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Abstract

Background: Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful
ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not
properly studied.

Methodology/Principal Findings: Here, we studied the photosensitivity of the human brain against three types of
chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult
controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical
complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed
measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-
frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed
significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant
classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/
disorder in MEG signals.

Conclusions/Significance: Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy
human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an
epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour
combination was found to be more threatening than other combinations.
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Introduction

Photosensitivity has been a topic of interest in medical

field during last six decades [1,2,3,4,5,6,7,8]. Studies show that

visual flicker stimulus induces bilateral rhythmic activity in brain

which is harmonically related to the flicker frequency itself [7] This

phenomenon known as photic driving manifests itself through

photomyogenic (clonic spasm of muscles) and photoparoxysmal

(spike-wave complexes in brain activities) responses in humans

while being stimulated by flickering visual stimulus [2,9]. While

the former is found in elderly populations, the latter is found

predominantly in children and in adolescents [4,7]. Flicker-evoked

paroxysmal epileptic discharges, characterized by spikes, poly-

spikes, and spike-wave complexes in Electroencephalography

(EEG) recording, indicate Photosensitive Epilepsy (PSE)

[4,6,10,11,12].

The issue of PSE has recently shot to public domain limelight in

December 1997, when a television program ‘‘Pokemon’’ triggered

concurrent appearance of convulsive response in about 700

individuals, causing a nation wide panic, in Japan [5,13]. The

acute symptoms included convulsive fits and loss of consciousness

in children and young individuals, who were exposed to flickering

stimulus during the televised program. The range of stimuli which

can potentially trigger PSE varies from natural sunlight flickers

between trees to artificial illumination of discotheques [14].

Television remains most trite stimulus in this case [1]. Some cases

were also reported with pattern flickering such as that of black and

white stripes and bars on the stairs of escalators [4]. However,

amongst all possible parameters of a visual stimuli, chromaticity is

less studied in the context of PSE.

Studies of electrophysiological signals noninvasively obtained

from brains with neurological disorders may give an insight into
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the temporal and spatial effects of the disorders [15,16,17,

18,19,20,21,22]. EEG stands out as the most widely studied

physiological signal for investigating photosensitive epilepsy

[17,23,24]. However, recently magnetoencephalography (MEG)

has also gained importance as a noninvasive novel technique for

investigating photosensitivity [25,26]. Both EEG and MEG are

generated by synchronous oscillation of pyramidal neurons, but

MEG may have some innate advantages over EEG [27,28,29] (but

also see [30]). For example, unlike EEG, MEG is free of reference

problem, i.e. it does not require any reference in the measurement,

and is less prone to the heterogeneities of the skull which often

distorts the EEG signals recorded from the scalp. The research on

photosensitivity using MEG signals has been focused predomi-

nantly on the features based on nonlinear dynamical system theory

[31]. This paper presents a feature based analysis of photosensi-

tivity with MEG signals being dealt in discrete wavelet domain.

Classically, Fourier analysis decomposes a signal into sine/

cosine waves of various frequencies [32]. On the other hand,

wavelet analysis decomposes a signal into shifted and scaled

versions of the original (or mother) wavelet [33]. Therefore,

wavelet has an intrinsic attribute of analyzing signal at different

frequencies with different resolutions [34], making it a powerful

alternative to the Fourier method for the time-frequency analysis

of non-stationary signals like EEG [35,36,37,38,39,40,41,42].

Feature based analysis of wavelet decomposed signal requires

identification of representative measures of the signal. Wavelet

entropy is a recently proposed nonparametric measure to

characterize large scale brain responses [43]. Wavelet entropy

represents a measure of the degree of order-disorder associated

with a multi-frequency signal response, or in other terms, reflects a

degree of uncertainty of spectral power distribution of a signal in

different wavelet bands [44,45]. In this study, we applied a family

of wavelet entropies which are based on Shannon entropy

formulation as well as on different entropy-forms (i.e. Renyi

entropy, Tsallis entropy) [35] to the MEG signals obtained from

control/healthy participants and from patients, both unmedicated

and medicated with sodium valporate (an antiepileptic drug),

suffering from photosensitive epilepsy while they were being

visually stimulated by three types of chromatic flickering stimuli.

The prime objectives of this study were three-folds: (i) to

differentiate between controls and patients, however indicative or

suggestive, (ii) to study the spatio-temporal dynamics of brain

order/disorder when stimulated by flickering stimuli, and finally

(iii) to study the sensitivity against different color combinations.

Considering the epilepsy as a dynamical disease of brain system

[46,47], we predicted that the unmedicated patient would be

associated with lower degree of entropy as compared to controls.

We also predicted that medicated patient would be closer to the

controls than to the unmedicated patient. Finally, based on our

earlier results [48,49] we expected that Red/Blue flickering

stimulus would elicit the most robust changes in wavelet entropy.

Materials and Methods

All adult participants (and children’s parents when the

participants were children) gave their written informed consent.

Experimental protocols, set according to the Helsinki Declaration,

were approved by the Internal Review Board of the National

Children’s Hospital, Japan. A pediatric neurologist, who contin-

uously monitored MEG activity online, and the parents of the

children participating in the study observed the experiment. The

experiment was to be terminated if either the physicians or the

parents suspected the child’s safety was at risk, or if the child felt ill,

but no such incident occurred.

Participants
The participants belonged to four categories: adult healthy

controls, an unmedicated patient, age-matched controls, and a

medicated patient. There were nine healthy/control participants

(seven males) with an age range of 22–27 years. It was ensured that

none of the control participants had any kind of personal or family

history of PSE. The patient was a 12 year old female

photosensitive patient who was without any medication. Two

additional female participants age-matched with the patient were

considered as age-matched controls. Finally, we also studied a

medicated female patient, who was earlier diagnosed with

photosensitive epilepsy but under medication of sodium valporate,

an antiepileptic drug.

Stimuli
Visual stimuli, which may trigger PSE, are characterized by

myriads of visual parameters like temporal frequency, spatial

frequency, stimulus contrast, patterns, and chromaticity. This

makes the choice of visual stimuli a critical decision depending on

the aspect of PSE on which one would like to focus. Of all visual

parameters, chromaticity is less studied, yet its importance in the

age of multimedia with numerous colour displays can hardly be

overstated. Therefore, in our study, we used three types of

flickering stimuli: Red/Blue, Red/Green, and Blue/Green. In our

study, visual stimuli were generated by using two video projectors.

Each of these projectors produced a single color stimulus, and a

LCD shutter was placed between the optical device and each

projector. The chromatic flicker was produced by alternate

opening and closing of the two LCD shutters, and the temporal

frequency of the stimulus was 10 Hz. This chromatic flicker was

then projected on to a viewing screen, placed 30 cm from the

participants. Isoluminant stimuli for three color combinations

Red/Blue, Red/Green, and Blue/Green, were generated with an

objective luminosity of 1.6 cd/m2. The color contrast chosen

emulate the parameters in typical color television monitors. The

CIE chromaticity coordinates were (0.496, 0.396) for red, (0.153,

0.122) for blue, and (0.308, 0.522) for green.

Data acquisition and preprocessing
Visually evoked neuromagnetic responses of the brain were

recorded by a whole scalp MEG system. The 122 channel and 61

sensor instrument (Neuromag-122, Neuromag Ltd, Finland) had

two orthogonally oriented planar gradiometers at each of 61

sensor location, coupled to dc-SQUID sensors. Fig. 1 shows the

spatial locations of the sensors. For extended comprehensibility,

Fig. 1 also shows the division of sensors in seven cortical regions as

done earlier [31]. This division contains 13 sensors in the frontal

region, 14 in the vertex and occipital, 12 in the left and right

temporal, and 11 in the left and right parietal region. Due to

overlap between regions, a sensor may belong to more than one

region.

During each trial the participants were exposed to the flickering

stimulus for 3 s (2 s for patients) with a gap of 3 s between

consecutive trials. The prestimulus baseline was 200 ms prior to

the application of visual stimulus. The MEG signals were band-

pass filtered between 0.03 and 100 Hz and sampled at a rate of

500 Hz. Eye blink and eye movements were monitored by

recording EOG signals, and trials containing eye-artefacts were

eliminated from further processing. For each chromatic flickering

and at each sensor, more than 80 artefact free trials were obtained

and subsequently averaged to generate the event-related-field,

which was further band-pass filtered between 0.5 Hz and 40 Hz to

produce the final data set.

MEG in Chromatic-Flickering
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Discrete Wavelet Transform (DWT)
Since the adopted family of wavelet entropy crucially depends

on the concept of discrete wavelet transform (DWT), we described

here some key details of DWT. Unlike the Fourier transform

which is precisely localized in frequency domain but infinitely

extended in time domain, wavelet transform offers a good

localization in both time and frequency domains. Therefore, the

wavelet transform not only captures the neuronal transients but

also provides information about the temporal evolution of the

constituent frequency components.

Any finite energy time domain signal can be represented as

summation of a family of ‘baby wavelets’ ya,b tð Þ, which are scaled

(by stretching or shrinking) and translated (moving to different

time positions) versions of a mother wavelet y tð Þ which are

transformed to locally fit in the original signal. The family of baby

wavelets can be derived from mother wavelet by

ya,b tð Þ~ aj j{1=2y
t{b

a

� �
ð1Þ

where a,b [ <,a=0 are scale and translation parameters,

respectively, and t is time.

In DWT, the values of a and b are restricted to discrete multiple

of two, given as aj~2{j and bj,k~2{jk, where j,k [ Z (Z being

the set of integers) represent levels of resolution and sampled time,

respectively. Therefore, the wavelet family can be given as

yj,k tð Þ~2j=2y 2j t{k
� �

j,k [ Z ð2Þ

Discrete wavelet coefficients Cj(k) are defined as the correlations

of a given signal S(t) with wavelet function yj,k tð Þ. The biggest

attribute of DWT is its ability to analyze a signal using multi-

resolution schemes in L2 <ð Þ (set of all energy signals). Assuming a

hypothetical case of splitting a signal to infinite resolution levels,

we can define a signal in terms of its discrete wavelet coefficients,

as follows

S tð Þ~
X{1

j~{N

X
k

Cj kð Þyj,k tð Þ~
X{1

j~{N

rj tð Þ ð3Þ

where,

rj tð Þ~
X

k

Cj kð Þyj,k tð Þ ð4Þ

is the detailed signal at scale j, and provides information localized in

the frequency band 2j{1vsƒ vj jƒ2jvs where vs is the sampling

frequency.

The choice of mother wavelet plays a critical role in extraction

of the desired features from the signal. A rule of thumb is to select

the method wavelet that is similar to the waveform of the original

signal. In this study, owing to the spiky shape of the MEG, coiflet-4

has been chosen as the mother wavelet.

Since the neural data are often nonstationary [50,51], we

divided the signal for each trial (3 s for controls and 2 s for patient)

into smaller (400 ms) but relatively stationary windows, and two

successive windows had a overlap of 200 ms. All successive

computations were done with this windowing scheme.

Shannon based wavelet Entropy (SE)
Wavelet entropy, a measure of the order/disorder of signal,

quantifies the probability of occurrence of particular oscillatory

component. A signal having higher probability of occurrence has

lower disorder and hence lower entropy. SE was calculated as

follows.

First, the total energy content of the i-th window resolved into j

levels was calculated directly from its discrete wavelet coefficients

as

Ei,tot~
X
jv0

X
k

Ci,j kð Þ
�� ��2 ð5Þ

The total energy at a particular level j in the given i-th window

can be expressed as

Ei,j~
X

k

Ci,j kð Þ
�� ��2 ð6Þ

The probability distribution of the energies present in each

resolution level j is given by

pi,j~
Ei,j

Ei,tot

ð7Þ

The earlier term (7) is known as relative wavelet energy and its

distribution is considered as a time-scale empirical probability

density function suitable for characterization of signals on time-

scale (or equivalently on time-frequency) domains [44]. For

possible comparison between different probability distributions,

Shannon entropy (SE) is calculated,

SEi~{
X
jv0

pi,j log2 pi,j ð8Þ

The above term is defined as Shannon wavelet entropy and

provides a probabilistic measure of order/disorder in the signal. A

signal having very high energy content in a particular resolution

level j underscores the fact that it is predominantly composed of

Figure 1. Sensor locations for full scalp MEG. Scalp was divided
into seven regions, frontal, left temporal, right temporal, left parietal,
right parietal, vertex, and occipital, respectively.
doi:10.1371/journal.pone.0007173.g001

MEG in Chromatic-Flickering
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particular frequency band. The concentration of energy in a

particular frequency band indicates lack of randomness in terms of

frequency of that particular signal. Hence the entropy value will be

lower for such signals. On the other hand, uniform distributions of

energy across levels suggests a presence of randomness in the

signal, thus leading to higher entropy values. Fig. 2 illustrates the

scheme to compute the wavelet entropy.

Other Entropy Measures
Though Shannon entropy based quantifier has been quite

successful, we also applied other related measures as follows. The

first one computed is known as Rényi entropy (RE), which can be

conceptualized as superclass of Shannon entropy [37], and is given by

TEi qð Þ~ 1

q{1

X
j

pi,j{ pi,j

� �q� �
ð9Þ

where pi,j is the probability function as described earlier and q [ Z is

known as entropic index. The parameter q generalizes the

information measure. As q approaches 1, RE converges to SE. In

the present study, we used q = 2, 3 to calculate 2nd and 3rd order

Renyi entropy, which were termed as RE2 and RE3, respectively.

Both RE and SE represent an extensive property of a system,

where the extensive nature is manifested by the additive attribute

of the property.

Next we computed nonextensive entropies like Tsallis wavelet

entropy (TE) [52] and generalized escort-Tsallis wavelet entropy

(GE) [53]. Being non-extensive in nature these entropies are

governed by pseudo-additive theorems instead of by additive ones.

The major difference between extensive and non-extensive

entropy is that the former is suitable for signals with short-range

interactions whereas the latter is suitable for signals with long-

range interactions. TE is a non-logarithmic parameterized entropy

defined as [52]

TEi qð Þ~ 1

q{1

X
j

pi,j{ pi,j

� �q� �
ð9Þ

where q [ Z is a degree of non-extensivity. Low values of q are

appropriate for signals having long range interactions, whereas

higher values of q are used with signals plagued with spikes and

sudden abrupt changes. In this study we have used q = 2 for TE.

GE is defined as [53]

GEq ið Þ~ 1

q{1
1{

X
j

pi,j

� �1=q

" #{q( )
ð10Þ

where q is the entropy parameter similar to that used for TE. GE

shares its non-extensive properties with TE but differs in its

treatment of probability distributions. The probability distribution

is modified to generate an escort distribution of order q. The q

value for this study was taken to be two.

These various kinds of wavelet entropies constitute a wide range

of features that we used in this study in order to obtain a

comprehensive insight into the neuronal oscillatory dynamics of

PSE.

Results and Discussion

The MEG signals of this study came from nine healthy adult

human participants as controls, one unmedicated patient diag-

nosed with photosensitive epilepsy, one medicated patient, and

two more controls age-matched with the patient. For a

comprehensive insight into the underlying brain mechanism, we

divided the result section into individual subsections as follows:

temporal analysis, spatial analysis, entropic variations, spatio-

temporal analysis, chromatic sensitivity, and effect of medication.

Figure 2. Systematic illustration of wavelet entropy method. MEG signal was first transformed to mutiresolution time-frequency domain by
wavelet transformation. Then the values were windowed and corresponding energy was computed in all resolution. Finally wavelet entropy was
computed.
doi:10.1371/journal.pone.0007173.g002
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Temporal analysis
The temporal evolutions of five different types of wavelet

entropies, averaged across all sensors, for Red/Blue flickering

stimulus for controls, unmedicated and medicated patients are

shown in Fig. 3. Following noteworthy features could be noted

which were invariant across different types of entropies. The

entropy value at the first window, which ranges from 2200 ms to

200 ms (0 ms representing the stimulus onset), was similar across

controls and the patients. However, the differences between

controls and the unmedicated patient got obvious from the second

window which ranges from 0–400 ms. Second window onwards

the entropy value for all categories dropped from their individual

baselines. This reduction of entropy values strengthens the

hypothesis regarding the transformation of brain from a highly

disordered nonlinear system to a more ordered one after the onset

of stimulus processing. However, this fall was rather small in

controls and in medicated patient, suggesting their resilience to the

flickering stimulus. But this effect was much more pronounced in

the unmedicated patient suffering from PSE, indicating her

vulnerability to get entrained by the flickering stimulus which

could eventually lead to a cortical hyper-excitation. At later time

period, we found that the unmedicated patient’s profile was totally

separated from controls and the medicated patient: in subsequent

time-windows (400–2000 ms) entropy values of unmedicated

patient were significantly lower than those of others. Interestingly,

at the end of each trial controls and medicated patient almost

regained their baseline values but for the unmedicated patient it

remained at a much lower value. The temporal variation of the

feature expressed as mean of various individuals within the same

class also shows the error bar at each time window symbolizing the

range in which individual values may lie for a certain subject class.

In the case of Red/Blue flicker (Fig. 3) we have taken two trials

each for medicated and unmedicated patient, hence the error bar

shows the variation in these two trials. Though the above analysis

was based on Red/Blue flicker, similar differences between

controls and patients were obtained for Red/Green (Fig. 4) and

Figure 3. Temporal analysis. Temporal evolution of entropy values (mean6s.e.) for Red/Blue flicker. Results were first averaged over all the
sensors for each participant. Each point represents the center of each window which was 400 ms long. The onset of visual stimulus was indicated by
a vertical line. Note similar entropy values for all the participants at the first window ranging from 200 ms prestimulus to 200 ms post-stimulus.
However, entropy values reduced drastically in the patient at later stages of poststimulus processing.
doi:10.1371/journal.pone.0007173.g003

MEG in Chromatic-Flickering
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Blue/Green flickering stimulus (figure not shown). This simple

analysis based on wavelet entropy fulfils one of our fundamental

objectives of separating unmedicated patient from the rest in a

robust manner.

Spatial analysis
For spatial analysis, we divided the brain into seven cortical

regions (Fig. 1) and averaged the entropy values across sensors

within each region. In the next stage of data reduction, the mean

entropy across different time windows excluding the first time

window (post-stimulus part only) was computed and Fig. 5 shows

its variations in seven cortical regions during Red/Blue condition.

Further to show the variability of entropy values in subsequent

time windows, we calculate standard error across the entire post-

stimulus time windows. This is represented as error bar over mean

in Fig. 5. In each cortical region five clusters of bars represent five

different types of entropies. According to our hypothesis a high

mean value for controls and low mean value for unmedicated

patient were expected. Typically, the frontal region showed high

values of entropy in both controls and in medicated patient, while

the lowest entropy value was seen in patient, and the entropy value

for age matched controls was in between the controls and the

unmedicated patient. Similar trends were found in the temporal

regions, bilaterally, but not in the occipital region, where the

entropy values for medicated patient and unmedicated patient

were comparable. This latter effect is explained later. Altogether,

similar results were observed for Red/Green and Blue/Green

flickering stimuli.

In order to obtain further insight into the temporal dynamics of

individual cortical region, we used a statistical measure called the

Figure 4. Temporal analysis. Same as Fig. 3 but for Red/Green flickering.
doi:10.1371/journal.pone.0007173.g004

MEG in Chromatic-Flickering
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coefficient of variation defined as the ratio of standard error to

mean of the entropy values computed over successive time

windows. Our earlier temporal analysis (Fig. 3) showed a trend of

large deviation and low mean in unmedicated patient and small

deviation and high mean in controls. Fig. 6 shows the values of this

ratio for all five types of entropies and at seven different cortical

regions. As expected, the unmedicated patient produced the

highest ratio, and the adult controls the lowest, whereas the

medicated patient was somewhere between these two categories.

Further, the highest values were observed at the occipital region,

which might be crucially involved with photosensitivity since

occipital cortex is where the visual stimulus is predominantly

processed. Interestingly, the medicated patient exhibited a

behavior quite similar to control participants in other cortical

regions except the occipital. This might suggest that the medicated

patient was more vulnerable than controls in processing flickering

stimulus. This simple index may help in designing a bio-marker by

which one could differentiate a patient from a healthy participant

by setting a threshold value for this index. Any value higher than

this threshold would therefore potentially indicate the category

membership. However, further research with a larger pool of

control participants and of patients are needed to be tested

beforehand.

Entropy comparison
An interesting aspect would be to compare the performances of

different entropy measures. Although different entropies produced

similar results in terms of temporal and spatial profiles, subtle

variations also did exist. For example, the results based on GE of

2nd order produced less dramatic differences between controls and

unmedicated patient (Figs. 3, 5). Next in the increasing order of

contrast comes the classical SE for which its value was higher than

GE, but was lower than the rest. Moving along the same trend of

increasing contrast we found that TE and RE2 provided better

results as compared to SE and GE. But RE3 has emerged to be the

best in terms of performance. It has a characteristic high value in

unmedicated patient and offered very well formulated differences

between different participants, thus RE3 could be considered as a

powerful feature for participant classification.

Spatiotemporal analysis
Fig. 7 shows the topographical maps of RE3 values over

successive time windows for Red/Blue flickering stimulus. A

casual glance at the figure indicates interesting differences among

the categories. The first window showed high entropy values

widespread over multiple cortical regions across all participants

including both types of patients. This result is in line with our

earlier hypothesis, according to which, against a flickering sti-

mulus, a healthy brain would be associated with a high entropy

value representing a normal, non-deterministic, and possibly

non-linear dynamical state with higher degree of disorder; on the

other hand an epileptic brain would be associated with a much

lower entropy value, suggesting a higher degree of orderly

dynamics.

Figure 5. Spatial analysis. Entropy values (mean6s.e.) in seven broad cortical regions for Red/Blue flickering stimulus for adult controls, one
unmedicated patient, one medicated patient, and two further controls age-matched with patients. Then mean entropy value across time windows
excluding the first window was calculated within each category. Note lower entropy values for unmedicated patients and higher entropy values for
control participants across cortical regions.
doi:10.1371/journal.pone.0007173.g005

MEG in Chromatic-Flickering
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In adult controls, frontal and temporal regions, bilaterally,

showed consistently higher entropy values throughout the post-

stimulus period, and the occipital regions, as expected, showed

lower entropies. On the contrary, the unmedicated patient showed

a sharp reduction in entropy values at first in the occipital region,

which later spread throughout the brain, thereby transforming the

brain from a highly disordered state, in dynamical sense, to an

ordered one. The medicated patient showed the effect of the

stimulus only in the occipital region, as the rest of the regions

maintained their high entropy throughout the timeline. The

entropy values were even higher than that of control participants

elucidating the role of medication. Due to a possible inhibition

against spreading of low entropy regions to other parts of brain,

the medicated patient behaved more like adult controls, thereby

avoiding any cortical hyper-excitation. Age-matched controls

represented an intermediate state between an adult control and

a patient as the entropy values were intermediate to both the

categories in most regions. This implies that as compared to a

developing brain, a mature brain is associated with more disorder

in terms of neuronal dynamics, thereby allowing higher flexibilities

in switching between transient states. This flexibility is particularly

helpful in defending against photosensitive epilepsy where the

brain shows entrainment behaviour by a flickering stimulus.

Chromatic sensitivity
One of the primary objectives of our study was to investigate the

changes in neuromagnetic brain responses as a factor of different

chromatic combinations. Although colour is one of the most

common features in any visual stimuli, the effect of combination of

colours on PSE has rarely been studied. Earlier, Drew et al. [49]

show that pupil constriction was largest for Red/Blue flicker. Since

pupil constriction could be considered as a defensive mechanism

against PSE, Red/Blue combination is considered the most potent

stimulus, amongst other colour combinations, in eliciting PSE.

Therefore, we predicted that entropy values for Red/Blue stimulus

would be significantly different from two other stimuli. Fig. 8

shows the RE3 values for adult control participants and for all

three stimuli. The earliest difference between three stimuli was

found at temporal regions at the third time window (200–600 ms)

where Red/Blue stimulus produced the largest entropy (p,0.05,

post-hoc contrast followed by ANOVA). The effect, i.e. higher

entropy for Red/Blue than two other conditions, lasted robustly

till fifth time window (600–1000 ms) and also in other cortical

regions. Interestingly, Red/Blue stimulus elicited lowest entropy at

occipital region at the later stages of stimulus processing.

Effect of medication
The difference in brain responses between the unmedicated

patient and the medicated patient attracted a considerable attention

in our study, as shown earlier (Figs. 6,7). To begin with, the occipital

region of both showed a similar effect of the visual stimulus, leading

to low entropy values. This was also evident from the higher ratio

(standard error/mean) as shown in Fig. 6. Further, spatiotemporal

progression of wavelet entropy took two different routes by the two

participants. In the unmedicated patient, the low entropy zone of

the occipital region quickly spread to all other regions, ultimately

leading to a state of cortical hyper-excitation. However, in

medicated patient, the low entropy zone was spatially confined to

Figure 6. Coefficient of variation. Ratio of standard error to mean for all entropies in seven cortical regions for Red/Blue Flicker, Note higher
values of this ratio in patients and lower values in controls at different regions.
doi:10.1371/journal.pone.0007173.g006
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the occipital region only, thereby the further progression towards a

global excitation was inhibited. The high average value of entropy

for the medicated patient placed her closer to the control

participants in participant classification. We speculated that the

anti-epileptic drug (sodium valporate) taken by the medicated

patient artificially maintained the general disorderness of the brain,

thereby sustaining a very high value of entropy in various regions of

the cortex, which possibly helped in preventing the medicated

patient from yielding to the visual flickering stimulus.

In summary, the present study presented an application of a

recently proposed method of wavelet entropies to the MEG signals

for investigating photosensitive epilepsy. The study encompassed

various aspects of photosensitivity, the onset of cortical excitation,

and its evolution in time-space domain. The study also compared

the efficiency of various features based on wavelet entropies.

Among the various aspects studied in this paper, a few were based

on methodology, while others dealt with the disorder itself. We

proposed the use of Renyi Entropy of order 3 as a powerful feature

for the analysis of photosensitivity. We also derived a simple index

based on temporal variation of wavelet entropy to emphasize the

impact of photosensitive epilepsy. Although we robustly separated

the unmedicated patient from all other participants including a

medicated patient based on entropy values, a possible criticism

could be pointed towards the low number of patients. On this

aspect, two critical points need to be considered which limited the

number of participants: (i) difficulty in getting sufficient number of

photo-sensitive patients, (ii) imminent danger associated with the

experiment where photosensitive patients are exposed to visual

stimuli which could trigger epileptic attack. Therefore, despite the

low number of participants, we believed that the adopted

methodologies offer novel insight into the dynamics of PSE using

MEG data, but further research is needed before confirming the

usefulness of the wavelet entropy as a diagnostic marker of PSE.
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Figure 7. Spatiotemporal progression of wavelet entropy. Values of RE3 were plotted over successive time windows for participants
belonging to the four categories. Note similar entropy distributions across sensors at the very beginning across all participants but differences
became conspicuous at later stages.
doi:10.1371/journal.pone.0007173.g007
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