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A B S T R A C T

Background: While the impact of metformin in hepatocytes leads to fatty acid (FA) oxidation and decreased
lipogenesis, hepatic microRNAs (miRNAs) have been associated with fat overload and impaired metabolism,
contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD).
Methods: We investigated the expression of hundreds of miRNAs in primary hepatocytes challenged by com-
pounds modulating steatosis, palmitic acid and compound C (as inducers), and metformin (as an inhibitor).
Then, additional hepatocyte and rodent models were evaluated, together with transient mimic miRNAs
transfection, lipid droplet staining, thin-layer chromatography, quantitative lipidomes, and mitochondrial
activity, while human samples outlined the translational significance of this work.
Findings: Our results show that treatments triggering fat accumulation and AMPK disruption may compromise
the biosynthesis of hepatic miRNAs, while the knockdown of the miRNA-processing enzyme DICER in human
hepatocytes exhibited increased lipid deposition. In this context, the ectopic recovery of miR-30b and miR-30c
led to significant changes in genes related to FA metabolism, consistent reduction of ceramides, higher mito-
chondrial activity, and enabled b-oxidation, redirecting FAmetabolism from energy storage to expenditure.
Interpretation: Current findings unravel the biosynthesis of hepatic miR-30b and miR-30c in tackling inade-
quate FA accumulation, offering a potential avenue for the treatment of NAFLD.
Funding: Instituto de Salud Carlos III (ISCIII), Govern de la Generalitat (PERIS2016), Associaci�o Catalana de
Diabetis (ACD), Sociedad Espa~nola de Diabetes (SED), Fondo Europeo de Desarrollo Regional (FEDER), Xunta
de Galicia, Ministerio de Economía y Competitividad (MINECO), “La Caixa” Foundation, and CIBER de la Fisio-
patología de la Obesidad y Nutrici�on (CIBEROBN).

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by the
excessive build-up of fat in the liver parenchyma that is not caused
by alcohol consumption. It is estimated to afflict around one billion
individuals worldwide [1], and represents a spectrum of disturbances
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Research in context

Evidence before this study

It is known that the excessive buildup of fat in the liver paren-
chyma is the basis for a spectrum of disturbances encompassing
fatty acid (FA) infiltration (steatosis), which in turn leads to the
activation of inflammatory pathways (steatohepatitis) related
to the induction of impaired metabolism and insulin resistance.
Together with circulating FA uptake, impaired b-oxidation
occurring at the inner mitochondrial membrane, and de novo
lipogenesis are of utmost importance for maintaining lipid
homeostasis in hepatocytes, the most common parenchyma
cells in liver. These processes are directly or indirectly modu-
lated by the energy sensor AMP-activated protein kinase
(AMPK), a master metabolic regulator that blocks the expres-
sion of lipogenic enzymes, while actively increases FA oxida-
tion. Therefore, a number of AMPK-activating compounds have
been reported to have beneficial effects as potential therapeutic
interventions in the fatty liver arena. In particular, metformin, a
common antidiabetic drug, can decrease hepatic steatosis by
activating AMPK. Emerging evidence also suggests the involve-
ment of key epigenetic modulators such as microRNAs (miR-
NAs). In this context, cell models may provide approaches to
gain insight into the molecular mechanisms involved, and are
important to the refinement of triggering factors and causal
effectors in the field.

Added value of this study

In this study, we present results that deepen into the mecha-
nisms underlying the relevance of miRNAs to de development of
hepatosteatosis. Careful characterization of human hepatocytes
challenged with different compounds disclosed the link between
changes in AMPK activity, hepatic lipids and miRNA biosynthe-
sis. Accordingly, while decreased hepatic miRNAs expression
was coupled to enhanced de novo lipogenesis, transient transfec-
tion with specific miRNA candidates shortlisted the miR-30b and
miR-30c as being capable of redirecting FA metabolism from
energy storage to expenditure.

Implications of all the available evidence

The pathogenesis of non-alcoholic fatty liver disease (NAFLD)
remains elusive and no effective therapy is available. Current
results broaden our understanding of mechanisms of utmost
importance for maintaining lipid homeostasis in hepatocytes,
and unravel the activity of some hepatic miRNAs in tackling
inadequate FA accumulation in liver, offering a potential ave-
nue for the treatment of NAFLD.
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encompassing fatty acid (FA) infiltration (steatosis), which often leads
to the activation of inflammatory pathways (steatohepatitis) related
to the induction of insulin resistance [2]. NAFLD is associated with
obesity, hyperlipidemia, insulin resistance, type 2 diabetes, and a
myriad of cardiovascular risk factors [3], being commonly described
as the hepatic manifestation of metabolic syndrome [4,5]. Further-
more, NAFLD may precede more severe liver diseases such as cirrho-
sis and hepatocellular carcinoma [6].

The balance between FA biosynthesis, uptake and clearance is of
utmost importance for maintaining lipid homeostasis in hepatocytes,
the most common parenchyma cells in liver. Together with circulat-
ing FA intake, impaired b-oxidation occurring at the inner mitochon-
drial membrane [7], and de novo lipogenesis [8] substantially
contribute to hepatic FA deposition [9]. All these processes are
directly or indirectly modulated by the energy sensor AMP-activated
protein kinase (AMPK), a master metabolic regulator that blocks the
transcription of lipogenic enzymes [10], while actively inhibits bio-
synthetic pathways and increases FA oxidation [11]. Therefore, a
number of AMPK-activating compounds have been reported to have
beneficial effects as therapeutic interventions in the fatty liver arena
[12,13]. In particular, metformin, a common antidiabetic drug, can
decrease hepatic steatosis in rodent models by turning on AMPK
[14�17]. Consistent with this notion, inhibition of AMPK leads to the
activation of lipogenesis as a central event in the development of
chemically-induced fatty liver [18]. In this context, the reagent called
dorsomorphin or compound C, a pyrazolopyrimidine related to pro-
tein kinase inhibitors, is widely used as a cell-permeable ATP-com-
petitive inhibitor of AMPK to revert the positive effects of AICAR and
metformin [19,20]. On the other hand, exposure of hepatocytes to
pathophysiologically relevant concentrations of palmitic acid results
in the production of cytokines that also play an important role in the
development of steatohepatitis [21]. These complementary
approaches may provide insight into the molecular mechanisms
involved in the multiple features of this complex condition, and are
important to the refinement of triggering factors and causal effectors
in the field [22].

MicroRNAs (miRNAs) are small non-coding RNAs that regulate
gene expression by specific binding to complementary regions in
coding messenger RNAs, leading to their translational repression or
decay [23]. Since the coordination of a large number of genes may be
accomplished by a single miRNA [24], these factors have become
very attractive candidates to regulate cell fate decision in complex
diseases [25]. In the context of impaired hepatic metabolism, the
association between hepatic miRNAs and NAFLD is being increasingly
recognized [26,27]. For instance, our previous transcriptional analysis
in the liver of obese subjects disclosed decreased glucose metabolism
and increased FA biosynthesis coupled to significant variations of
specific hepatic miRNA species in subjects with this condition [28].

Here we investigated the expression of hundreds of mature miR-
NAs and genes related to fatty liver disease in primary human hepa-
tocytes challenged by chemical compounds modulating steatosis,
palmitic acid and compound C (as inducers), and metformin (as an
inhibitor). By approaches performed both in vivo and in vitro, we con-
firmed that treatments triggering fat accumulation and AMPK disrup-
tion may compromise hepatic miRNA biosynthesis, while the
knockdown of the miRNA-processing enzyme DICER exhibited a sub-
stantial increase in lipid deposition. Then, we validated consistent
downregulation of specific hepatic miRNA candidates, pointing the
loss of a few unique species at the forefront of the imbalance affecting
de novo lipogenesis and FA uptake, oxidation and transport in hepa-
tocytes, leading to the acquisition of NAFLD traits. Finally, transient
transfection with mimic miRNA candidates shortlisted the miR-30b
and miR-30c as being capable of redirecting FA metabolism from
energy storage to expenditure, tackling inadequate FA accumulation
in human hepatocytes.

2. Methods

2.1. Cell cultures

Primary human hepatocytes (HH) were grown on poly-L-lysine
pre-coated dishes and cultured at 37 °C and 5% CO2 atmosphere in
hepatocyte medium supplemented with 5% fetal bovine serum (FBS),
100 units/ml penicillin and streptomycin (P/S), and 1% of a commer-
cially available combination of different growth factors and hor-
mones (Innoprot, Bizkaia, Spain). HepG2 cells were purchased from
the American Type Culture Collection (ATCC) and cultured under
same conditions in Dulbecco’s Modified Eagle’s Medium (DMEM)
supplemented with 10% FBS, 100 units/ml P/S, and 1% glutamine and
sodium pyruvate (Thermo Fisher Scientific, Wilmington, DE). Huh7
cells were cultured in Minimal essential Eagle Medium AQmediaTM
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(Sigma-Aldrich, St. Louis, MO) with 10% FBS and 100 units/ml P/S.
Decreased AMPK activity was induced by 10 mM compound C (CC).
Exposure to 500 (HepG2) and 200 (HH) mM palmitic acid (PA) was
accomplished as previously [28]. Transient AMPK activation was
induced by 1 mM metformin (Sigma-Aldrich, St. Louis, MO). Each
treatment was compared against the corresponding vehicle as con-
trol (i.e. 5% bovine serum albumin (BSA) for PA; 0.08% dimethyl sulf-
oxide (DMSO) for CC; and phosphate buffered saline (PBS) for
metformin).

2.2. Silencing of hepatic AMPK in vivo

10-weeks old C57BL6 mice were held in a specific restrainer for
intravenous injections Tailveiner (TV-150, Bioseb, France). Tail-injec-
tions were carried out using a 27 G X 3/800 (0.40 mm x 10 mm)
syringe. Mice were injected with either 100 ml of null (sh-luciferase)
or AMPKa1-DN lentiviral particles in saline solution. The protein-
coding sequence of AMPKa1-DN was cloned from pVQAd SF1-
AMPKa1-DN (reference number: 24,603; ViraQuest Inc., North Lib-
erty, IA) into the pSIN-Flag vector. To generate lentiviral particles, the
pSIN-Flag vector containing AMPKa1-DN was co-transfected with
packaging vectors (psPAX2 and pMD2G) into HEK293T, as previously
[29]. psPAX2 and pMD2G vectors were a gift from Didier Trono
(Addgene Plasmids, Cambridge, MA). These experiments were per-
formed in agreement with the International Law on Animal Experi-
mentation, and were approved by the USC Ethical Committee
(Project ID 15,010/14/006).

2.3. Human liver samples

Sixty biopsy specimens were snap frozen in liquid nitrogen for
genomic analyses and fixed in formalin for the histological assess-
ment. Fixed samples were stained with hematoxylin-eosin and Mas-
son’s trichrome stain. All samples were evaluated by the same
pathologist according to the degree of steatosis. Then, participants
were stratified as subjects without significant steatosis (<5%), “bor-
derline” (5�33%), and subjects with significant steatosis (>33% of
fat). Exclusion criteria included cirrhosis or bridging fibrosis, a liver
biopsy less than 2 cm long, and the use of statins. Gene and miRNA
expression was performed as previously [28], using the commercially
available TaqMan primer/probe sets (Applied Biosystems, Darmstadt,
Germany) listed in the table of reagents provided as a Supplemental
file. The study protocol was approved by the Ethics Committee and
the Committee for Clinical investigation (CEIC) of the “Hospital Uni-
versitari dr. Josep Trueta de Girona”. All subjects provided written
informed consent before entering the study.

2.4. Depletion of AMPK and DICER in hepatocytes

Knockdown of AMPKa1/2 and DICER was performed by lentiviral
particles expressing short hairpin (sh) interference RNA. HepG2 cells
were plated, and 1:1 lentiviral particles were added for 24 h, together
with 7 mg/ml polybrene. Stable clones were selected via puromycin
dihydrochloride (Santa Cruz Biotechnology Inc., Dallas, TX).

2.5. In vitro transfection of mimic miRNAs

HepG2 and Huh7 cells were transfected for 48 h with 50 nM
mimic miRNA candidates, or with a non-targeting (NT) miRNA con-
trol using HiPerfect Transfection Reagent (Qiagen, Gaithersburg, MD).

2.6. Genomic analysis

Total RNA was purified using the RNeasy Mini Kit (QIAgen, Gai-
thersburg, MD). Concentrations were assessed by a Nanodrop
ND-1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE). Total RNA was reversed transcribed to cDNA using High Capacity
cDNA Archive Kit (Applied Biosystems, Darmstadt, Germany). 600 ng
of total RNA was used as input for miRNA reverse transcription by the
TaqMan miRNA Reverse Transcription Kit, and TaqMan miRNA Multi-
plex RT Assays, as previously [30]. Expression of 754 mature miRNA
species was assessed by means of TaqMan low-density arrays (Life
Technologies, Darmstadt, Germany). Real-time PCR was carried out in
a QuantStudio 7 Flex Real-Time PCR. Results were analysed with the
QuantStudioTM Real-Time PCR Software (ThermoFisher Scientific).
Commercially available TaqMan hydrolysis probes (Applied Biosys-
tems, Foster City, CA) and forward/reverse SYBR Green� paired pri-
mers were used to analyze the expression of genes and miRNA
candidates in a Light Cycler 480 II (Roche Diagnostics SL, Barcelona,
Spain). SDHA (succinate dehydrogenase complex, subunit A) and PPIA
(peptidylpropyl isomerase A), and RNU6b were used as endogenous
controls for gene and miRNA expression, respectively. TaqMan assays
and primers are listed in the Supplemental file. Complete miRNA pro-
files have been deposited in the community-endorsed repository Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, data-
base with accession number GSE145039).

2.7. De novo lipogenesis

Transfected HepG2 cells were incubated for 3 h in complete media
with 5 mCi/well of [3H]-Acetic acid (Amersham, GE Healthcare,
Thermo Fisher Scientific Inc.). Total lipids were extracted as
explained in reference [31]. Samples were run on thin layer silica-
based chromatography using hexane/diethyl ether/acetic acid/water
(65:15:1:0.25) as solvent. TAG, DAG and CE standards were run along
with samples to identify the corresponding species. The three lipid
species were scraped, and the [3H] radioactivity was measured by liq-
uid scintillation counting. Results were normalized against total pro-
tein, determined by PierceTM BCA Protein Assay Kit (Thermo Fisher
Scientific, Wilmington, DE).

2.8. Lipidomics

Lipid extraction was performed as explained in reference [32]. The
following lipid species were added as internal standards: PC 14:0/14:0,
PC 22:0/22:0, PE 14:0/14:0, PE 20:0/20:0 (di-phytanoyl), PS 14:0/14:0,
PS 20:0/20:0 (di-phytanoyl), PI 17:0/17:0, LPC 13:0, LPC 19:0, LPE 13:0,
Cer d18:1/14:0, Cer 17:0, D7-FC, CE 17:0, and CE 22:0. The residues were
dissolved in either 10 mM ammonium acetate plus methanol/chloro-
form (3:1, v/v) (for low mass resolution tandem mass spectrometry), or
chloroform/methanol/2-propanol (1:2:4 v/v/v) with 7.5 mM ammonium
formate (for high resolution mass spectrometry). The analysis of lipids
was performed by direct flow injection analysis (FIA) using either a triple
quadrupole mass spectrometer (FIA-MS/MS; QQQ triple quadrupole)
[33,34] or a hybrid quadrupole-Orbitrap mass spectrometer (FIA-FTMS;
high mass resolution) [35]. Lipid species were annotated according to
the recently published proposal for shorthand notation [36]. Extracted
data were processed by self-programmed Macros as described in [37].
Lipidomic data generated in this study have been made publicly avail-
able in Figshare [38] (10.6084/m9.figshare.11854563).

2.9. Mitochondrial oxygen consumption rate

The oxygen consumption rate (OCR) was measured in HepG2
transfected with mimic miRNAs by means of a Seahorse XF96 Extra-
cellular Flux Analyser (Agilent Technologies, Santa Clara, CA). Cells
were cultured for 48 h with transfection complexes, followed by
60 min of culture with XF base medium supplemented with 1 mM
pyruvate, 2 mM glutamine, and 10 mM glucose in a CO2 free incuba-
tor. The OCR was measured using the XF Cell Mito Stress Test Kit (Agi-
lent Technologies, Santa Clara, CA). OCR was then normalized to the
total protein content.

http://www.ncbi.nlm
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2.10. Quantification of apolipoprotein B100

Cell media were analysed using Human Apolipoprotein B ELISAPRO

kit (3715�1HP-2, Mabtech, Sweden) according to the manufacturer’s
protocol. The absorbance was measured at 450 nm in a Cytation 5
Cell Imaging Reader (BioTek Instruments, Winooski, VT), and a 4-
parameter curve fitting program was used for data analysis.

2.11. Triglyceride and cholesterol analysis

HepG2 cells transfected for 72 h with 100 nM mimic miRNA can-
didates or non-targeting miRNA control were subjected to triglycer-
ide and cholesterol analysis using the GPO-PAP Triglyceride assay kit
and the CHOD-PAP Cholesterol assay kit (Cobas, Roche/Hitachi,
Tokyo, Japan). Data was normalized for total protein.

2.12. Prediction of miRNA target sites

Putative miRNA binding sites in 30UTR messenger RNAs were
assessed using TargetScan (http://www.targetscan.org), miRanda
(http://www.microrna.org/), and miRWalk (http://zmf.umm.uni-hei
delberg.de/apps/zmf/mirwalk2/). miRpath v.3 was employed to per-
form miRNA pathway analysis through experimentally validated
miRNA interactions derived from DIANA-TarBase v6.0 [39]. Gene
annotation enrichment analysis was performed by DAVID [40].

2.13. DNA constructs

Acyl-CoA synthetase long chain family member 1 (ACSL1) 30UTR
was amplified and inserted downstream of a firefly luciferase in the
dual luciferase vector pEZX-MT06 (GeneCopoeia, Rockville, MD).
Mutant ACSL1 30UTR carrying a substitution of 7�8 nucleotides
within the seed sequence of miRNA candidates was generated by oli-
gonucleotide-directed PCR mutagenesis with PhusionTM High-Fidel-
ity DNA Polymerase (Thermo Fisher Scientific, Wilmington, DE).

2.14. Luciferase assays

Huh7 cells were transfected for 48 h with the Luc-ACSL1 30UTR
wild-type or mutant constructs together with 200 nMmimic miRNAs
by using Lipofectamine 2000TM (Invitrogen, Carlsbad, CA). Cell lysates
were subjected to measurements of firefly and Renilla luciferase
activities by using the Dual Luciferase Reporter Assay System (Prom-
ega, Madison, WI). Firefly signals were normalized by using the
Renilla signal according to the manufacturer’s instructions.

2.15. Lipid droplet staining

HepG2 and Huh7 cells were stained with 2 mM Bodipy 493/503
(Molecular Probes/Life Technologies, Eugene, OR). After washing,
cover slips were mounted using Mowiol (Calbiochem, La Jolla, CA)
containing 5 mg/ml DAPI (Thermo Scientific/Molecular Probes). Cells
were imaged using Zeiss Axio Observer Z1 microscope (Carl Zeiss
Imaging Solutions GmbH, Oberkochen, Germany), with the same
exposure time for non-targeting control and mimic miRNAs. Staining
was quantified using FIJI software (Image J) with a set cut-off thresh-
old (total signal intensity/number of cells in the field). Treated and
control HepG2 cells and primary HH were also fixed with paraformal-
dehyde 4%. Cells were dipped in 60% isopropanol before being
stained with Oil Red O (Sigma, Lyon, France) for 10 min at room tem-
perature. Absorbance was measured at 500 nm.

2.16. Western blot

Equal amounts of total protein were loaded on 10% SDS-PAGE.
After separation, proteins were transferred onto Nitrocellulose
(BioRad, Hercules, CA). Antibodies against ACSL1 (Abcam, Cambridge,
UK), phospho and total AMPK, phospho and total ACC (Cell Signalling,
Danvers, MA), and b-actin (Santa Cruz Biotechnology, Inc., Dallas, TX)
were used. Blots were visualized by enhanced chemiluminescence
(Thermo Fisher Scientific, Wilmington, DE) and signals were quanti-
fied by Image J software (https://imagej.nih.gov/ij/).

2.17. Statistics

Student’s t-test, and One-Way ANOVA Post Hoc for Multiple com-
parisons by Fisher’s Least Significant Difference (LSD) test (more than
two groups) were performed to study differences between treat-
ments. Associations between hepatic miRNAs and clinical outputs
were determined by Spearman’s. Data analyses were performed with
SPSS v19.0 (IBM, Chicago, IL), GraphPad Prism 6 (Graphpad Holdings,
LLC), and R Statistical Software (http://www.r-project.org/).

3. Results

3.1. Compounds that modify AMPK activity may compromise FA
homeostasis

Our previous study established significant variations in primary
human hepatocytes (HH) and HepG2 cells challenged with conditions
that mimicked to some extent the onset of non-alcoholic fatty liver
disease (NAFLD) [28]. Here, we performed further experimental
approaches aimed at evaluating the impact of compounds that may
compromise AMPK activity and fatty acid (FA) homeostasis in hepa-
tocytes. For this, we exposed HH (Fig. 1a) and HepG2 cells (Fig. 1b) to
palmitic acid (PA) and compound C (CC) as inducers, and to metfor-
min (Mtf), which can mediate through or independently of AMPK-
activation to alleviate fatty liver. First, we studied fat deposition (oil
red O lipid-droplet staining) and the expression of genes related to de
novo FA biosynthesis, uptake and transport, as well as altered expres-
sion of genes involved in glucose intake and inflammation. On one
hand, treatments with PA and CC enhanced lipid accumulation in HH
and HepG2 cells (Fig. 1a and Fig. 1b), and shortlisted increased ACSL1
and FASN mRNA, while GLUT2 expression was compromised in both
HH and HepG2 cells (Fig. 1c and Fig. 1d). In parallel, the inflammatory
activation was evident in hepatocytes challenged with PA, as sug-
gested by enhanced expression of IL8 (HH), TNFa (HepG2), and ITGAX
(both). On the other hand, Mtf led to decreased lipid deposition
(Fig. 1a and Fig. 1b), coupled to a significant downregulation of ACSL1
in both cell models, decreased FATP5 and CD36 in HepG2 cells, and
reduced TNFa in primary HH (Fig. 1c and Fig. 1d). Finally, we con-
firmed alterations in AMPK. As expected, both PA and CC disrupted
AMPK activity in HepG2 (CC to a greater extent than PA), while Mtf
significantly enhanced the phosphorylation of this kinase in both HH
and HepG2 cells (Fig. 1e and Fig. 1f), thus increasing its activity. Alto-
gether, these results confirmed chemically-induced molecular
changes allowing lipid deposition in human hepatocytes, thus mir-
roring hepatosteatosis in vitro.

3.2. Compounds that compromise FA homeostasis also modulate miRNA
biosynthesis

We used TaqMan Low Density Arrays (TLDA) to characterize the
expression profile of 754 common mature microRNAs (miRNAs) in
primary HH challenged with PA, CC, and Mtf. First, we identified
hepatic miRNAs detectable in all samples (threshold Cts <35). In vitro
cultured HH expressed as many as 226 miRNAs (~30%), with a sub-
stantial increase upon PA and Mtf (61.9% and 73%, respectively), and
a striking downregulation accomplished by CC (63.7%, Fig. 2a).
Indeed, compounds that led to significant alterations in AMPK activ-
ity and lipid deposition, modulating the expression of genes involved
in FA metabolism, also modified the expression of several miRNAs,
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CTRL PA

CC Mtf

c.

b.

HH PA CC Mtf
De novo fatty acid (FA) biosynthesis
ACSL1 154.9** 37* -50.8*
FASN 16.2** 66.8* 22.5
FA uptake and transport
FATP5 115.8* 62.3 5.6
CD36 56.0** -49.1** -14.6
PLTP 26.7** 61.5* -21.3
Glucose metabolism
GLUT2 -34,5** -16,6** 55.2
Inflammation
TNFα 151.2 29.6 -59.9*
ITGAX 286.8** -17.2 31.7
IL8 635.6* -39.9* 12.6
miRNA processing machinery
DROSHA -30.5** -31.9** 27
XPO5 -16.0** -13.4* 28.4*
DICER -28.8** -14.6* 32.8*
AGO2 -13.5 -11.8 48.2*

* p-val<0.05, ** p-val<0.01

HepG2 PA CC Mtf
De novo fatty acid (FA) biosynthesis
ACSL1 214.47** 65.46** -15.37*
FASN 29.84** 116.76** -3.63
FA uptake and transport
FATP5 30.8* -77.7** -58.8*
CD36 45.5** -79.5** -38.7**
PLTP 4.1 -12.6 -25.2
Glucose metabolism
GLUT2 -16.1* -74.3** 11.4
Inflammation
TNFα 227.8** 162.0* -21.4
ITGAX 304.0* 56.2 5.2
IL8 19.7 -62.3 7.3
miRNA processing machinery
DROSHA -19.9* 3.6 -13.3
XPO5 -4.5 -18.9 -13.9*
DICER -11.7* -15.3** 1.1
AGO2 63.4** 266.2** 10.8

d.

* p-val<0.05, ** p-val<0.01

a. Primary human hepatocytes (HH)

HepG2 cells

f.e. HH HepG2

CTRL PA

CC Mtf

Fig. 1. Palmitate, compound C and metformin modify lipid deposition and AMPK activity in hepatocytes. Oil Red O staining in a) primary human hepatocytes (HH) and b) HepG2
cells challenged with palmitate (PA), compound C (CC) and metformin (Mtf), and control (CTRL). Optical density (OD) was measured and relative quantification of the Oil Red O
staining is shown in plots. Charts show percent (%) of variation for gene expression measures obtained in treated c) HH and d) HepG2 cells versus respective vehicle as control.
Color-scale goes from red (increased) to green (decreased). Western blots show results for phospho-AMPK (pAMPK, Thr172) and total AMPK in treated e) HH and f) HepG2 cells ver-
sus respective vehicle as control. pAMPK signal was computed relative to total AMPK, and total AMPK signal was normalized against b-actin. Results are expressed as mean § SEM
(n � 2 replicates/ cell/ treatment, * p<0.05, ** p<0.01 [Student t-test]).
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with 30 miRNAs significantly decreased by CC, and 34 miRNAs signif-
icantly increased in hepatocytes challenged with Mtf (Fig. 2a). Such
remarkable differences were observed in the context of 76 hepatic
miRNAs with significant variations upon at least one of the treat-
ments (Fig. 2b). Intriguingly, even though both PA and CC triggered
lipid accumulation, quite few coincidences regarding miRNA deregu-
lation were found between these two treatments in primary HH.
Thus, we considered the opposite impact exercised by treatments of
Mtf and CC as models of gain and loss of function, in reference to the
activity of AMPK, significant changes in lipid deposition, and the
opposite impact shown in miRNA patterns. Accordingly, together
with miRNA hits linked to hepatosteatosis in a previous work [28], a
final list of twelve miRNA candidates was validated on account of
their consistent inverse expression patterns under these opposite
conditions, significance upon normalization by different statistical
approaches, in silico tools suggestive of their involvement in FA bio-
synthesis, and the high expression levels shown in HH (Cts <30). We
then validated by qRT-PCR and individual TaqMan assays decreased
expression of all these miRNA candidates upon CC, and the opposing
pattern induced by Mtf for at least three of them: miR-30b, miR-
146b, and miR-422a (Fig. 2c). In partial agreement, validation of
miRNA hits in HepG2 confirmed significant downregulation of miR-
26a, miR-30b, miR-30c, miR-34a, and miR-122 in cells challenged
with either PA or CC, while reduced miR-29c, miR-146b, miR-222,
and miR-422a accounted only upon PA treatment, and miR-16 and
miR-139a were significantly decreased in HepG2 challenged with CC
(Fig. 2c). Of note, Mtf treatment in HepG2 led to enhanced expression
of miR-16 and miR-30b (Fig. 2c). Hence, treatments leading to
impaired fat deposition and metformin-induced lipogenesis inhibi-
tion in HH and HepG2 cells appear to have a significant impact on
miRNA regulation.

3.3. AMPK and DICER are required for the activity exercised by CC and
MTF

As miRNA profiles in hepatocytes were so widely affected by
treatments leading to significant changes in AMPK activity and lipid
deposition, the expression of genes involved in miRNA biosynthesis
was also investigated. Notably, decreased DROSHA and DICER in both
HH and HepG2 cells upon PA and CC was further highlighted by the
opposite upregulation exercised by Mtf in HH (Fig. 1c and Fig. 1d). As
activation of the energy sensor AMP-activated protein kinase (AMPK,
also known as PRKAA1) in hepatocytes drives FA oxidation and
decreased lipogenesis, protecting against fatty liver disease [17], we
aimed to investigate which mechanisms may underlie the observed
effects through specific AMPK disruption. Thus, we assessed miRNA
expression patterns and the metabolic commitment of cells subjected
to AMPK knockdown. In agreement with our previous results, partial
ablation of AMPK (�22.7%, p = 0.002 [ANOVA Post-Hoc LSD test])
resulted in increased lipid deposition (Fig. 3a) and enhanced expres-
sion of genes related to de novo lipogenesis (Fig. 3b). Given that
chemical disruption of AMPK resulted in impaired expression of the
miRNA-processing enzyme DICER, we sought to study whether this
key regulator was also involved in the hepatic accumulation of FA.
Thus, partial knockdown of DICER (�18.2%, p = 0.004 [ANOVA Post-
Hoc LSD test]) was also accomplished in HepG2 cells, depicting simi-
lar effects as the knockdown of AMPK, including significant FA over-
load (Fig. 3a), and enhanced expression of ACSL1, FASN, and CD36
(Fig. 3b). Accordingly, altered gene expression patterns were coupled
to an overall miRNA downregulation, with consistent decrease of
miR-26a, miR-29c, miR-30b, miR-34a, miR-146b, and miR-222 in
both cell models (Fig. 3c). Thus, impaired AMPK and DICER gene
expression and/or activity may play functional roles in decreased
miRNA biosynthesis and the metabolic disruption affecting hepatic
cells under conditions leading to increased FA deposition. To test this
hypothesis, we evaluated the impact of CC and Mtf in AMPK and
DICER knockdown hepatocytes. The results show that under impaired
AMPK gene expression neither treatments of CC nor Mtf were able to
modulate lipid deposition in HepG2 cells (Fig. 3d). The lack of
response to Mtf was apparent also at the gene expression level
(Fig. 3e) and along many miRNA candidates (Fig. 3f). Thus, the posi-
tive impact of metformin through the regulation of specific hepatic
miRNAs may depend to some extent on the expression of AMPK and,
to a lesser extent, the expression of DICER.

3.4. AMPK modulation impacts hepatic miRNA biosynthesis in vivo

To further confirm the contribution of AMPK activity to miRNA
regulation in liver we applied lentiviral particles harboring dominant
negative isoforms of AMPKa (AMPK-DN) in the tail vein of mice. Sig-
nificantly reduced levels of phospho-ACC were identified following
the injection of lentiviral particles harbouring AMPK-DN, when com-
pared to control (Fig. 4a). In keeping with the inhibition of liver
AMPK and reduced phospho-ACC, increased hepatic lipid (Fig. 4b)
and triglyceride content (Fig. 4c) were also detected. As expected, we
found a marked increase in lipogenic genes such as Acsl1 and Fasn,
and decreased Glut2mRNA coupled to the significant downregulation
of genes relevant for miRNA biogenesis, namely Drosha and Ago2
(Fig. 4d). Notably, impaired Ampk expression also resulted in a signifi-
cant deregulation of overall miRNA levels in vivo (Fig. 4e). Hence, cur-
rent results in vivo strongly support our findings in vitro, linking
impaired AMPK activity to hepatic miRNA biosynthesis.

3.5. Overexpression of miRNA candidates improves lipid metabolism

To assess whether impaired hepatic miRNA expression is at the
forefront of changes in gene expression and the deposition of FA in
hepatocytes, HepG2 and Huh7 cells were transfected with mimic
miRNA or a non-targeting (NT) miRNA control. We found that, among
our twelve miRNA candidates, only treatments with mimic miR-16,
miR-30b, and miR-30c led to a significant reduction in the content
and size of lipid droplets in hepatocytes (Fig. 5a). Accordingly, analy-
sis performed by thin layer silica-based chromatography showed
that the ectopic expression of these miRNA candidates drove reduced
triglycerides, diacylglycerols, and cholesterol ester storage in trans-
fected cells (Fig. 5b), while colorimetric assessment of triglycerides
and cholesterols in the media verified a significant downregulation
when hepatocytes were treated with mimic miR-30b or miR-30c (but
not with miR-16) (Fig. 5c). Additionally, treatments with mimic miR-
30b and miR-30c led to decreased apolipoprotein B (apoB) levels
(Fig. 5d). Notably, quantitative analysis of the mitochondrial function
(oxygen consumption rate, OCR) in HepG2 showed that cells trans-
fected with mimic miR-30b and miR-30c accomplished 26% and 35%
increase, respectively, while no significant change was found in
human hepatocytes transfected with mimic miR-16 (Fig. 5e). Alto-
gether, current results point out decreased lipid deposition and sig-
nificant recovery of mitochondrial activity in human hepatocytes
after transient transfection with mimic miR-30b and miR-30c.

3.6. Hepatic miRNA candidates regulate proteins that control FA storage

In silico analysis pointed at a variety of predicted target genes
related to glucose and FA metabolism (Fig. 5f), many of which were
experimentally tested. HepG2 cells transfected with mimic miR-16,
miR-30b or miR-30c depicted decreased expression of genes coding
for factors involved in the synthesis of triacylglycerols (Fig. 5g). Of
note, expression of two genes directly related to the development of
NAFLD, angiopoietin like 3 (ANGPTL3), a liver-secreted protein
recently identified as a marker of NAFLD in mice and humans [41],
and the membrane-bound O-acyltransferase 7 (MBOAT7), the disrup-
tion of which is related to liver disease [42], showed significant down
and upregulation, respectively (Fig. 5g). In line with changes affecting
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hsa-let-7b -27.7* 22.3 -7.5
hsa-miR-100 19.1 -68.0** 40.8
hsa-miR-103 25.0 -4.1 90.1*
hsa-miR-106a 21.5 -54.2** 63.3
hsa-miR-10a 54.8 -70.2** 185.9*
hsa-miR-122 -26.8 1.3 32.4*
hsa-miR-1225-3P 118.7* -18.4 -42.4
hsa-miR-1227 -35.3 -16.1 -51.9*
hsa-miR-125a-5p 19.1 3.1 63.9**
hsa-miR-125b 8.8 -38.1* 72.2*
hsa-miR-126 8.3 -32.5* 89.3**
hsa-miR-1274A 148.4* 35.0 -2.5
hsa-miR-1274B 116.5* 76.0** 8.8
hsa-miR-130a 30.9* -28.8 16.4
hsa-miR-130b -43.1 -55.4** 29.8
hsa-miR-132 3.6 2.9 45.7*
hsa-miR-134 67.4 -15.9 57.3*
hsa-miR-139-5p -4.0 -11.4 57.0*
hsa-miR-146a 110.8 -57.9** 177.8*
hsa-miR-146b 5.6 -54.2** 121.5
hsa-miR-149# 124.9 56.3* 117.3
hsa-miR-151-3p 14.0 -63.3** 33.6
hsa-miR-151-5P 7.0 -22.2 90.7**
hsa-miR-152 -50.0* 66.0 207.3
hsa-miR-155 -91.9 -38.2 67.3*
hsa-miR-16 28.5 -71.8** 86.8
hsa-miR-17 12.1 -57.6** 62.5
hsa-miR-191 13.0 -29.9 60.2*
hsa-miR-193b -8.3 10.5 28.4**
hsa-miR-195 -36.8 -59.9 224.7*
hsa-miR-199a-3p 13.9 -65.6** 64.1
hsa-miR-200b 5.3 -55.0* 37.7
hsa-miR-20a 9.6 -59.0** 35.7
hsa-miR-20b -10.4 -40.9 127.9**
hsa-miR-21 8.4 -57.0** 17.6
hsa-miR-221 0.0 -43.1** 70.1
hsa-miR-222 21.0 -28.3** 44.7
hsa-miR-24 22.2 -31.2** 66.6
hsa-miR-26a 2.8 -50.9** 125.9*
hsa-miR-27a 49.5* -19.1 71.4**
hsa-miR-28 7.3 -33.9 54.4*
hsa-miR-28-3p 1.2 11.4 58.2*
hsa-miR-29a 18.0 -35.1* 47.3
hsa-miR-29c -21.3 -35.4* 30.0*
hsa-miR-30b 16.8 -40.6** 89.3
hsa-miR-30c 19.2 -31.7 90.4*
hsa-miR-320 -1.7 35.5* 36.7
hsa-miR-323-3p 0.5 -17.6* 25.4
hsa-miR-342-3p 16.0 9.7 64.0*
hsa-miR-34a 3.9 -40.2 125.2*
hsa-miR-365 53.3 -54.2* 78.6
hsa-miR-370 152.1** 27.1 87.9
hsa-miR-375 210.6** 18.9 -5.1
hsa-miR-376c 2.4 -61.2** 9.6
hsa-miR-379 -19.6 -35.5 265.8*
hsa-miR-422a 78.4* -16.3 33.5
hsa-miR-454 -12.1 -63.9** 86.2
hsa-miR-455 145.8* -88.0** 123.6
hsa-miR-483-3p 2.1 32.0 20.4*
hsa-miR-505# 51.1 42.8 129.1*
hsa-miR-532 77.4 -48.6 180.0*
hsa-miR-543 81.4* -8.5 26.9
hsa-miR-574-3p 0.9 -18.4* 61.2*
hsa-miR-623 181.3 -65.1* -41.7
hsa-miR-629 -0.9 79.5** -23.3
hsa-miR-655 -16.6 -79.6** 45.1
hsa-miR-659 46.1* -10.3 -27.4
hsa-miR-661 83.8 109.8 -40.4*
hsa-miR-720 103.1** 63.4** 11.7
hsa-miR-744 13.3 -22.8 -22.0*
hsa-miR-758 164.6 -68.5 244.6*
hsa-miR-766 112.7 46.0* -56.8
hsa-miR-885-5p -9.9 2.9 58.8**
hsa-miR-886-3p 42.7 99.6** 0.9
hsa-miR-99a -1.9 -64.7** 105.9*
hsa-miR-99b -6.9 -17.5 57.7*

Fig. 2. Palmitate, compound C and metformin impact miRNA expression patterns in hepatocytes. a) Volcano plots represent changes in miRNA expression profiles assessed in pri-
mary human hepatocytes (HH) challenged with palmitate (PA), compound C (CC) andmetformin (Mtf). Red circles stand for statistically significant miRNAs (p<0.05). Venn diagrams
plot the number of decreased/ increased miRNA upon treatments with PA (blue), CC (red) and Mtf (green). The number of hepatic miRNAs with significant alteration is depicted in
the bar plots. b) Statistically significant variations detected in miRNA quantities for at least one of the treatments. Color-scale goes from red (increased) to green (decreased). c) Taq-
Man assessment and expression levels of preselected miRNA hits in both HH and HepG2. Results are expressed as mean § SEM (n � 3 replicates/ cell/ treatment, * p<0.05, **
p<0.01 [Student t-test]).
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Fig. 3. AMPK and DICER knockdown enhances lipid accumulation in hepatocytes. a) Oil Red O staining of AMPK and DICER knockdown (KD), and control HepG2 cells transfected with
lentiviral negative control vector containing scrambled sh-RNA (CTRL). Optical density (O.D.) was measured at 500 nm. b) Gene expression and c)miRNA hits assessed in AMPK (a.k.
a. PRKAA1) and DICER KD versus scrambled control cells. d) Impact of compound C (CC) and metformin (Mtf) on d) measures of Oil Red O staining, e) gene expression patterns, and
f)miRNA candidates in sh-RNA scrambled, AMPK KD and DICER KD hepatocytes. Results are expressed as mean § SEM (* p<0.05, ** p<0.01 [One-Way ANOVA corrected for multiple
comparisons by the Fisher’s least significant difference (LSD) test]).
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Fig. 4. Impact of hepatic AMPK knockdown in vivo. a) Hepatic levels of phospho(p)-ACC protein levels normalized by b-actin. b) Oil Red O stained area in liver samples, and c)milli-
grams of triglyceride (TG) content normalized by grams of tissue. d) Gene and e) miRNA expression in mice subjected to tail-injection of AMPK sh-RNA lentivirus (AMPK-DN, n = 9)
vs vehicle (VH, n = 7). Data is expressed as mean § SEM (* p<0.05, ** p<0.01 [Student t-test]).
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Fig. 5. Impact of miRNA candidates on lipid metabolism. a) Lipid droplet staining in Huh7 cells transfected with a non-targeting (NT) miRNA control and different mimic miRNA
candidates. Bar plots show average of lipid droplet area vs cell number. Bodipy 493/503 (green) and DAPI (blue) report lipid droplets and nuclei, respectively. b) Triglyceride, diacyl-
glycerol, and cholesterol esters (c.p.m. per ng protein) measured by thin-layer chromatography in HepG2 cells transfected with mimic miR-16, miR-30b, miR-30c, and NT miRNA
control. c) Triglycerides and cholesterol content (mmol/ L per ng of protein) in culture supernatants. d) Apolipoprotein B (apoB) measures (ng/mg cell protein). e) Oxygen consump-
tion rate (OCR) in NT controls (orange dots), and HepG2 cells transfected with mimic miR-16 (green squares), miR-30b (straight red triangles), and miR-30c (inverted blue triangles).
Seahorse quantification (pmol/ min/ mg protein) is shown in the plot. f) Heatmap showing predicted miRNA/ pathways clusters interaction, according to DIANA-miRPath v3.0 and
TarBase v7.0. g) Expression of genes involved in lipid metabolism upon treatments with mimic miRNA candidates. h) Huh7 cells transfected with a wild-type control (WT) ACSL1
30UTR dual Luc reporter and with mutated ACSL1 30UTR (MUT). Firefly Luc activity normalized for Renilla signal is shown in plots. i) Western blot results for ACSL1 in HepG2 cells
after transfection with NT miRNA control or mimic miRNA candidates (n = 4/ treatment). The ACSL1 signal was quantified and normalized against total protein. Complementary tar-
get region for ACSL1 (WT and MUT) and miRNA candidates is also shown. Data in plots is expressed as mean § SEM (* p<0.05, ** p<0.01 [One-Way ANOVA corrected by the Fisher’s
LSD test] for comparisons mimic vs NT miRNA control; # p<0.05, ## p<0.01 [Student t-test] for comparisons mutated ACSL1 30UTR vsWT cells).
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mitochondrial activity, we found an increase of carnitine palmitoyl-
transferase 1 a (CPT1a) mRNA in cells treated with mimic miR-30b
and miR-30c, while miR-16 did not impact its expression (Fig. 5g). On
the other hand, 30UTR binding sites for these miRNA candidates were
identified in the gene coding for acyl-CoA synthetase long chain fam-
ily member 1 (ACSL1). Thus, ACSL1 30UTR luciferase reporter con-
structs were transfected into Huh7 cells, showing a significant
reduction of the luciferase signal upon transfection with mimic
miRNA candidates (Fig. 5h). Notably, luciferase activity was not modi-
fied in cells transfected with a mutated ACSL1 30UTR reporter con-
struct (Fig. 5h), hence confirming specific binding between current
miRNA candidates and ACSL1 mRNA. Finally, ACSL1 protein analysis
endorsed the luciferase results, thus validating the causal relationship
suggested by the complementary sequences (Fig. 5i).

3.7. Mimic miR-30b and miR-30c modulate the sphingomyelin/
ceramide ratio

To obtain an overview of the effects accomplished by mimic
miRNA transfections on the lipid profile, we subjected lipids
extracted from human hepatocytes to quantitative direct flow injec-
tion electrospray ionization tandem mass spectrometry. Notably, PCA
and heatmap analysis (Fig. 6a) discriminated the impact of mimic
miR-16 frommiR-30b and miR-30c. Consistent reduction of phospha-
tidylethanolamine plasmalogens and ceramides, together with an
increase of sphingomyelins, were observed after the ectopic overex-
pression of miR-30b and miR-30c, the changes accomplished by miR-
16 being less prominent (Fig. 6b). These findings were strongly sup-
ported by consistent changes in the expression of key enzymes
related to the synthesis/degradation of sphingomyelins and ceram-
ides, namely elevated sphingomyelin synthase 1 and 2 (SGMS1 and
SGMS2), and decreased sphingomyelin phosphodiesterase 2 (SMPD2)
in hepatocytes transfected with mimic miR-30b or miR-30c (Fig. 6c).
Noteworthy, the expression of genes involved in the formation and
coating of lipid droplets (PLIN1, SLC25A1, and MGAT1) was also com-
promised by miR-30b and miR-30c, while miR-30b also reduced sei-
pin (BSCL2) mRNA (Fig. 6c), an endoplasmic reticulum-resident
protein of key importance in neutral lipid storage [43].

3.8. Recovery of miR-30b and miR-30c acts against FA accumulation in
hepatocytes

As consistent downregulation of hepatic miR-30b and miR-30c was
found in association with NAFLD and treatments that mimicked the
onset of this condition [28], pointing the loss of these unique miRNA
species at the forefront of the imbalance in hepatic lipid homeostasis,
we wanted to see if their recovery restored lipid deposition after treat-
ments triggering FA overload. As postulated, lipid droplet staining
revealed the ability of miR-30b and miR-30c to reduce triglyceride
storage in hepatocytes treated with CC, or those submitted to the par-
tial knockdown of AMPK and DICER (Fig. 7a). Indeed, replenishment of
miR-30b and miR-30c (i.e. fold changes of 100�200 versus NT miRNA
control) in hepatocytes with impaired AMPK or DICER activity, and also
treatments with either mimic miR-30b and miR-30c on HepG2 cells
challenged with CC, significantly reduced the lipid droplet area
(Fig. 7b). In concordance, transfection of mimic miR-30b and miR-30c
decreased the expression of ACSL1 and FASN (Fig. 7c), and elevated
GLUT2 mRNA in human hepatocytes with impaired AMPK expression,
suggestive of the partial restoration of glucose intake in this cell model.
Also of a great interest, it should be noted that replenishment of miR-
30b and miR-30c let to the increased expression of CPT1a (all models)
and Peroxisome proliferator-activated receptor alpha (PPARa) (only in
hepatocytes with defective DICER) (Fig. 7c), and thus may ameliorate
b-oxidation impairment in AMPK and DICER knockdown HepG2 cells,
as well as in hepatocytes treated with compounds that compromise
AMPK activity.
3.9. Expression of hepatic miR-30b and miR-30c is associated with
hepatosteatosis

With regard to the clinical relevance of the results explained above,
real time PCR performed in liver samples from obese women with or
without significant hepatosteatosis (i.e. fat content in liver >33%) con-
firmed significant downregulation in miR-16, miR-30b and miR-30c,
together with increased ACSL1 mRNA, and decreased DICER and AMPK
in subjects with NAFLD (Fig. 8a). Indeed, DICER and AMPK gene expres-
sion levels in such liver biopsies were positive and significantly associ-
ated with current miRNA candidates (Fig. 8b). Moreover, the
quantities of these three miRNAs were inversely correlated with body
mass index and that of miR-30b with fasting triglycerides (Fig. 8b), fur-
ther emphasizing their potential relevance as novel candidates to con-
trol fatty liver through the restauration of lipid homeostasis.

4. Discussion

Non-alcoholic fatty liver disease (NAFLD) is the main consequence
of long-lasting metabolic impairment affecting hepatic de novo lipo-
genesis and fatty acid (FA) uptake, together with the inability to oxi-
dize lipids that are gradually accumulated in hepatocytes [44].
Nowadays it is widely recognized that many of these procedures are
mainly regulated by AMPK function [45�47]. Current findings high-
light the apparent contribution of AMPK also to hepatic miRNA bio-
synthesis by means of its pharmacological modification and genetic
blockade, accomplished both in vitro and in vivo. Indeed, as metfor-
min [48] and compound C [49] have been postulated to trigger off-
target effects, due to their ability to impact a broad variety of kinases
that appear to be mediated by attenuation of biosynthetic and oxida-
tive fluxes, lentiviral particles mediating specific AMPKa1/2 knock-
down were employed. This confirmed, among others, miRNA
downregulation as a result of diminished AMPK performance and
impaired lipid homeostasis in human hepatocytes.

We next postulated that AMPK may regulate FA metabolism
through miRNA availability. Accordingly, the interplay between
AMPK and hepatic miRNA profiles leading to changes in FA metabo-
lism was sustained by i) reduced AMPK activity/ expression coupled
to decreased miRNA abundance and expression of genes related to
miRNA biosynthesis, namely DICER and DROSHA under conditions
mimicking the onset of NAFLD, ii) consistent decrease of miRNA can-
didates coinciding with increased FA accumulation, and iii) the
ectopic replenishment of hepatic miR-30b and miR-30c, rescuing FA
overload and modifying lipid profiles in human hepatocytes. In
agreement, partial knockdown of DICER demonstrated that its down-
regulation is intrinsically coupled to significant changes in miRNA
profiles and increased FA overload. This piece of data matches with
previous studies reporting the interplay between DICER and miRNA
profiles, controlling the epithelial-mesenchymal transition during
oncogenic events [50], and increased DICER after treatments that
modulate AMPK activity in both mice and humans [51,52]. Addition-
ally, previous research performed in a dietary-induced NASH mouse
model reported a significant decrease of hepatic Dicer [53]. Strikingly,
both AMPK and DICER knockdown resulted in increased FA deposition
in hepatocytes, which was partially counteracted by rescue of the
diminished expression of two of the miRNA species most consistently
affected, the miR-30b and miR-30c.

Variations in specific hepatic miRNA have been previously associ-
ated with NAFLD and lipid homeostasis [54�58]. Consistent results
were reported with regard to miR-30c, which showed decreased
expression in the liver of a leptin receptor-deficient mouse model
[59], and in plasma from subjects with NAFLD [60]. miR-30c has
been linked to lipid metabolism, disclosing its ability to dampen
lipid biosynthesis and lipoprotein secretion, being postulated as a
potential target against hyperlipidemia and related diseases [61,62].
Noteworthy, in silico prediction categorized genes related to de novo
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34:2 * **
35:2 *
36:2 **
36:5 * *
37:2 *
37:8 * * *
38:3 ** * *
38:5 *
38:8 * * *
39:6 * * *

TG

41:4 *
44:0 * **
44:1 *
46:1 **
48:0 ** *
48:1 **
48:2 * **
48:3 * *
48:4 *
49:1 *
49:2 *
50:1 * **
50:2 * **
50:3 ** *
50:4 ** *
51:2 **
51:3 ** **
52:2 ** **
52:3 **
52:5 ** ** *
53:2 **
53:3 ** *
53:4 ** ** *
54:2 ** **
54:3 **
54:4 ** *
54:5 ** *
55:3 **
55:4 ** ** **
56:2 *
56:3 ** *
56:4 **
56:5 **
56:6 ** **
58:5 *
58:7 *
60:2 * *

Abbrev. Lipid Class Lipid Category Method miR-16 miR-30b miR-30c
LPE Lysophosphatidylethanolamine Glycerophospholipids QQQ 37.6 34.7 34.1
PE Phosphatidylethanolamine Glycerophospholipids QQQ 7* 3.9 -0.3
PS Phosphatidylserine Glycerophospholipids QQQ 7.5* 2.6 -1.1
PG Phosphatidylglycerol Glycerophospholipids QQQ 26.8 19.4 11.4
PI Phosphatidylinositol Glycerophospholipids QQQ 7.1* 4.1 0.2
PE P based plasmalogens Glycerophospholipids QQQ -33.2** -51.6** -55.4**
LPC Lysophosphatidylcholine Glycerophospholipids QQQ 23.6* -1.6 -7.6
PC Phosphatidylcholine Glycerophospholipids FTMS 12.5 4.7 0.7
PC O Phosphatidylcholine-ether Glycerophospholipids FTMS -4.8 -19.7 -17
SM Sphingomyelin Sphingolipids FTMS 15.1** 15.1* 10.4*
Cer Ceramide Sphingolipids QQQ -1.7 -7 -11.6*
HexCer Hexosylceramide Sphingolipids QQQ -24.3** -25.6** -30.1**
CE Cholesteryl Ester Sterol Lipids FTMS 1.5 6.9 2.2
DG Diacylglycerol Glycerolipids FTMS -6 -7.8 -9.4
TG Triacylglycerol Glycerolipids FTMS 10.8** 0.8 -9**
FC Free Cholesterol Sterol Lipids FTMS -1.4 -3.6 -6.3

c.

b.

* p-val<0.05, ** p-val<0.01

* p-val<0.05, ** p-val<0.01

a.

Fig. 6. Impact of mimic miR-16, miR-30b and miR-30c on lipid species. a) Principal component analysis (PCA) of lipid classes and families affected by treatments of a non-targeting
(NT) miRNA control and mimic miRNA candidates in HepG2 cells. The intensity of red color-scale indicates relative presence of each lipid. b) Lipid species grouped in families signif-
icantly affected by mimic miR-16, miR-30b, and/or miR-30c. c) Expression of genes related to the synthesis and degradation of phosphatidylethanolamine plasmalogens (PEP),
sphingomyelins and ceramides, and those associated with the formation of lipid droplets (LD). Data is expressed as mean § SEM (n = 4 replicates/ treatment, * p<0.05, ** p<0.01
[One-Way ANOVA corrected by the Fisher’s LSD test]).
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Fig. 7. Ectopic recovery of miR-30b and miR-30c protects against steatosis. a) Lipid droplet staining in HepG2 cells transfected with non-targeting (NT) control miRNA, miR-30b and
miR-30c. Bodipy 493/503 (green) and DAPI (blue) report lipid droplets and nuclei, respectively. b) Bar plots represent relative lipid droplet area per cell area, the value for NT cells
set at 100 (n = 3 replicates/ model/ treatment). c) Expression of genes related to FA biosynthesis, glucose intake, and b-oxidation after mimic transfection in treatments leading to
increased FA deposition (i.e. AMPK and DICER knockdown (KD), and cells challenged with CC; n = 4 replicates/ model/ treatment). Data is expressed as mean § SEM (* p<0.05,
** p<0.01 [One-Way ANOVA corrected by the Fisher’s LSD test]).
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Fig. 8. Gene and hepatic miRNA expression in subjects with different degrees of steatosis. a) Expression ofmiR-16, miR-30b, miR-30c, ACSL1, DICER and AMPK (a.k.a. PRKAA1) in liver
samples of obese women with different degrees of hepatosteatosis. b) Spearmans’ correlations between miRNA and gene expression levels, body mass index (BMI), and fasting tri-
glycerides (TGs) (* p<0.05, ** p<0.01, ns not significant). Data in bar plots is expressed as mean § SD (* p<0.05, ** p<0.01 [One-Way ANOVA corrected by the Fisher’s LSD test]).
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lipogenesis and FA uptake as plausible targets for the differentially
expressed miRNA candidates (Fig. 5f). The overall outcome of their
downregulation under conditions mimicking steatosis (i.e. those
accomplished through defective AMPK function, and by pathophysi-
ological concentrations of saturated FA in the media, also character-
ized by decreased AMPK activity, Fig. 1) would be translated into
decreased expression of miRNA candidates and the disability to
actively repress specific target genes. As a consequence, this may
result in impaired expression patterns, anomalous lipid metabolism,
and the acquisition of NAFLD traits.

Specifically, miR-16, miR-30b and miR-30c were consistently
involved in lipid homeostasis, as demonstrated by studies assess-
ing organelle structure, gene expression, mitochondrial function,
and mass spectrometric analysis of the hepatocyte lipidome.
Thereby, replenishment of these miRNA candidates led to i)
decreased lipid droplet accumulation, ii) impaired expression of
genes related to the synthesis of triglycerides, and iii), in the case
of mimic miR-30b and miR-30c, enhanced mitochondrial function
coupled with increased CPT1a expression and modulation of genes
related to the lipidome. Accordingly, ACSL1 was validated as a
direct target, which is known to dynamically drive FA metabolism
in hepatocytes [63]. Indeed, previous research suggested that
ACSL1 channels radiolabeled oleate towards diacylglycerol, phos-
phatidyl-ethanolamine, phosphatidylinositol, and phosphatidyl-
choline, diminishing cholesterol esterification [64,65]. On the
contrary, ACSL1 deficiency led to reduced FA biosynthesis and
enabled b-oxidation [66]. Our results point out the higher expres-
sion of hepatic ACSL1 in NAFLD patients and under conditions
mimicking enhanced FA deposition and decreased miRNA expres-
sion in hepatocytes, while the control exercised by miR-30b and
miR-30c was coupled to increased mitochondrial function and
decreased de novo lipogenesis.

Finally, lipidome-wide quantitative assessment shortlisted key
differences between the activity exercised by mimic miR-16, miR-
30b, and miR-30c, and a reduction of ceramides coinciding with an
elevation of sphingomyelins, accomplished by miR-30b and miR-30c
but not by miR-16. It should be noted that an increase in hepatic
ceramides is associated with steatosis and insulin resistance [67], and
that ACSL1 can induce excess synthesis of total acyl derived long
chain ceramides [68], thus reinforcing the causal implications of our
current results. On the other hand, sphingomyelins have been
reported to attenuate hepatic steatosis in high-fat-diet-induced
obese mice, proving beneficial effects [69]. Hence, the analysis of the
lipidome in hepatocytes challenged with mimic miRNA candidates
reinforced the potential therapeutic utility of the ectopic recovery of
miR-30b and miR-30c in the fatty liver arena, restoring lipid homeo-
stasis in human hepatocytes. Altogether, our data unravel the activity
of miR-30b and miR-30c in tackling inadequate FA accumulation,
offering a potential avenue for the treatment of NAFLD.
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