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Malaria, a life-threatening infectious disease, spreads rapidly via parasites. Malaria prevention is more effective and efficient than
treatment. However, the existing surveillance systems used to prevent malaria are inadequate, especially in areas with limited or no
access to medical resources. In this paper, in order to monitor the spreading of malaria, we develop an intelligent surveillance
system based on our existing algorithms. First, a visualization function and active surveillance were implemented in order to
predict and categorize areas at high risk of infection. Next, socioeconomic and climatological characteristics were applied to the
proposed predictionmodel.Then, the redundancy of the socioeconomic attribute values was reduced using the stepwise regression
method to improve the accuracy of the proposed prediction model. The experimental results indicated that the proposed IASM
predicted malaria outbreaks more close to the real data and with fewer variables than other models. Furthermore, the proposed
model effectively identified areas at high risk of infection.

1. Introduction

(A) Background. Malaria, a life-threatening infectious dis-
ease, usually spreads to humans via infected mosquitos.
Malaria has been extensively researched. In fact, five research
projects concerning malaria have won the Nobel Prize.
Recently, in 2015, the Chinese pharmacist Youyou Tu won the
Nobel Prize in physiology andmedicine after discovering that
the extract artemisinin used in traditional Chinese medicine
(TCM) can effectively inhibit the malaria parasite. Articles
concerning malaria are frequently published in top research
journals including Nature and Science [1–8]. For example,
Gardner et al. [1] suggested that biological methods should
be used to prevent and treat malaria; Walker et al. analyzed
the malignant impact of malaria using real data [9, 10]. The
current malaria studies have consistently demonstrated that
prevention is more effective and efficient than treatment.
(B) Related Work. Numerous methods of malaria prevention
and prediction have been developed [11–20]. In addition,

many studies concerning the infectious process of malaria
have been conducted. However, further insight regarding the
spread ofmalaria could be obtained through the development
of prediction models. For example, Yang et al. developed the
prediction model NetEpi (Network Epidemic) in order to
identify the methods of malaria transmission and predict the
spread of infection [12]. In addition, a spatial transmission
model representing both the heterogeneous transmission
potential of P. vivax at individual locations and the mobility
of infected populations among different locations was devel-
oped using neural networks in order to identify transmission
networks based on surveillance data [16]. Gomez-Elipe et al.
use ARIMA (autoregressive integrated moving average) to
predict the malaria infections with time series of monthly
notifications of malaria cases from local health facilities, data
from rain and temperature records, and the normalized dif-
ference vegetation index (NDVI) [19]. Our research team has
done some research on malaria prediction [11, 17]. However,
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all of these researches focus on models and algorithms to
study malaria prediction.

(C)Motivation. Effective prevention and controlmeasures are
needed to reduce the number of malaria cases as well as
monitor current and potential outbreaks. Thus, a visualiza-
tion system for the fast, efficient, and real-time detection of
malaria is necessary. Knoema, an online system, provides a
query of WHO World Malaria Statistics data ranging from
1990 to 2014 [21]. In GeoSurveillance, a spatial statistical
method and basic geographic function are used to review
and assess the risk of spatial clustering and set monitoring
[22]. However, these surveillance systems only predicted
approximately 14% of worldwide malaria cases in 2012 and
exhibit poor prediction accuracy when there is insufficient
data [23, 24]. In addition, these systems obtain information
passively from hospital data. Passive surveillance is both
time-consuming and costly since it entails the collection of
individual surveys from all affected and potentially affected
regions.Therefore, an active surveillance model that requires
limited information is needed to achieve optimal malaria
prevention and control.

(D) Contributions. The following contributions are presented
in this paper.

Due to the abovementioned problems of the prior sys-
tems, based on the work of existing laboratories, we have
completed the visualization system that can be used for active
surveillance. The existing data shows that our system is the
first to achieve proactive monitoring visualization system:

(i) Due to the abovementioned problems of the prior
systems, based on the existing work of our team, an
active surveillance system was developed. In the past,
medical institutions have acquired information pas-
sively by collecting data from public health agencies
and patients, inhibiting the accurate and timely detec-
tion of high-risk areas. In this study, an active malaria
system was developed by combining data, prediction
results, and top-𝑘 algorithm. In the proposed active
surveillance system, individual incidences of infec-
tion were identified via active searching and surveys.
And existing researches show that our system is the
first visualization system with active surveillance. For
example, through active surveillance, seven towns
in Tengchong County that comprised 70% of the
malaria cases in that county were identified. Then,
medical resources were distributed to those seven
towns in order to control the spread of malaria to
other areas. Details regarding this process can be
found in Section 3.3.

(ii) According to the data analysis, as many as 98% of the
malaria cases in Tengchong, China, were imported
from Myanmar. Thus, the number of workers from
Myanmar, the probability of people from Tengchong
working in Myanmar becoming infected, and the
number of people returning from Myanmar influ-
enced the prediction results. In order to account
for this information, a logistic regression model, an

improved population radiation model [25], a VCAP
model [26], and climatological factors were intro-
duced to the proposed system.

(iii) Based on our researches of active surveillance, NAS
algorithm is proposed. The dimensionality of the
input data was reduced in order to achieve good
prediction results with less data, thereby improving
the accuracy of the proposed system. Furthermore,
the stepwise regression method was added to the
predictionmodel in order to obtain prediction results
using only five attributes. Details regarding this pro-
cess can be found in Section 3.3.

The rest of the paper is structured as follows. In Section 2,
the framework of intelligent surveillance is presented. Then,
the design of the back-end system and the process used to
reduce the redundancy of the socioeconomic attribute values
in the prediction model are described in Section 3.

2. IASM Design

Our research group has been working on forecasting infec-
tious disease and has proposed the concept of active surveil-
lance for reasonable allocation when medicine and human
resources are limited.Our previouswork about active surveil-
lance planning has been published in AAAI conference in
2014 [11].

The system proposed in this study is displayed in Fig-
ure 1. The proposed system consists of a user interface
(UI), geographic information display, prediction engine (PE),
and active surveillance model. The geographic information
display, prediction engine (PE), and active surveillancemodel
are all function modules. As shown in Figure 1(a), a user can
interact with the function modules by selecting a location,
time, and various attributes using the user interface (UI).
The corresponding results are then generated by the selected
modules based on existing data and algorithms. Then, the
active surveillance model displays the selected function as
well as the prediction results obtained by the prediction
engine (PE) model. Details regarding the prediction engine
(PE) are displayed in Figure 1(b). Sincemost existing software
includes a user interface (UI) and geographic information
display, details regarding these models will not be discussed
in this paper. However, details regarding the prediction
engine (PE) and active surveillance model are provided
herein. The attributes are also optimized in this paper.

2.1. Prediction Engine (PE). The PE module consisted of a
logistic regression model, improved population radiation
model, and active surveillance model.These three models are
discussed in the following passages.

2.1.1. Logistic RegressionModel. A logistic regressionmodel is
constructed to describe the relationships among the socioe-
conomic attributes of a selected location as well as the
probability that the people living at that location will leave
the area for work [11]. In formula (1) shown in Figure 1(b),
for a location 𝑥

𝑖
, 𝑋
𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑛
) and 𝑥

𝑖𝑗
denotes the value

of attribute 𝛼
𝑖
for location 𝑥

𝑖
. In addition, 𝜃 = (𝜃

1
, . . . , 𝜃

𝑛
)
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Figure 1: (a) The overall architecture of the IASM. Users can select a location, year, and socioeconomic and environmental attributes using
a Web UI. The information submitted by the user is then sent to the geographic information display and prediction engine models. The first
model displays the location information on a map. Next, the prediction engine generates the prediction results using the input information
and datasets.Then, the areas at high risk of infection are identified based on the prediction results via active surveillance. (b)Detailed structure
of a PE module with a VCAP extension and some equations [11].

denotes the weight of each attribute, and 𝑝
𝑖
denotes the

probability that the people living in the selected region will
leave that region for work. In this study, 22 socioeconomic
attributes that could influence whether the people of a region
leave that region for work are considered.

2.1.2. Improved Population Radiation Model. The probability
that the people working outside work in a certain region can
be estimated as [11, 25]. In formula (2) shown in Figure 1(b),
pop
𝑖
and pop

𝑗
denote the populations of the source location

𝑥
𝑖
and target location 𝑦

𝑖
, respectively. In addition, 𝑠

𝑖𝑗
denotes
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the total population within a certain radius 𝑟
𝑖𝑗
(the distance

between 𝑥
𝑖
and the target location) of the selected location.

2.1.3. VCAP. The risk of infection with malaria can be
estimated based on the humidity and temperature of the
selected location as [26]. In formula (3) shown in Figure 1(b),
𝑉 represents the vector capacity of the selected area,𝜇denotes
the equilibrium mosquito density per human, 𝛼 denotes the
expected number of bites on the people in that region per
mosquito per day, 𝜌 denotes the probability of a mosquito
surviving an entire day, and 𝜏denotes the extrinsic incubation
period of malaria parasites or the time required to complete
the extrinsic cycle. All the above parameters of the VCAP
could be influenced by temperature and rainfall [27].

Furthermore, the risk of infection of location 𝑦 can be
estimated as [28]

𝑞 =
𝛽𝑉 − 𝜎

𝛽𝑉 + 𝜎 (𝛼/𝜂)
, (1)

where 𝛽 denotes the probability that an uninfected human
will become infected after being bitten by an infectious
mosquito, 𝜎 denotes the recovery rate of humans, and 𝜂

denotes the per capita daily death rate of a mosquito, which
is equal to ln(𝜌).

Based on the above analysis, the risk of infection of a
source location 𝑧

𝑖
after a time interval 𝑡 in a certain year 𝑢

can be expressed as formula (4) shown in Figure 1(b).
The total surveillance data of year𝑌 can be represented as

a cube tensor denoted by 𝐶 = [𝑐
𝑢𝑖𝑡

]
𝑌×𝑀×𝑇

, where 𝑐
𝑢𝑖𝑡

denotes
the number of incidences reported at location 𝑥

𝑖
. Here, 𝜃 is

a dynamic variable with a value of 𝜃𝑢
𝑖𝑡
that varies at different

time.
For this study, we assume that the observed variable

is not the same as the truth and that it has a Gaussian
distribution centered at the observation [29]. 𝜃𝑢

𝑖𝑡
between two

continuous times would not change too much. Thus, particle
filtermethod is used here, which is able tomeet the two above
requests.

The observation error variance (OEV) of week 𝑘, or
OEV
𝑘
, can be defined as

OEV
𝑘
= 1 × 10

1
+

(∑
𝑘−1

𝑗=𝑘−3
(obs
𝑗
/3))
2

5
,

(2)

where obs
𝑗
is the observation of week 𝑗. The above equation

indicates that the value of OEV
𝑘
is proportional to the

average observation of the 3 preceding seasons.ThisGaussian
distribution, which is primarily based on the algorithm in
[30], was used during the particle filter process.

2.2. Active Surveillance. Thenumber of infected cases in each
area can be determined based on the prediction results of
that area. In addition, the areas at high risk of infection can
be identified by ranking the prediction results of the regions.
This process is especially significant in that when resources
are limited, areas at high risk of infection can be treated with
the top-𝑘 methods in order to more effectively prevent and
control malaria outbreaks.

3. Framework

Epidemiological research has a long history. If the network
structure of the spread model of an epidemic is known, a
supplemented propagation model and prediction informa-
tion can be obtained, allowing for early warnings.

However, in reality, directly identifying the spread net-
work structure of an epidemic is difficult since the infectors
and those at risk of becoming infected are not always
clearly defined. However, the spatiotemporal-series data of an
epidemic can be directly observed.Thus, hidden trends in this
data could be used to identify the spread network structure of
an epidemic. In order to visualize these prediction results, an
IASM system is proposed.

IASMs provide frameworks for the intelligent surveil-
lance of input and output module, the prediction results of
disease, and active surveillance. Active surveillance functions
can be obtained using prediction results. We create the
program as follows:

main(){

IASM.io data();
//user can input new data and download data.
IASM.malaria prediction();
// user can predict malaria outbreak trend
IASM.malaria active surveillance();
//user can selected some key areas to set sentinel
by active surveillance

}

3.1. Input/Output Module. As shown in Figure 2, the user
interface of IASM is divided into two areas. The left side
is designed as a function interface, which is primarily for
selecting the display or controlling the background calcu-
lation command. Background operation result set can be
transformed to graphical interface in the right side of the user
interface. Amore intuitive understanding and analysis can be
obtained.

In function interface (Menu), there is an “input and
output” module. We would like to introduce four options
(data input, data output, display, and other operations) of this
module.

3.1.1. Data Input. User can input new original information
data to the server by user interface. Through the HTTP
protocol, the front page transfers original information data
to the background PHP scripts. Then, background PHP
scripts analyze and deal with the data. And according to the
predefined formats, the results would be stored in database.
See Algorithm 1.

After the data input, the user can select operation param-
eters of the model to perform the operation, such as learning
years and prediction years. Through this interface, iterative
operation can be done with existing database. The result of
the operation would be saved to the database.
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Figure 2: Data input/output module interface.

(1) BEGIN
(2) Click the button to select the corresponding original data file and upload.
(3) Transfer data to the backend server.
(4) Server analyze the data.
(5) IF duplicate data THEN
(6) Overwriting existing data.
(7) ELSE
(8) Storing the new original information data in the database.
(9) END

Algorithm 1: ⟨Data input⟩.

(1) BEGIN
(2) Enter the result set number.
(3) Server receives the request and queries the corresponding result set from the database.
(4) Server transfers result set to the front-end.
(5) The front-end browser saves the result set to the local.
(6) END

Algorithm 2: ⟨Data output⟩.

3.1.2. Data Output. In the simulation process, different result
sets of data can be produced. These results would be stored
to the database and given a unique number. Depending
on the different numbers, the corresponding result set can
be downloaded from the server for detailed analysis. See
Algorithm 2.

In order to enable users to get an intuitive understanding,
the relevant data would be displayed on the right area with
charts.

3.1.3. Display. For the season of time granularity, it will
display the number of infected cases in the right area with
heat map. By the way of image, the relationship with time,
space, and infection situation would be displayed visually.
One can zoom in or out (such as city, county, and village) on

the infectionmap to observe different levels of administrative
regions, as shown in Figure 3.

3.1.4. Other Operations. This module displays the original
information data in the operation process with different
charts, such as pie charts and histograms. Through different
charts, the user could get somehidden data relationships. Part
of the interface is shown in Figure 4.

3.2. Disease Prediction Results. Research concerning infec-
tious diseases involves complex biological information and
environmental factors, such as temperature and humidity,
which can influence the incidence rate. However, both envi-
ronmental and socioeconomic factors can be used to predict
whether an area is at risk of infection. Socioeconomic factors
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Figure 3: Screenshots of the dynamic outbreak interface of malaria.

Figure 4: Screenshot of crowd classification interface with related data analysis.

have been largely neglected in previous studies. In contrast,
22 socioeconomic factors, such as the reasons why people
work outside, were considered in the system developed in
this study. Since different combinations of socioeconomic
and environmental attributes could yield varying prediction
results, the influence of the various attributes on the predic-
tion results was included in the proposed system, as shown
in Figure 5. As shown in this figure, in function interface
(Menu), there is a “Malaria Prediction” module, which has
only one option (Prediction Selection). A user can construct a
predictionmodel by selecting the type of area, the time range,
and the prediction type.

3.3. The Strategies of Active Surveillance for Controlling
Malaria Outbreak. Active surveillance can be used to

identify areas at high risk of infection. For example, certain
resources, such as time, money, and medical equipment,
are limited, and medical workers can use active surveillance
to monitor the spread of malaria, as shown in Figure 6.
In “Malaria Prediction” module, active surveillance can be
implemented by selecting the type of area, the time range, and
the type of “top-𝑘 coverage probability.”

4. An Empirical Study in Tengchong
County with NAS

Surveillance data concerning the monthly number of malaria
cases in Tengchong County over four years (2007–2010)
was obtained from annual reports provided by the National
Institute of Parasitic Disease and the Chinese CDC. A total
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Figure 5: Screenshot of the infection prediction results for Qu Stone Town from 2009 to 2010. The predicted results are depicted by the red
line, while the ground true data is depicted by the blue line. Both sets of data can be downloaded.

Figure 6: Coverage rate prediction for top-k towns from 𝑘 = 1 to 𝑘 = 12. This screenshot displays the coverage of cases results of ranking 1 to
12 towns in Tengchong County in 2011. The blue histograms are estimated with the predicted results by active surveillance with the coverage
probability and the principle of top-𝑘. The red histograms are drawn with the ground truth data.

of 221 villages were included in the data. The annual
demographic data was obtained from the Chinese Natural
Resources Database. The socioeconomic data, including a
total of 22 socioeconomic factors, was obtained from annual
reports issued by the Tengchong government. Using these
data, 18 towns were selected as the source locations for the
purposes of this study.

Since official data is not accessible inMyanmar, obtaining
data was difficult. Most of the selected target locations
were cities or towns located near the Yunnan-Myanmar
international border [11]. The temperature and rainfall data
of these locations were obtained via three sources, that is,
the IRI/LDEO Climate Data Library, TRMM (Tropical Rain-
fall Measuring Mission), and MODIS (MODerate-resolution
Imaging Spectroradiometer). The remaining two datasets
were provided by NASA. The useful data was extracted

using the remote sense image processing software ENVI
(ENvironment for Visualizing Images).The geographical and
transportation data were obtained from Google Earth.

Surveillance data obtained from 2007 to 2009 was used
for learning and data obtained during 2010 was used for
testing. Specifically, the socioeconomic factors influencing
the number of imported incidences were identified, and
the accuracy of the prediction system and effectiveness of
active surveillance under different coverage thresholds were
investigated.

Using the estimated clustering indicator, the 18 towns in
Tengchong were clustered into 6 groups. Although 22 socioe-
conomic attributes of Tengchong County were available, not
all of these factors were needed in the regression model.
Using the stepwise regression method, 5 attributes, that is,
the village population, total meat output, natural population
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Figure 7: Distributions of the infected cases of 18 towns in 2010. The fitted results are depicted by the red line, while the ground truth data is
depicted by the blue line. (a) The infected cases’ distribution with 22 attributes. (b) The infected cases’ distribution with 5 attributes.

growth rate, rural employed population, and current output,
were selected. In order to demonstrate that the 5 selected
attributes could be used to achieve prediction results similar
to those of our previous study [11], the proposed method was
applied to the data obtained in 2010 using those attributes. In
Figure 7, the blue line represents the actual data, while the
red line represents the results predicted using the proposed
method with 22 and 5 attributes, respectively.

Theprediction results are shown in Figure 8. In this figure,
the red point represents the actual data, and the blue line
represents the predicted values using the proposed method
with 5 attributes. The 𝑥-axis denotes 8 seasons ranging from
2009 to 2010, and 𝑦-axis denotes the infection risk which is
normalized as 𝐶

𝑖𝑡
/∑
𝑖
𝐶
𝑖𝑡
, where 𝐶

𝑖𝑡
is the infected cases of

location 𝑖 at time 𝑡. The first four seasons denote the fitting
results, while the last four seasons denote the results predicted
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Figure 8: Prediction results of 2010 by using the data of years 2007–2009.

using the parameters inferred from the 2009 data. As we see,
the prediction fits the ground truth very well even for the
locations with insufficient surveillance data.This implies that
the proposedmethod is suitable tomake a prediction in terms
of infection risks.

The top-𝑘 towns selected using the proposed method
were also compared to the benchmark top-𝑘 towns based on
their coverage rates, as shown in Figure 9. In the proposed
method, the four most important towns are selected. Then,
the remaining 14 towns are ranked. In Figure 9, the 𝑥-axis
represents the top-𝑘 towns of the remaining 14 towns. As
shown by this figure, the proposed method yielded coverage
rates similar to those of the benchmark top-𝑘 towns from top
3 to top 14.

To test the stability of the proposed method when esti-
mations vary, we plot the confidence intervals of prediction
errors in terms of RE (relative error) and AE (absolute error).
Hence, RE

𝑖
= |𝑦
𝑖
− 𝑦̂
𝑖
|/𝑦
𝑖
and AE

𝑖
= |𝑦
𝑖
− 𝑦̂
𝑖
|, where 𝑦

𝑖
and

𝑦̂
𝑖
represent the ground truth and the prediction of infected

cases of location 𝑖 and |⋅| denotes the absolute value of a scalar.
As shown in Figure 10, the 𝑥-axis indicates eight seasons of
2009 and 2010, and 𝑦-axis is the prediction error. Specifically,
the bottom and top of the boxes correspond to the 25th
and 75th percentiles, and the horizontal segment, that is,

the red line, indicates the median. The ends of the whiskers
correspond to the 5th and 95th percentiles. The red markers
are outliers located outside the 90% confidence interval, that
is, events falling below the 5th percentile or above the 95th
percentile. As we see, for all the predicted seasons, the ranges
of confidence intervals in terms of relative errors are less than
25%, as shown in Figure 10(a). Specifically, for the seasons
of 1, 4, 5, and 8, the ranges are less than 20%, and for 2, 3,
and 6 the ranges are less than 5%. This indicates that the
proposedmethod is stable tomake a prediction inmost of the
cases. In addition, themean errors for all seasons are less than
25%, suggesting that the proposed method has the ability to
make a stable prediction for all seasons accurately. Similarly,
Figure 10(b) shows the confidence intervals of prediction
errors for eight seasons.

5. Conclusions

In this paper, a malaria surveillance system was developed
in order to monitor and predict the transmission of malaria
in Tengchong County of Yunnan Province, China. Active
surveillancewas used to identify areas at high risk of infection
based on socioeconomic attributes using a logistic regression
model. The proposed system compensated for a lack of data.
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Figure 10: Boxplot of prediction errors. (a) RE of infection risks prediction. (b) AE of infection risks prediction.

In addition, the particle filter method was used to estimate
the values of the parameters based on the differences in the
observation error variance values of two instances and the
dynamic change between two continuous times.

The system was then applied to data collected from
18 towns in Tengchong County. The experimental results
indicated that the proposed system yielded prediction results
similar to the real data. Moreover, the redundancy of the
socioeconomic attribute values of the prediction model was
reduced by greater than 50%, while maintaining a similar
prediction accuracy.Therefore, the proposed system could be
used to effectively monitor and control malaria outbreaks in
Tengchong County.

In future studies, a new method capable of utilizing hid-
den information to effectively predict and monitor malaria
cases will be developed.
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