,
namely detectable influenza-related search terms from Google
Trends and athenahealth population coverage (Supplementary
Figure 2a–d). Indeed, linear regression indicates a moderate
association of ARGONet improvement with athenahealth cover-
age and a weak association with detectable influenza-related
Google search activity (Supplementary Figure 2e–f). Interestingly,
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influenza-related search activity has a very strong correlation with
state population (Supplementary Figure 2g), which suggests that
larger pools of Internet users result in better signal-to-noise ratio
in search activity. Finally, there is almost no association between
ARGONet improvement with the variance of the state’s time
series and a weak association with the number of healthcare
providers reporting to the CDC from each state (Supplementary
Figure 2h–i). Future analysis can examine the interplay of these
factors with CDC %ILI report quality and structural spatial

correlations. For example, we hypothesize that the Net model
contributes strongly in states with lesser-quality data which are
adjacent to states with high-quality data. Pairwise %ILI correla-
tion (Fig. 2b) suggests that geographic proximity is a relevant
synchronous factor, as many Southeastern states, Western states,
and New England/mid-Atlantic states were clustered together.

The lack of unrevised ILI data at the state level over the
influenza seasons covered in this study may present a caveat to
our results. In real time, ILI estimates reported by the CDC can be
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Fig. 4 Time series plots displaying the performance of ARGO and ARGONet relative to the official CDC %ILI time series. Results are shown over the entire
out-of-sample prediction period (September 30, 2012 to May 14, 2017). The GFT benchmark is also shown. Refer to Supplementary Figure 1 for more
detailed figures from September 2014–May 2017
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modified, due to post hoc revisions, up to weeks later, compli-
cating model training and testing. While studies modeling
influenza have demonstrated important sensitivity analyses in
settings with available unrevised data6,27, such as national ILI, we
were not able to analyze this effect. Another pertinent detail
concerns the tradeoffs between modeling ILI vs true influenza
cases as the outcome variable. We chose ILI as our target because
it directly reflects symptomatic patient levels, allowing for rapid
population-level interventions such as resource deployment. By
nature, our Internet-based data sources (internet searches and
outpatient visits) are good proxies of ILI. On the other hand, ILI
is not specific only to influenza. Thus, our estimates may reflect a
combination of respiratory pathogens, decreasing their utility for
mechanistic modeling and virology analysis.

Localized, accurate surveillance of influenza activity can set a
foundation for precision public health in infectious diseases.
Important developments in this field can involve emerging
methodologies for tracking disease at fine-grained spatial reso-
lutions, rapid analysis and response to changing dynamics, and
targeted, granular interventions in disparate populations, each of
which has the potential to complement traditional public health
methods to increase effectiveness of outcomes28. We believe that
the use of our system can produce valuable real-time subregional
information and is a step toward this direction. At the same time,
the performance of ARGONet depends directly on the availability
and quality of Internet-based input data and also relies on a
consistently reporting (even if lagged) healthcare-based surveil-
lance system. We anticipate that data sources will improve over
time, for example, if athenahealth continues to gain a larger
market share over the states or more Google Trends information
becomes available. If these conditions hold, or as more web-based
data sources or other electronic health record systems become
available in real time, the accuracy of our methods may continue
to increase.

Methods
Data acquisition. Three data sources were used in our models: influenza-like
illness rates from ILINet, Internet search frequencies from Google Trends, and
electronic health records from athenahealth, as described below. Weekly infor-
mation from each data source was collected for the time period of October 4, 2009
to May 14, 2017.

Influenza-like illness rates. Weekly influenza-like illness rates reported by out-
patient clinics and health providers for each available state were used as the epi-
demiological target variable of this study. The weekly rate, denoted %ILI, is
computed as the number of visits for influenza-like illness divided by the total
number of visits. Data from October 4, 2009 to May 14, 2017 for 37 states were
obtained from the CDC. For inclusion in the study, a state must have data from
October 2009 to May 2016, with no influenza seasons (week 40 of one year to week
20 of the next) missing. Some states were missing data, usually due to not reporting
in the off-season (between week 20 and week 40 of each year). Missing or unre-
ported weeks, as well as weeks where 0 cases were reported, were excluded from
analysis on a state-by-state basis. While in real-time ILI values for a given week
may be revised in subsequent weeks, we only had access to the revised version of
these historical values.

Internet search frequencies. Search volumes for specific queries in each state
were downloaded through Google Trends, which returns values in the form of
frequencies scaled by an unknown constant. While our pipeline used the Google
Trends API for efficiency, search volumes can be publicly obtained from www.
trends.google.com for reproducibility. Relevant search terms were identified by
downloading a complete set of 287 influenza-related search queries for each state,
and keeping the terms that were not completely sparse. Because Google Trends left-
censors data below an unknown threshold, replacing values with 0, a query with
high sparsity indicates low frequency of searches for that query within the state.

In an ideal situation, relevant search queries at the state-level resolution would
be obtained by passing the historical %ILI time series for each state into Google
Correlate, which returns the most highly correlated search frequencies to an input
time series. However, such functionality is only supported at the national level, at
least in the publicly accessible tool. Given this limitation, we used two strategies to
select search terms:

An initial set of 128 search terms was taken from previous studies tracking
influenza at the US national level6.

To search for additional terms, we submitted multiple state %ILI time series
into the Google Correlate and extracted influenza-related terms, under the
assumption that some of the state-level terms would show up at the national level.

To minimize overfitting on recent information, the %ILI time series inputted
into Google Correlate were restricted from 2009–2013. State-level search
frequencies for the union of these terms and the 128 previous terms were then
downloaded from the Google Trends API, resulting in 282 terms in total
(Supplementary Table 3).

Electronic health records. Athenahealth is a cloud-based provider of electronic
health records, medical billing, and patient engagement services. Its electronic
health records system is currently used by over 100,000 providers across all
50 states. Influenza rates for patients visiting primary care providers over a variety
of settings, both inpatient and outpatient, are provided weekly from athenahealth
on each Monday. Three types of syndromic reports were used as variables:
‘influenza visit counts’, ‘ILI visit counts’, and ‘unspecified viral or ILI visit counts’,
which were converted into percentages by dividing by the total patient visit counts
for each week. The athenahealth network and influenza rate variables are detailed
in Santillana et al.24.

Google flu trends. In addition to the above data sources, we downloaded GFT
estimates as a benchmark for our models. Google Flu Trends provided a public
influenza prediction system for each state until its discontinuation in August
201529. GFT values were downloaded and scaled using the same initial training
period of 104 weeks used in all of our models (October 4, 2009 to September 23,
2012).

ARGO model. The time series prediction framework ARGO (AutoRegression with
General Online information) issues influenza predictions by fitting a multivariable
linear regression each week on the most recent available Internet predictors and the
previous 52 %ILI values. Because of many potentially redundant variables, L1
regularization (Lasso) was applied to produce a parsimonious model by setting the
coefficients for weak predictors to 0. The model was re-trained each week on a
shifting 104-week training window in order to adapt to the most recent 2 years of
data, and the regularization hyperparameter was selected using 10-fold cross-
validation on each training set. Details about the ARGO model and its applicability
in monitoring infectious diseases such as influenza, dengue, and zika are presented
in previous work5,25,26. Refer to the Supplement for a detailed mathematical for-
mulation of ARGO.

To fine-tune predictive performance, adjustments to the procedure were
introduced on a state-by-state basis:

Filtering features by correlation: For each week, non-autoregressive features
ranked outside the top 10 by correlation were removed to reduce noise from poor
predictors. Based on previous research, this complementary feature selection
process benefits the performance of Lasso, which can be unstable in variable
selection23,25.

Regularization hyperparameters: Features with high correlation to the target
variable over the training set received a lower regularization weight, which makes
them less subject to the L1 penalty (see the Supplement for derivation).

Weighting recent observations: Although ARGO dynamically trains on the last
104 weeks of observations, more recent observations likely contain more relevant
information. Thus the most recent 4 weeks of data received a higher weight (set to
be twice the weight of the other variables) in the training set.

Network-based approach. Historical CDC %ILI observations show synchronous
relationships between states, as shown in Fig. 2a (generated using corrplot30 with
the complete-linkage clustering method). To identify these relationships with the
goal of improving our %ILI predictions, for each state, we dynamically constructed
a regularized multi-linear model for each week that has the following predictors: %
ILI terms for the previous 52 weeks for the target state, and the synchronous (same
week’s values) and the past three weeks of observed CDC’s %ILI terms from each of
the 36 other states. Notice that to produce predictions of %ILI for a given state in a
given week, the model requires synchronous %ILI from the other states, which
would not be available in real-time. Instead, we use ARGO predictions for the
current week as surrogates for these unobserved values. Like ARGO, this model is
trained with a rolling 104-week window with 10-fold cross-validation to determine
the L1 regularizer (formulation in Supplement). This model is denoted Net.

Ensemble approach. In order to optimally combine the predictive power of ARGO
and Net, we trained an ensemble approach based on a winner-takes-all voting
system, which we named ARGONet. ARGONet’s prediction for a given week is
assigned to be Net’s prediction if Net produced lower root mean square error
(defined in Comparative analyses) relative to the observed CDC %ILI over the
previous K predictions than ARGO. Otherwise, ARGONet’s prediction is assigned
to be ARGO’s prediction. To determine the hyperparameter K for each state, we
trained ARGONet using the first 104 out-of-sample predictions of ARGO. We
constrained K to take value in {1, 2, 3}. For each state, we utilized and fixed the
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identified best value of K to produce out-of-sample predictions for the time period
of September 28, 2014 onward. The value of K chosen for each state is shown in
Supplementary Table 2.

Comparative analyses. To assess the predictive performance of the models, we
produced state-level retrospective estimates using two benchmarks: (a) AR52, an
autoregressive model, which uses the %ILI from the previous 52 weeks in a Lasso
regression to predict %ILI of the current week, and (b) GFT, made by scaling each
state’s Google Flu Trends time series to its official revised %ILI from October 4,
2009 to September 23, 2012.

The performances of all models and benchmarks compared to the official
(revised) %ILI were scored using three metrics: root mean squared error (RMSE),
Pearson correlation coefficient, and mean absolute percent error (MAPE). These
were computed over the entire study period (September 30, 2012 to May 14, 2017)
and over each influenza season (defined as week 40 of one year to week 20 of the
next) within the study period.

The models and benchmarks were further scored over two specific sub-periods:
(1) the window when GFT was available (September 30, 2012 to August 9, 2015),
and (2) the window starting with the first available ARGONet prediction
(September 28, 2014 to May 14, 2017).

ARGO model estimates were generated using scikit-learn in Python 2.731, while
Net and ensemble models were generated in R 3.4.1. Data analysis was conducted
in Python except for Fig. 2a, b, which used the R packages corrplot30 and ggplot32.
The United States maps in Fig. 2b and Supplementary Figure 2 were made in
ggplot using the shapefile from the maps package33.

Disclaimer. The findings and conclusions in this report are those of the authors
and do not necessarily represent the official position of the Centers for Disease
Control and Prevention.

Code availability. The code supporting the results of this study is available from:
https://github.com/fl16180/argonet.

Data availability
The data used in this study are available from Harvard dataverse: [https://doi.org/
10.7910/DVN/L5NT70]34 Up-to-date CDC %ILI data can be obtained from CDC’s
FluView Interactive application: [https://www.cdc.gov/flu/weekly/
fluviewinteractive.htm].
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