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Macro (Autophagy) is a catabolic process that relies on the cooperative function of
two organelles: the lysosome and the autophagosome. The recent discovery of a
transcriptional gene network that co-regulates the biogenesis and function of these
two organelles, and the identification of transcription factors, miRNAs and epigenetic
regulators of autophagy, demonstrated that this catabolic process is controlled by both
transcriptional and post-transcriptional mechanisms. In this review article, we discuss
the nuclear events that control autophagy, focusing particularly on the role of the
MiT/TFE transcription factor family. In addition, we will discuss evidence suggesting that
the transcriptional regulation of autophagy could be targeted for the treatment of human
genetic diseases, such as lysosomal storage disorders (LSDs) and neurodegeneration.
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INTRODUCTION

Autophagy is an evolutionary conserved catabolic process devoted to the degradation of
intracellular components. Three main types of autophagy have been described to date:
macroautophagy, microautophagy, and chaperon-mediated autophagy. Macroautophagy involves
the formation of a double-membrane vesicle, the autophagosome, which captures cytoplasmic
contents and then fuses with lysosomes to generate autophagolysosomes, structures in which cargo
substrates are degraded by lysosomal enzymes (Mizushima et al., 2008; He and Klionsky, 2009;
Hurley and Schulman, 2014). In microautophagy, cytoplasmic constituents are directly imported
into the lysosome and degraded (Ahlberg et al., 1982; Mijaljica et al., 2011; Sahu et al., 2011),
while chaperon-mediated autophagy is characterized by the translocation of cytosolic proteins
harboring the pentapeptide KFERQ sequence across the lysosomal membrane for degradation
(Kaushik and Cuervo, 2012). Thus, the three types of autophagy rely on functional lysosomes to
digest intracellular cargos.

Macroautophagy (herein referred to as autophagy) is constitutively active, albeit at low levels, in
most cells of our body as part of the constitutive turnover of cytosolic components (Mizushima
and Komatsu, 2011). This is generally referred as “basal autophagy.” In addition, different
cellular stimuli, in particular nutrient starvation, can potently stimulate autophagy to enhance
the degradation of cytosolic components to generate energy (Kaur and Debnath, 2015). Two
nutrient-responsive kinases, mTORC1 and AMPK, rapidly respond to nutrient fluctuations and
phosphorylate critical regulators of autophagosome biogenesis and maturation (e.g., fusion with
lysosomes) (Egan et al., 2011). In particular, in the presence of nutrients, mTORC1 phosphorylates
two fundamental autophagy initiation proteins, unc-51-like autophagy activating kinase (ULK)1
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and ATG13, inhibiting their pro-autophagic activity (Hosokawa
et al., 2009). Conversely, nutrient depletion inactivates mTORC1
and concomitantly activates AMPK, which phosphorylates
ULK1 and ATG13 on specific amino acid residues promoting
ULK1/ATG13 complex activity and autophagy initiation (Shang
et al., 2011). In addition, several other mechanisms of post-
translational regulation of autophagy in response to nutrient
fluctuations have been described and reviewed elsewhere [see for
example reviews (He and Klionsky, 2009; Kuma and Mizushima,
2010; Rabinowitz and White, 2010; Mizushima et al., 2011)].

The modulation of autophagy in the maintenance of
cellular homeostasis goes far beyond the response to nutrient
fluctuation, as cells exploit autophagy to eliminate damaged
organelles, misfolded proteins, and invading organisms
(Deretic et al., 2006; Mizushima et al., 2008). Deregulation
of these autophagy-dependent cytoprotective functions has
been associated to different pathologies, including immune
disorders, neurodegenerative diseases, cancer and aging (Deretic
et al., 2006; Hara et al., 2006; Komatsu et al., 2006; Harris and
Rubinsztein, 2011; Mizushima and Komatsu, 2011; White, 2015).

For a long time, autophagy was considered as a pathway
exclusively regulated by cytosolic processes. This concept was
supported by the observation that enucleated cells still form
autophagosomes (Morselli et al., 2011). However, increasing
amounts of evidence collected in the last decade clearly indicate
that nuclear transcriptional and epigenetic events play a major
role in autophagy regulation. This review aims to summarize
the “nuclear” control of autophagy, focusing in particular on
the co-regulation of autophagy and lysosome biogenesis by the
transcription factor EB (TFEB).

TRANSCRIPTIONAL REGULATION OF
AUTOPHAGY

The first observation that autophagy can be induced at the
transcriptional level was made in yeast in Kirisako et al.
(1999), who reported that nitrogen starvation induced the
upregulation of the essential autophagy gene Apg8p, the
homologous of mammalian LC3. In the last 10 years several
laboratories demonstrated that transcription factors that enhance
the expression of autophagy genes (even few of them) increase
autophagy and the degradation of unwanted substrates [see
below and (Lapierre et al., 2015; Füllgrabe et al., 2016)]. These
observations opened a new, unexpected, scenario indicating that
autophagy activity could in fact be modulated from the nucleus.

TFEB AND MiT FACTORS

Transcription factor EB is a member of the microphthalmia/
transcription factor E (MiT/TFE) family of transcription factors
(TFs) that also includes MITF, TFE3, and TFEC proteins
(Hemesath et al., 1994). They belong to the larger family of basic
helix-loop-helix leucine zipper (bHLH-Zip) transcription factors,
such as MYC, MAD, and MAX, and share a basic DNA-binding
domain, and an HLH plus a leucine zipper domain important

for dimerization (Beckmann et al., 1990; Sato et al., 1997;
Steingrimsson et al., 2002). The homo- or hetero- dimerization
is necessary to activate transcription. MiT/TFE members can
only form heterodimers among each other due to structural
constraints in their leucine zipper domain (Hemesath et al.,
1994; Pogenberg et al., 2012). Binding to DNA is mediated by
the recognition of a common DNA hexanucleotide sequence
(CACGTG) known as the E-box (Hemesath et al., 1994).
This sequence conforms to the canonical CANNTG motif,
recognized by other bHLH-Zip transcription factors, however,
specific nucleotide residues that flank this motif characterize
the coordinated lysosomal expression and regulation (CLEAR)
motif (GTCACGTGAC) that is preferentially recognized by
MiT/TFE members (Sardiello et al., 2009; Palmieri et al.,
2011; Martina et al., 2014). Bioinformatic analysis identified
one or more CLEAR motifs in the promoter region of many
lysosomal genes. Notably, these genes belong to different
functional lysosomal categories, (ion channels, hydrolases, and
transmembrane proteins, etc.) so that TFEB activation leads
to a global enhancement of lysosomal catabolic efficiency
(Sardiello et al., 2009).

In addition, TFEB also regulates the expression of genes
involved in different steps of the autophagy process, such as genes
important for autophagy initiation (BECN1, WIPI1, ATG9B,
and NRBF2) autophagosome membrane elongation (GABARAP,
MAP1LC3B, and ATG5), but also genes important for substrate
capture (SQSTM1) and for autophagosomes trafficking and
fusion with lysosomes (UVRAG, RAB7) (Palmieri et al., 2011;
Settembre et al., 2011). As a result, TFEB activation induces a
striking increase in autophagy flux. Similarly, TFE3 and MITF
were successively identified as regulators of autophagy and
lysosomal biogenesis (Martina et al., 2014; Ploper et al., 2015).

Transcription factor EB activity is largely controlled by
its subcellular localization, which is mainly regulated by
phosphorylation (Puertollano et al., 2018). Phosphorylated
TFEB is sequestered into the cytosol, hence the transcriptional
induction of its target genes is inhibited. Conversely, upon
nutrient starvation, TFEB is dephosphorylated and rapidly
translocates into the nucleus where it binds to the promoter of
target genes (Settembre et al., 2011). To date, different kinases
that phosphorylate TFEB have been identified. mTOR, as part
of the protein complex mTORC1, represents the main kinase
responsible for TFEB phosphorylation in presence of amino acids
(Peña-Llopis et al., 2011; Martina et al., 2012; Roczniak-Ferguson
et al., 2012; Settembre et al., 2012). Inhibition of TFEB activity
via phosphorylation of conserved amino acid residues (Ser 142,
Ser 211, Ser122, and Ser138) is part of a larger metabolic response
mediated by mTORC1 aimed to shut-off catabolic pathways while
turning on anabolic ones when nutrients are available (Martina
et al., 2012; Roczniak-Ferguson et al., 2012; Settembre et al.,
2012; Vega-Rubin-de-Celis et al., 2017; Napolitano G. et al.,
2018). Similarly, mTORC1 also regulates the nuclear localization
of TFE3 and some isoforms of MITF, thus efficiently inhibiting
transcriptional induction of lysosome biogenesis and autophagy
(Martina et al., 2014).

In addition, mTORC1 can inhibit TFEB transcriptional
activity by modulating the zinc finger transcription factors
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FIGURE 1 | Representative model of the nuclear control of lysosome-autophagy pathway. (A) Opposed regulation of ZKSCAN3 and TFEB. In presence of nutrients,
TFEB is cytosolic, and the transcription factor ZKSCAN3 localizes in the nucleus, inhibiting lysosome gene expression. During starvation, ZKSCAN3 translocates into
the cytosol and TFEB translocates into the nucleus where activates lysosome-autophagy gene expression. (B) The nuclear translocation and activation of FOXOs
transcription factors is induced IN serum starved condition. (C) NFKB binds to the promoter and represses Bnip3 expression in fed conditions, while during
starvation Bnip3 expression is promoted by E2F1. (D) In presence of nutrients, FXR inhibits autophagy by preventing the binding of PPARα to DNA and by inhibiting
CREB interaction with its coactivator CRTC2. Conversely, during starvation FXR activity is inhibited, and CREB-CRTC2 complex is formed and binds to the
promoters of lysosomal autophagy genes and of TFEB; similarly, starvation-mediated inhibition of FXR allows PPARα binding to the DR1 elements in the promoters
of autophagy genes. (E) Epigenetic regulation of autophagy: in fed status, CARM1 is inactive and BRD4 represses the expression of autophagic and lysosomal
genes regulating Histone3 lysine9 methylation. In fast state, BRD4 is inactive and CARM1 translocates into the nucleus promoting lysosomal-autophagy gene
expression via a positive Histone3 Arginine17 methylation and inducing TFEB transcriptional activity.

harboring Kruppel-associated box (KRAB) and SCAN domain
(ZKSCAN3) activity (Chauhan et al., 2013). ZKSCAN3 represses
a large group of lysosomal and autophagy genes when
nutrients, in particular amino acids, are present in the cell.
Conversely, treatment with the mTOR inhibitor Torin1 induced
ZKSCAN3 nuclear exclusion. Silencing of ZKSCAN3 augmented
TFEB-mediated lysosomal and autophagic activation suggesting
that these two transcription factors act in opposite ways
to regulate autophagy in response to nutrient fluctuations
(Figure 1A). While this mechanism appears to be relevant
in cell culture experiments, its relevance in vivo is unclear
(Pan et al., 2017).

In addition to mTORC1, other growth-regulating kinases
control TFEB nuclear localization. ERK2 was the first kinase
to be associated with TFEB phosphorylation in response to
nutrients availability (Settembre et al., 2011). In particular, ERK2
mediated phosphorylation of TFEB at Ser142 inhibited TFEB
nuclear translocation thus limiting transcriptional activation

of its downstream target genes (Settembre et al., 2011; Li
et al., 2018, 2019). Subsequently, the glycogen synthase kinase
3 beta (GSK3B) was identified as the kinase responsible for
TFEB phosphorylation at Ser134 and 138 (Li et al., 2016).
This event, coupled to phosphorylation at Ser142 by ERK2 and
mTORC1, unmasks a nuclear export localization signal required
for TFEB cytosolic accumulation (Li et al., 2018). Moreover, the
Akt and the PKCβ kinases phosphorylate TFEB at c-terminal
critical serines, but this phosphorylation seems to control TFEB
stability rather than its nuclear localization (Ferron et al., 2013;
Palmieri et al., 2017).

Transcription factor EB nuclear translocation can also
be triggered by activation of the calcium and calmodulin
dependent serine/threonine phosphatase calcineurin (Medina
et al., 2015). Notably, the calcium efflux through the lysosomal
cation channel Mucolipin1 triggers calcineurin-mediated TFEB
dephosphorylation and activation, hence providing a mechanistic
explanation of autophagy regulation by calcium signaling.
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More recently, the protein phosphatase 2A (PP2A)
has been shown to dephosphorylate TFEB upon
induction of acute oxidative stress by sodium arsenite
(Martina and Puertollano, 2018).

To date, the mechanisms controlling TFEB nuclear export
are less characterized but seem to be dependent on the CRM1
exportin and on the presence of a TFEB nuclear export sequence
(Napolitano G. et al., 2018). Intriguingly, mTOR-dependent
TFEB re-phosphorylation in the nucleus seems to play a major
role in TFEB nuclear export.

These studies indicate that several signaling events regulate
TFEB subcellular localization, thus placing the transcriptional
activation of the lysosomal-autophagy pathway as a general
response to cope with different types of cellular stresses.

FOXO FACTORS

The class O of forkhead box transcription factors (FOXO) family
has an established role in autophagy regulation (Webb and
Brunet, 2014). In mammals, this family includes four members:
FOXO1, FOXO3, FOXO4, and FOXO6. The activity of three
out of four members (FOXO1, FOXO3, and FOXO4) is mainly
regulated by AKT phosphorylation in response to growth factors
and insulin stimulation. FOXO3 was the first FOXO member
identified as a transcriptional regulator of several autophagy
genes (ATG4, ATG12, BECN1, BNIP3, LC3, ULK1, ULK2, and
VPS34) in muscle (Mammucari et al., 2007; Zhao et al., 2007;
Sanchez et al., 2012). Similar to what reported for MiT/TFE
family of transcription factors, FOXO3 transcriptional activity is
mostly regulated by a nuclear/cytosolic shuttling. Once activated
by growth factors, AKT phosphorylates FOXO3 and this results
in its cytoplasmic retention, thus inhibiting transcriptional
activation of its target genes. Later on, another member of this
family, FOXO1, was also described as a transcriptional regulator
of different autophagy genes (Liu et al., 2009; Xu et al., 2011;
Xiong et al., 2012). However, FOXO1 also induces autophagy in a
transcriptional-independent way: in response to oxidative stress
or serum starvation, FOXO1 is acetylated in the cytosol and binds
to Atg7 thus favoring autophagy induction by direct interaction
with key regulators of autophagosome biogenesis (Zhao et al.,
2010; Figure 1B). More recently FOXO transcription factors have
been shown to cooperatively control autophagy in cartilage and
protect against osteoarthritis (Matsuzaki et al., 2018).

Most notably, a study using Caenorhabditis elegans
demonstrated that DAF16 (FOXO in mammals) physically
and functionally cooperates with HLH30 (TFEB in mammals) to
ensure appropriate expression of target genes during organismal
responses to stressors (Lin et al., 2018). It will be important
to understand whether a FOXO-TFEB cooperation occurs
also in mammals.

P53

Different studies suggest that P53, the most studied tumor
suppressor protein, is an inducer of the autophagy pathway.

P53 was initially described to promote autophagy by inhibiting
the mTORC1 pathway, through transcriptional induction
of Sestrin proteins, which activate AMPK while inhibiting
mTORC1 lysosomal recruitment (Budanov and Karin, 2008;
Chantranupong et al., 2014), and by inducing the expression of
the Damaged-regulated- modulator DRAM, a lysosomal protein,
which induces autophagy through a yet not identified mechanism
(Crighton et al., 2006). Subsequently, a combined CHIP-SEQ and
RNA-SEQ analysis performed on mouse embryonic fibroblasts
(MEFs) upon DNA-damage, revealed that P53 controls the
expression of several genes essential for autophagy induction
(LKB1, ULK1/2), and autophagosome maturation (ATG4, ATG7,
and ATG10) (Kenzelmann Broz et al., 2013). Moreover, P53
regulates both FOXO3a expression and activity (You et al., 2004;
Fu et al., 2009; Miyaguchi et al., 2009; Renault et al., 2011), and
promotes TFEB/TFE3 nuclear translocation upon DNA damage
(Jeong et al., 2018), thus controlling key upstream modulators of
the autophagy pathway.

However, cytoplasmatic P53 may also act as a negative
regulator of autophagy, although the mechanisms underlying this
inhibitory regulation are still elusive (Green and Kroemer, 2009;
Comel et al., 2014). Further studies are needed to fully define the
role of P53 in the regulation of autophagy pathway.

E2F1/NF-kB AXIS

The transcription factors E2F1 and NF-kB regulate autophagy
through the regulation of BNIP3 expression (Tracy et al.,
2007; Gang et al., 2011). BNIP3 is a hypoxia-induced
activator of autophagy that disrupts the inhibitory binding
of B-cell lymphoma 2 (BCL-2) to Beclin1, a component
of the class III phosphatidylinositol-3-OH kinase (PI3K)
complex, that promotes autophagosome biogenesis. During
normoxia, NF-kB constitutively binds to the promoter of
BNIP3 repressing its expression (Shaw et al., 2008). Hypoxia
reduces the occupancy of NF-kB on the BNIP3 promoter thus
allowing E2F1 to induce its expression and activate autophagy
(Figure 1C). In addition, E2F1 can also promote the expression
of other autophagy genes, such as ULK1, LC3, and ATG5
(Polager et al., 2008).

CREB-FXR AND PPARα-FXR CIRCUITS

The farnesoid X receptor (FXR) represses liver autophagy
during feeding conditions (Thomas et al., 2008; Calkin and
Tontonoz, 2012). FXR is activated by increased bile acid levels
after feeding and transcriptionally represses several autophagy
genes through two apparently independent mechanisms. Seok
et al. (2014) proposed that FXR inhibits the transcriptional
activity of the fasting-activated cAMP response element-binding
protein (CREB) by impeding the interaction between CREB
and its coactivator CRTC2. Upon fasting, FXR inhibition is
relieved thus allowing the CREB-CRTC2 complex to form and
induce the expression of many autophagy genes, including
ATG7, ULK1, and TFEB (Figure 1D). Interestingly, TFEB
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also regulates the expression of genes important for lipid
metabolism in the liver, suggesting that its role in the FXR-
CREB axis might be not limited to autophagy regulation
(Settembre et al., 2013). In addition, Lee et al. (2014)
identified the nuclear receptor Peroxisome Proliferator Activated
Receptor alpha (PPARα) as the transcriptional activator that
opposes FXR in response to nutrient availability. FXR and
PPARα share the ability to bind to specific DNA sites (DR1
elements) in the promoter regions of many autophagy-related
genes, so that these two nuclear receptors compete for the
binding to the same target genes. Fasting activates PPARα

while inhibiting FXR, thus inducing transcriptional activation
of autophagy genes in liver (Figure 1D). Notably, TFEB
transcriptionally enhances the expression of PPARα and its
coactivator peroxisome proliferator activated receptor gamma
1 alpha (PGC1α) (Settembre et al., 2013), suggesting that
the induction of TFEB expression by CREB could in turn
potentiate PPARα activity. Thus, it is possible that both the FXR-
CREB and FXR-PPARα circuits coexist and participate to the
coordination of autophagy with other metabolic processes (e.g.,
lipid degradation) occurring in the liver.

EPIGENETIC REGULATION OF
AUTOPHAGY

Histone post-translational modifications, such as methylation,
acetylation, and deacetylation, influence the overall chromatin
structure, thus affecting the accessibility of transcription
factors to chromatin (Lawrence et al., 2016). To date, several
examples of epigenetic regulations of the autophagy pathway
have been described.

Histone Methylation
The epigenetic reader Bromodomain-containing protein 4
(BRD4) has been identified as a repressor of a transcriptional
program that promotes autophagy and lysosome biogenesis
(Sakamaki et al., 2017). In presence of nutrients, BRD4
represses the expression of several autophagic and lysosomal
genes by recruiting the histone lysine methyltransferase G9a,
which deposits a repressive H3K9diMe in the promoters of
lysosomal and autophagy genes. Conversely, nutrient depletion
promotes AMPK-mediated BRD4 inhibition and the expression
of lysosomal and autophagic genes through a yet-to be
characterized transcriptional regulator.

The co-activator-associated arginine-methyltransferase 1
(CARM1) was recently identified as a key autophagy regulator
(Shin et al., 2016). Glucose (but also amino acid) starvation
leads to a CARM1-dependent increase in histone H3 Arg17
dimethylation levels at the promoters of autophagy and lysosomal
genes and this is critical for proper autophagy activation.
Mechanistically, upon starvation CARM1 translocates into the
nucleus where binds TFEB and promotes the transcriptional
activation of its target genes. CARM1 seems to be essential for
TFEB-mediated autophagy activation since TFEB overexpression
fails to increase autophagy in cells lacking CARM1 (Figure 1E).

Histone Acetylation
Recently, a global decrease in acetylation levels of H4K16 was
described upon nutrient starvation and/or mTOR inhibition
(Füllgrabe et al., 2013). This downregulation translates into a
transcriptional repression of key autophagy genes in order to
prevent a chronic autophagy induction, which could be lethal.
These responses are dependent on the histone acetyltransferase
hMOF/KAT8/MYST1.

The NAD+-dependent deacetylase Sirt1 regulates autophagy
through its deacetylase activity on non-histone cytosolic targets
(Lee et al., 2008; Bao and Sack, 2010). Sirt1 may induce autophagy
directly by deacetylating autophagy proteins such as ATG5,
ATG7 and LC3. Sirt1 might also control the stability of mRNAs
encoding for lysosomal enzymes (Latifkar et al., 2019). Moreover,
Sirt1 deacetylates the transcriptional regulators of autophagy
FOXO1 and FOXO3, enhancing their transcriptional activity
(Brunet et al., 2004). Finally, Sirt1 promotes autophagy by
activating AMPK, via deacetylation of LKB1 (Lan et al., 2008),
while inhibiting mTORC1 signaling favoring its interaction with
the TSC1/TSC2 complex (Ghosh et al., 2010).

Additional epigenetic modifications related to autophagy
induction are H3K9 methylation (Artal-Martinez de Narvajas
et al., 2013), H3K56 acetylation (Chen et al., 2012) and H4K20
methylation (Kourmouli et al., 2004). These are associated with
suppression of autophagy, even if further studies are required to
clarify their regulation.

MiTF FACTORS AND HUMAN DISEASES

The autophagy pathway is important in several processes requi-
red to maintain cellular homeostasis, including adaptation to
metabolic stress, removal of dangerous cargo, and prevention
of DNA damage. If any of these protective functions are
impaired, onset and progression of several diseases, such as
infection, cancer, neurodegeneration, cardiovascular diseases,
and aging may be favored (Mizushima et al., 2008; Harris
and Rubinsztein, 2011; Mizushima and Komatsu, 2011;
White, 2015). Therefore, it is not surprising that a long list
of diseases is associated to mutations in autophagy-related
genes [recently reviewed in Levine and Kroemer (2019)].
However, it is important to note that several autophagy
proteins participate to other cellular processes, such as
vesicular trafficking, phagocytosis, exocytosis, and even cell
cycle regulation and immunity, thus the link between disease
manifestation and autophagy dysfunction might be difficult
to establish (Levine and Kroemer, 2019). This is particularly
true for transcription factors, that control the expression
of target genes implicated in a number of diverse cellular
functions. The activity and/or the localization of TFEB has
been reported to be deregulated in several neurodegenerative
diseases, such as X-linked spinal and bulbar muscular atrophy
(Cortes et al., 2014), Parkinson disease (Decressac et al., 2013),
Huntington disease (Tsunemi et al., 2012), and Alzheimer disease
(Reddy et al., 2016). These neurodegenerative disorders are
characterized by intracellular protein aggregation and autophagy
dysfunction, which is predicted to contribute to disease
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establishment (Menzies et al., 2015). Notably, forced
overexpression of TFEB in cellular and murine models of
these disorders significantly reduced protein aggregation
attenuating pathological manifestation, suggesting that TFEB
represents an appealing target for therapy (Sardiello et al., 2009;
Dehay et al., 2010; Tsunemi et al., 2012; Decressac et al., 2013;
Polito et al., 2014; Xiao et al., 2014, 2015; Chauhan et al., 2015;
Kilpatrick et al., 2015).

Lysosomal storage disorders (LSDs) are a class of rare diseases
due to mutations in genes encoding for lysosomal proteins
(Ballabio and Gieselmann, 2009; Cox and Cachón-González,
2012; Platt et al., 2018). As a consequence, cells show progressive
accumulation of indigested material within lysosomes and,
eventually, impaired autophagy flux. Interestingly, TFEB was
found to be predominantly nuclear in several LSD cellular
models (Sardiello et al., 2009; Bartolomeo et al., 2017). The
increased nuclear localization of TFEB may be interpreted as
an attempt to compensate for the decreased autophagy flux
and lysosomal degradative function. While in this context
the physiological induction of the TFEB seems to be unable
to fully counteract disease progression, TFEB overexpression
in different LSDs, such as multiple sulfatase deficiency and
mucopolysaccharidosis IIIA (Medina et al., 2011), Pompe
disease (Spampanato et al., 2013), Batten disease (Palmieri
et al., 2017), Gaucher and Tay Sachs disease (Song et al.,
2013), and cystinosis (Rega et al., 2016) resulted effective
in reducing lysosomal storage. This effect is most likely
the consequence of TFEB’s ability to concomitantly induce
lysosomal exocytosis, autophagy and lysosome biogenesis.
Similarly, TFEB overexpression in liver had beneficial effects
in mouse models of alpha1-antitrypsin deficiency and hepatic
hyperammonemia (Pastore et al., 2013; Soria et al., 2018).
Notably, by increasing the autophagic degradation of intracellular
lipid droplets, TFEB also represents a potential therapeutic
target to fight metabolic syndrome associated with obesity
(Settembre et al., 2013). Despite the induction of TFEB activity
looks as a promising therapeutic tool for several diseases,
the side effects of its long-term overexpression must be
considered. The over-activation of MiT family of transcription
factors is associated with different types of cancer. MITF
genomic amplification is frequently found in melanoma, while
chromosomal translocations and rearrangements of TFE3 and
TFEB are associated with pediatric renal cell carcinomas and
alveolar soft part sarcoma (Argani et al., 2001; Haq and
Fisher, 2011; Kauffman et al., 2014). Moreover, upregulation of
MiT/TFE members has also been observed in pancreatic ductal
adenocarcinoma (Perera et al., 2015).

How over-activation of these TFs may favor pro-tumorigenic
processes is not completely clear, but recent data indicate
that hyper-activation of mTORC1 signaling is a common
feature of MiT/TFE associated malignancies (Di Malta et al.,
2017). This signaling deregulation depends on the constitutive
induction of the essential components of the mTORC1 amino
acid sensing machinery RagD and RagC GTPases, direct
downstream targets of MiT/TFE TFs. Interestingly, at least
in pancreatic ductal adenocarcinoma, the upregulation of
MiT/TFE factors leads to simultaneous mTORC1 hyperactivation

and autophagy induction and presumably both pathways
are exploited by tumor cells to efficiently compete with
non-transformed cells (Perera et al., 2015, 2019; Di Malta
et al., 2017). In light of the pathological consequences of
the constitutive activation of MiT/TFE factors, a pulsatile
approach aimed at enhancing TFEB activity only for a
certain time-frame could represent a therapeutic strategy
for diseases that might benefit of the stimulation of the
lysosomal/autophagy pathway.

CONCLUSION

In the last years, several studies provided conclusive evidence
that autophagy is a transcriptionally regulated process. However,
despite different transcriptional modulators of autophagy have
been identified, we still know very little about the physiological
relevance of this nuclear regulation. The most likely hypothesis
is that transcriptional regulation of autophagy cooperates with
the post-translational regulation to achieve a fine tuning of
autophagy flux particularly in conditions of prolonged starvation
or chronic stress. Indeed, the degradation of autophagy proteins,
in particular those serving as cargo receptors, is enhanced
during autophagy, and similarly lysosomes are utilized during the
formation of autolysosomes. Hence, the transcriptional induction
of lysosomal and autophagy genes might counteract the depletion
of the correspondent proteins during autophagy. Consistently,
the translation of mRNAs encoding for proteins with catabolic
roles is spared from the general inhibition of protein synthesis
during nutrient starvation (Saikia et al., 2016). Additionally,
the transcriptional regulation of autophagy might participate
to biological processes that are regulated independently of the
nutrient status of the cells, such as cellular differentiation and
tissue development (Cinque et al., 2015). It will be important
in the next years to understand whether different transcription
factors regulate selective types of autophagy in a tissue and time
specific fashion and if their modulation can be exploited for
therapeutic purposes.

A selective modulation of autophagy might be beneficial
for the treatment of several diseases for which there are no
currently available therapies. Notably, several therapeutic benefits
associated to administration of widely used drugs, such as aspirin
and metformin, and food compounds, such as resveratrol and
curcumin, might be due their ability to induce TFEB nuclear
translocation and autophagy (Bao et al., 2016; Zhang et al.,
2016; Wang et al., 2017; Yan et al., 2017; Chandra et al.,
2018). Currently, whether these molecules can be repositioned
for the treatment of genetic diseases is largely unexplored.
Lastly, the use of computational approaches combined to an
integrated analysis of omics data represents an invaluable
tool to identify novel transcriptional modulators of autophagy
(Napolitano F. et al., 2018).
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