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Abstract

Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified
medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy
in children and more recently in adults. In addition, the use of oral ketogenic compounds,
fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation
has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease,
schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurode-
generative and neuroprogressive disorders, there are detrimental effects of oxidative stress,
mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also
adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in
central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid
oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for
neurones in an environment of glucose restriction. Importantly, the lactate shuttle between
astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact
that the astrocytic filopodia responsible for lactate release are too narrow to accommodate
mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional
ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and
on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-
4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is
suggested that they would tend to mitigate the changes seen in many neurodegenerative and
neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have thera-
peutic applications in such disorders.

Introduction

Several nutritional approaches are now available to clinicians wishing to induce ketosis in their
patients in the periphery and/or the brain in order to further positive therapeutic outcomes and
the details of such approaches are usefully reviewed in [1] and [2] and depicted in Figure 1. A state
of induced ketosis via the classical ketogenic diet (KD), the modified KD, or the medium-chain
triglyceride (MCT) diet have long been successful therapeutic interventions in the treatment of
many children with pharmacologically resistant epilepsy and the efficacy of these diets have been
confirmed in large studies [3,4]. More recently, the results of prospective studies and meta-
analyses have also confirmed the efficacy of these diets in the treatment of intractable epilepsy in
adults [5,6]. There is also some evidence to suggest that the modified Atkins diet may have
efficacy irrespective of patient age [7,5].

Unsurprisingly, there has been considerable interest in the putative therapeutic utility of
dietary ketosis as a possible treatment approach for neurological and neuropsychiatric (increas-
ingly described as neuroprogressive) illnesses which are very often refractory to current standard
pharmaceutical interventions. In this context, it is noteworthy that some research teams inves-
tigating this area have reported some success most notably in patients with mild cognitive
impairment or early Alzheimer’s disease (AD) [8]. This is also true of interventions based on
elevating levels of β-hydroxybutyrate (BHB), which is one of the molecules thought to underpin
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many of the therapeutic benefits of the classical and modified KD
[8]. However, it must be emphasized that this latter approach does
not induce ketosis but rather a state described as ketonemia. The
different biochemistry involved in these two states is explained in
an excellent review by Reger et al. [9].

Importantly, positive results have been reported using a wide
range of methods now available for inducing a state of ketosis in
animals and humans such as an emulsified MCT diet [10], oral
ketogenic compound [11], fractionated coconut oil [12], very low
carbohydrate diet [13], and a ketonemonoester dietary supplement
[14]. There are also encouraging data suggesting that a KD might
benefit individuals with Parkinson’s disease (PD) [15]. There is also
some evidence to suggest that nutritional ketosis might benefit
patients with schizophrenia (SZ) [16], bipolar disorder (BPD)
[17], and autistic spectrum disorder (ASD) [17]. However, a liter-
ature search by the authors did not to reveal any studies which
examined the effect of the KD on patients with major depressive
disorder (MDD), which is curious given the existence of data
demonstrating a positive effect of the diet, or its variants, on
tryptophan metabolism [18], as abnormal tryptophan metabolism
is considered to be involved in the pathogenesis of the illness
[19,20]. In addition, MDD patients have higher levels of pro-

inflammatory cytokines (PICs) [21] and hence a KD can be viewed
as a potential treatment for MDD because it has an anti-
inflammatory property [18]. In this context, it is noteworthy that
commonly used antidepressants have anti-inflammatory activity
[22] while anti-cytokine agents can improve anhedonia [23]. Fur-
thermore, KD increases the levels of brain-derived neurotrophic
factor (BDNF) [24]. Similarly, novel antidepressants also increase
BDNF levels in the hippocampus [25,26]. As a result, the KDhas the
potential to modulate neurotrophic pathways and inflammatory
mechanisms to reduce depressive symptom severity and other
dimensions of depressive psychopathology including cognition
[18]. The use of a KD in MDD, and indeed other neuroprogressive
conditions, is also supported by data gleaned from animal studies,
and readers interested in the area are invited to consult an excellent
review by Fabrazzo [27]. Unsurprisingly, there has been a plethora
of research investigating the mode of action of nutritional ketosis
and how it produces its therapeutic effects, and certain themes have
emerged.

For example, nutritional ketosis and the influx of ketone bodies
(KBs) and medium-chain fatty acids (MCFAs) into the brain
provide an alternative source of energy to glucose and exert a
glucose sparing effect in the brain in an environment of glucose

Figure 1. Summary of the reactions of ketogenesis and ketolysis. Abbreviations: ACA, acetoacetate; BHB, β-hydroxybutyrate.
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restriction or relative hypometabolism thereby allowing the pres-
ervation or even improvement of brain function and neuronal
survival [2, 28–31]. This appears to be potentially of considerable
therapeutic potential as far as the treatment of neurodegenerative
and neuropsychiatric disorders, henceforth described as neuropro-
gressive, disorders is concerned, as glucose hypometabolism is
observed in AD [32], PD [33], amyloid lateral sclerosis (ALS)
[34], Huntington’s disease (HD; [35]), SZ [36], BPD [37] and
MDD [38]. The therapeutic importance of addressing the relative
glucose hypometabolism and its consequences in patients suffering
from neurodegenerative or neuroprogressive disorders are empha-
sized by data suggesting that this state plays a causative role in the
pathogenesis of these illnesses and in some cases may be observed
long before symptoms or other recognized drivers of pathology are
apparent [39].

In addition, there is accumulating preclinical and clinical evi-
dence that dietary ketosis results in the amelioration of oxidative
stress, mitochondrial dysfunction and inflammation in the periph-
ery, and in the brain of animals and humans [40–46]. Such data
may also have therapeutic relevance as the weight of evidence
strongly suggests that oxidative stress and mitochondrial dysfunc-
tion have a causative role in the pathogenesis of neurodegenerative
[47,48] and neuroprogressive [49,50] disorders.

Although much of the research in neurodegenerative and neu-
roprogressive diseases has focused on the detrimental effects of
oxidative stress, mitochondrial dysfunction and neuroinflamma-
tion on neurone function [51,52], and survival, there is now a
growing appreciation that this triad of abnormalities exerts pathol-
ogy by compromising neurone–glial cell interactions and disrupt-
ing the normal roles played by microglia and astrocytes in central
nervous system (CNS) homeostasis [53,54]. Mitochondrial dys-
function in astrocytes and microglia is of particular pathological
significance from the perspective of compromised homeostasis in
the CNS as the regulatory functions of microglia and astrocytes are
dependent on optimal mitochondrial function and the mainte-
nance of these glial cells in their physiological state [55–57].

In addition, while disturbed mitochondrial function impairs the
ability ofmicroglia and astrocytes to regulatemultiple dimensions of
CNS homeostasis, the same is true of raised levels of oxidative stress
viamechanisms independent of inducedmitochondrial dysfunction.
In brief, elevated levels of reactive oxygen species (ROS) and reactive
nitrogen species (RNS), and/or compromised cellular antioxidant
systems sensitize microglia to activation by inflammatory mediators
and hence exacerbate levels of inflammation and promote a variable
state of reactivity and dysfunction described as astrogliosis [58,59].

The development of astrogliosis leads to impairment or loss of
homeostatic functions of these glial cells in regulating brain homeo-
stasis [60]. This is highly problematic from the perspective of brain
function and is considered to be a critical event in the pathogenesis and
pathophysiology of neurodegenerative and neuroprogressive illnesses
as accumulating data strongly suggest that such a reactive and dys-
functional state in astrocytes is amajor if not themain driver of neural
dysfunction or neurodegeneration seen in these illnesses [61,62].

Unsurprisingly, given the evidence discussed above, the modu-
lation of astroglial activity and function is now considered to be an
important therapeutic target in the treatment of neurodegenerative
and neuroprogressive diseases [60, 63–65]. From this perspective, it
is encouraging that several authors have reported that induced
ketosis decreases astrocyte activity, improves astrocyte–neurone
interactions [66,67], and exerts positive effects on expression and
function of receptors-enabling astrocytes to regulate multiple
dimensions of CNS homeostasis [29, 68–71].

Clearly, there is accumulating evidence suggesting that the use of
nutritional ketosis may result in a beneficial manipulation of astro-
cyte activity and function. However, there appear to be few publica-
tions relating to dietary ketosis exclusively focusing on this topic.
Hence, this article aims to address this apparent gap in the literature
by attempting to explain the various biochemical and energetic
consequences of dietary ketosis from the perspective of microglia
and astrocytes. In order to facilitate this endeavor,wewill first outline
the processes involved in the generation of a ketotic state before
discussing entry of KBs and fatty acids (FAs) into the brain and the
consequences of such entry on energy production, cellular antioxi-
dant defences, and levels of neuroinflammation. We will then move
on to consider the elements driving astrogliosis and its functional
consequences before focusing on the potential remedial effects of
nutritional ketosis on the disturbed patterns of astroglial function
seen in neurodegenerative and neuroprogressive conditions.

The Biochemistry of Ketogenesis

Under physiological conditions, acetyl CoA produced by FA oxi-
dation enters the tricarboxylic acid (TCA) cycle and subsequently
engages in a chemical reaction with oxaloacetate to produce citrate.
However, under metabolic conditions induced by the KD, oxalo-
acetate is exported out of the mitochondria, being utilized for the
process of gluconeogenesis [72]. In this scenario, levels of acetyl
CoA synthesis greatly exceed the amount of oxaloacetate in the
mitochondrial environment and the former engages in a series of
condensation reactions, which are the hallmark of ketogenesis
[73]. First, two acetyl CoA molecules combine to produce acetoa-
cetyl CoA. This molecule reacts with a further molecule of acetyl
CoA to form HMG-CoA in a functionally irreversible and rate
limiting reaction enabled by HMG-CoA synthase 2 [74]. Once
formed, this compound dissociates to the KB acetoacetate (ACA),
which is further reduced to BHB by a reaction enabled by BHB
dehydrogenase and involving the NAD+/NADH couple as the
hydrogen donor [75]. It should be noted that levels of BHB in the
circulation and tissues are much higher than those of ACA, making
the former the predominant KB [76,77].

BHBandACAare exported into the circulation from the liver and
ultimately imported by the brain, heart, skeletal muscle, and other
tissues with high metabolic demands [73]. Once ensconced in these
body compartments, BHB is oxidized to ACA by BHB dehydroge-
nase, which acts as a prime regulator of the mitochondrial NAD+/
NADH ratio status [78]. ACA is then hydrolyzed to form acetoacetyl
CoA and succinate in a reaction enabled by the enzyme succinyl
CoA:3-oxoacid CoA transferase, and the acetoacetyl CoA is then
cleaved to yield acetyl CoA in a reaction catalyzed by thiolase; the
acetyl CoA and succinate form substrates for the TCA cycle and
complex II of the electron transfer chain (ETC), respectively
[79]. This process may also result in increased succinate dehydroge-
nase activity reported following prolonged administration of the KD
in rodents [80]. These pathways are depicted in Figure 1. The effects
of the KDmay bemimicked by the use of KB supplements and there
is at least some evidence to suggest that the production of KBs in the
liver, which occurs in physiological conditions may be inhibited in
such a scenario although this is not universally accepted [9,81].

KBs are metabolized at a considerably higher rate than glucose
and enter the TCA cycle directly as previously discussed, thus
bypassing glycolysis [77,82]. Importantly, much evidence suggests
that at levels normally induced by ketogenesis, glycolytic ATP
generation diminishes and the generation of ATP by oxidative
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phosphorylation increases [83,84]. Although the β-oxidation of free
fatty acids (FFAs) is clearly a factor underpinning such observa-
tions, other mechanisms are also involved and we turn to a con-
sideration of these elements in the next section of this article.

Entry of Ketone Bodies and FAs into the Brain

When plasma KB concentration exceeds 4nM, the uptake of these
molecules into the brain increases ([85,86]; reviewed [87]). Several
research teams using in vivo PET techniques have reported a magni-
tude of increase in brain KB concentrations induced by a prolonged
KD in humans and rodents of approximately eightfold compared
with controls fed a normal diet [31,85,86]. However, the extent of
ketosis is of importance as experimental evidence suggests that mild
ketosis only produces a doubling of KB levels in the brain [88].

Plasma KB levels are also of importance because such levels are
proportional to increased KB levels and metabolism in the brain,
which in turn determine the global degree of KB-induced glucose
metabolism suppression within the CNS [31]. Evidence suggests
that the suppression of glucose metabolism in the CNS induced by
KBs increases by approximately 9% for every 1 nM increase in KB
levels in the plasma [30,89]. The importance of KBs as an energy
source in conditions of ketosis induced by diet or starvation is
graphically illustrated by the presence of data demonstrating that
these molecules may supply approximately 60–70% of the brain’s
energy needs in such conditions [90].

KBs and MCFAs (produced from MCT supplementation in
some versions of the KD, as discussed above) transverse the
blood–brain barrier (BBB) into the brain via the assistance of
monocarboxylate 1 and 2 transporters expressed on brain micro-
vascular endothelial cells [91,92]. The expression of these trans-
porters increases over 10-fold following a protracted period of
ketosis [93]. Polyunsaturated fatty acids (PUFAs) can also cross
the BBB although the enabling mechanisms are a matter of debate
and the assistance of calveolin-1, FA transporters, phospholipid-
bound FA translocase, and lipoprotein packaging have all been
posited (reviewed by [75]). However, current evidence suggests
that long-chain nonesterified FAs (NEFAs) cannot cross the BBB
at a sufficient rate to meet energy demands [94].

Consequences of Ketogenesis and Ketolysis in the CNS

Dietary induced ketosis is associatedwith increasedATP levels in the
brain [95–99]. Other in vivo effects include increased phosphocrea-
tine [100,101] and increased ATP synthase [100,102]. These changes
are associated with increased numbers ofmitochondria [95,100] and
improved levels of mitochondrial performance in glia [103] and
neurones [104]. It is important to note that this pattern of globally
increased metabolism is observed in patients with AD following
ingestion of the MCT diet and thus there is good reason to believe
that these effects would also occur in patients suffering from other
neurological and indeed neuroprogressive disorders [105].

There is also a significant and accumulating body of evidence
demonstrating a statistically significant reduction in oxidative and
nitrosative stress and upregulation of cellular antioxidant
defences in the brains of animals following prolonged dietary
ketosis ([106–111]; reviewed by [41]). This decrease would also
appear to be clinically significant as several authors have reported a
reduction in oxidative damage to neurones and increased neuronal
survival as a result of dietary induced ketosis especially in an
environment of cerebral glucose deprivation [109, 111–113].

Several mechanisms appear to underpin the reductions in CNS
oxidative stress induced by the KD, with ROS scavenging by KBs
being the simplest. Another route involves the maintenance of ETC
performance, particularly complexes I, II, and III resulting in
reduced ROS production by mitochondria [40,109,111,112].

Ingestion of KDs also leads to upregulation of Nrf2 in the brain
[43,45,46]. This is of paramount importance as activation of this
transcription factor activates amyriad of cellular antioxidant enzymes
and nonenzymatic elements of the cellular antioxidant response
system. The cellular antioxidant enzymes include superoxide dismu-
tase, catalase, thioredoxin reductase, glutathione peroxidase, glutathi-
one transferase, glutathione reductase, and the peroxidase family
[114,115]. The nonenzymatic elements include carbon monoxide,
thioredoxin, and reduced glutathione (GSH) [116].

Nutritional ketosis and increased levels of KB can also activate a
plethora of other transcription factors and increase levels of several
molecules, which can activate many signaling pathways resulting in
reduced oxidative stress and metabolic adaptation to energy pro-
duction via FA oxidation and ketolysis, which also have the effect of
reducing mitochondrial ROS generation (reviewed by [117]). For
example, theweight of in vivo data associates dietary-induced ketosis
with elevated levels and activity of AMP-activated protein kinase
(AMPK) in the brain in rodents and humans [118,119]. In vitro data
suggest that such upregulation in astrocytes occurs to amuch greater
degree in these glial cells than neurones [120].

Prolonged ketosis is also associated with upregulation of NAD+

[75,82,121,122]. Increased levels of NAD+ explain the upregulation
of the histone deacetylases sirtuin-1 (SIRT-1) and SIRT-3 seen in
the brains and peripheral tissues of animals fed a KD, as SIRTs are
NAD+-dependent enzymes [123–125].

There exist reports of FOXO3a, PGC-1α, and PPARγ elevation
in animals fed a KD [42,126,127]. This is consistent with the work
of several other authors who have reported that the upregulation of
these transcription factors is driven by the upregulation of NAD+,
AMPK, and SIRTs via a number of different routes [1,128]. The
upregulation of these molecules also leads to activation of Nrf2
[117], which provides another route for activation of this transcrip-
tion factor in addition to increases in NO and ROS levels [129].

The activation of the cascade described above results in
increased cellular antioxidant systems and a downregulation of
oxidative stress together with improved mitochondrial perfor-
mance generation and a series of long-termmetabolic adaptations
designed to improve the efficiency of FA oxidation via mecha-
nisms described in [130]. Clearly, the activation of signaling
pathways subsequent to KD activation of AMPK, NAD+, and
SIRTs explains the beneficial effects of dietary induced ketosis
on ATP production, mitochondrial function, and oxidative stress
in the brain, which are all therapeutic targets as far as the treat-
ment of neuroprogressive and neurodegenerative diseases is con-
cerned.

However, the data supplied by several research teams describing
the activation of PPARs in the CNS of animals following KD inges-
tion appear worthy of particular focus from the perspective of this
article for a number of reasons [127,131,132]. The first stems from
the fact that PPARα and PPARγ are the main transcription factor-
regulating ketogenesis and ketolysis and both PPAR isoforms are
activated by increased levels of FFAs in the periphery and brain, a few
days after the advent of ketosis [75,133,134]. The second is that
several authors have reported that the upregulation of PPAR iso-
forms in the brain results in a reduction in neuroinflammation
in vivo [125,126,135,136]. The third is that PPAR upregulation has
the capacity to rescue mitochondrial dysfunction in the CNS
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environment typical of neurodegenerative [137] and neuroprogres-
sive disorders [137,138].

Importantly, these effects extend to astrocytes. For example, the
in vivo reduction in increased PPAR levels in astrocytes reduces
mitochondrial dysfunction, decreases inflammation, and increases
cellular antioxidant defences [139–141]. These data are also of
importance from the perspective of improving astrocyte function
as all these factors are also involved in driving and maintaining a
reactive state in these glial cells [142].

Unsurprisingly, given the data discussed above, there are also an
accumulating number of in vivo and in vitro studies where the
authors report beneficial changes to astrocyte functions including
improved glutamate and potassium homeostasis via direct effects
on surface receptors [143,144]. There is also a growing awareness
that many of these effects ultimately arise from the effects of ketone
bodies and FAs translocated from the periphery on astrocyte
metabolism and the involvement of these glial cells in mediating
de novo ketogenesis in the brain. We will now move on to discuss
these elements beginning with the role of astrocytes in FA oxidation
and energy production.

Role of Astrocytes in Energy Production and Distribution

Astrocytes are regarded as themain site of FA oxidation in the brain
[145,146]. There is also an accumulating body of evidence to
support the view that astrocyte-derived KBs produced by FA oxi-
dation in an environment of glucose restriction can be a significant
source of oxidative fuel for neurones [147–150]. Indeed, there is a
developing consensus that KBs supplied by astrocyte-mediated FA
oxidation rather than KBs translocated from the periphery are the
dominant source of these molecules in the brain in a state of ketosis
[151,152]. This phenomenon is of paramount importance as far as
neurone function and survival in an environment of glucose hypo-
metabolism is concerned as the so-called lactate shuttle between
astrocytes and neurones, which provides the oxidative substrate for
neurones in physiological conditions, becomes compromised in
such an environment owing to its dependence on glycogenolysis
and glycolysis [153,154].

The reason for the dependence of the lactate shuttle on glycolysis
stems from the fact that the astrocyte filopodia responsible for the
release of lactate, either via monocarboxylate transporters or by
passive diffusion, is too narrow to accommodate mitochondria
[153,154]. There are numerous papers discussing the evidence
confirming the existence of an astrocyte–neurone lactate shuttle
in physiological conditions and detailing the mechanisms under-
pinning its operation and hence it will not be considered further
here. Readers interested in an in-depth treatment of this phenom-
enon are referred to an excellent review by Zhang et al. [155].

In vitro experiments have produced conflicting results regarding
the usage or otherwise of MCFAs as a substrate for FA oxidation
most notably with regard to octanoate where authors have either
reported that astrocytes do not appear to utilize this FA as a
substrate for KB production [156]. Another research team reported
a twofold increase in KB production following octanoate addition
and a 50% increase in the production of lactate following the
addition of decanoate to the culture medium [157]. However, the
weight of in vivo evidence is consistent with the latter findings as
several authors have reported significantly increased KB produc-
tion by astrocytes following assimilation of MCFAs translocated
across the BBB [158–160].

However, it is worthy of note that the preferred FA substrates of
astrocytes in the hippocampus may be different [160] and there is

some evidence to suggest that even long-chain FAsmay be utilized in
some circumstances despite their relative mitotoxicity [160]. Inter-
estingly, data suggest that the relative inhibitory effects ofMCFAs on
oxidative phosphorylation [161] may increase KB production in
astrocytes and improve the efficiency of the astrocyte–neurone
shuttle [157], although these observations could also be explained
by the inhibitory effect of MCFAs on glycolysis and the resultant
improvement in the efficiency of ketogenesis [161]. Finally, it should
be noted that MCFAs are not the only substrates enabling KB
production in astrocytes as these glial cells may utilize branched-
chain amino acids such as leucine for this purpose in certain cir-
cumstances [162]. Similarly, not all KB production by astrocytes is
destined for neurones as an appreciable amount is used for choles-
terol and lipoprotein synthesis [145].

Having discussed the role of astrocytes in ketogenesis and
ketolysis in the brain, we nowmove on to consider how ketogenesis
positively modulates the metabolism, signal transduction, and
receptor profiles of astrocytes, which may mitigate against the
neuropathological consequences of reactive astrogliosis. However,
before doing so, it is necessary to explain the origins and conse-
quences of this phenomenon.

Causes and Consequences of Astrogliosis

Causes of astrogliosis

Astrocytes are exquisitely sensitive to very small fluctuations in the
CNS intracellular environment and readily attain a reactive phe-
notype in the face of such changes. One acknowledged cause of
increased astrocyte reactivity is increased intracellular levels of
PICs, NO, and ROS secreted by activated microglia [163–
165]. Other triggers include glucose deprivation, increased levels
of ATP and other gliotransmitters, and activation of surface toll-
like receptors by commensal lipopolysaccharide (LPS) originally
translocated from the intestine. It is important to note that the
development of reactive astrogliosis provoked by these stimuli,
particularly the inflammatory mediators such as the PICs, ROS,
and NO, is accomplished via major changes in astrocyte gene
transcription patterns, which drive morphological, physiological,
and biochemical changes ([142]; reviewed by [166]).

Although there are a myriad of changes in signaling pathways in
activated astrocytes compared with those existing in these glial cells
in their physiological state, from the perspective of this article, the
most noteworthy change is the chronic activation of the NF-κB,
MAP kinase, and Jak/Stat pathways, which result in high intracel-
lular levels of ROS, RNS, and PICs (reviewed by [167]). It is
noteworthy that STAT-3 is of paramount importance as the weight
of evidence suggests that activity of this transcription factor is an
indispensable element in the development and maintenance of
reactive astrogliosis [168–170].

Readers interested in the details ofmechanisms underpinning the
advent and persistence of a reactive or dysfunctional state in astro-
cytes are invited to consult the work of [171] and [60]. However, the
key points to bear in mind during a perusal of the following sections
of this article are that many of the factors underpinning the loss of
homeostatic functions normally exerted by astrocytes in their phys-
iological state stem from the changes in transcription orchestrated by
the chronic activation of the pathways and transcription factors
discussed above and/or the ensuing increases in levels of PICs,
ROS, and RNS. These adversely affect the transcription and/or
function of crucial membrane receptors and impair mitochondrial
respiration and dynamics [59,172,173]. The importance of the latter
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is difficult to overemphasize as the homeostatic roles of astrocytes
depend on adequate performance of mitochondria [55,56,174], and
on a wider note, a host of neural–glial interactions also depend on
optimal mitochondrial function [175]. Hence, a therapeutic
approach, such as the KD, capable of reducing oxidative stress and
inflammation in the brain in vivo while improving mitochondrial
function has the potential to mitigate against the severity of astro-
gliosis and improve CNS homeostasis.

Consequences of astrogliosis

The normal role of astrocytes in regulating other dimensions of
CNS homeostasis such as neurotransmitter levels, water transport,
waste product clearance, ion homeostasis, and glucose and oxygen
delivery to neurones (reviewed by [176] and summarized in
Figure 2) are impaired when astrocytes are in a reactive state
[177,178]. These observations are underpinned by the fact that
astrogliosis results in adverse changes in astrocyte phenotype,
signaling pathways, and surface receptor expression, which nor-
mally enable these cells to perform their essential role in the
regulation of various dimensions involved in the maintenance of
CNS homeostasis as described above. Disruption of the neurovas-
cular unit owing to a loss of astrocyte end-feet and other cellular

protrusions is perhaps the most damaging physical change as far as
CNS homeostasis is concerned. The physical connection between
BBB epithelial cells and neurones is needed to deliver nutrients and
oxygen to the latter (reviewed by [179]). Examples of changes in
receptor levels and function [180] include oxidativemodification of
glutamate receptors leading to inhibition of astrocyte-mediated
glutamate uptake, nitrosylation of the gap junction channel con-
nexin 43 (Cx43), and several gap junction pannexins (reviewed by
[181]) leading to dysregulated calcium signaling and ATP transfer
between astrocytes and neurones and other astrocytes [182]. Astro-
gliosis is also associated with profound disturbances in potassium
homeostasis as a result of oxidative modification and downregula-
tion of Na+, K+-ATPase (NKA) [180], and the weak inwardly
rectifying Kir family potassium channel Kir4.1 [183,184]. The effects
of astrogliosis in disrupting CNS homeostasis are summarized in
Figure 3.

Given this information, it probably comes as no surprise to learn
that astrocyte dysfunction, astrogliosis, and the accompanying
global loss of the physiological functions of astrocytes in the regu-
lation of CNS homeostasis play amajor role in the development and
acceleration of most if not all neurodegenerative [185,186] and
neuroprogressive disorders [187,188]. In addition, treating the
causes and/or consequences of astrogliosis is a major therapeutic

Figure 2. The multiple roles of astrocytes in central nervous system homeostasis.
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objective [61,63,166]. How that might be achieved, at least in part,
via dietary induced ketosis will be discussed in the next section of
this article. In order to facilitate this endeavor, we will divide the
following section into effects on the glutamate–glutamine cycle,
glutamine synthetase, glutamate secretion, glutamate uptake via
EAATs, NKA, Kir4.1 receptors, aquaporin-4 (AQP4), gap junc-
tions, and KATP channels.

Nutritional Ketosis, Astrocyte Functions, and Astrogliosis

Effect of nutritional ketosis on the astrocyte
glutamate–glutamine cycle

There is evidence that the entry of KBs into astrocytes stimulates
mitochondrial metabolism and accelerates flux through the
TCA cycle resulting in a number of consequences including the
upregulation of the glutamate–glutamine cycle ([71,189–191];
reviewed by [144]). The mechanisms underpinning these obser-
vations are a matter of debate but stimulation of glycolysis,
enhanced efficiency of pyruvate utilization, and increased levels
of succinate to overcome a shortfall of oxaloacetate in an environ-
ment of glucose restriction all appear to be involved ([74,157,192];
reviewed by [193]).

The weight of evidence suggests that this phenomenon results in
increased synthesis of glutamine and upregulated levels of GABA
coupled with decreased synthesis of glutamate [71, 189–191, 194,
195], although the latter appears to be highly dependent on astro-
cyte KB concentration [196]. The existence of the glutamate–glu-
tamine cycle is limited to astrocytes as these glial cells uniquely
possess the two enzymes needed for its operation, namely pyruvate
carboxylase, which enables the synthesis of new TCA cycle inter-
mediates via the replenishment of oxaloacetate, and glutamine
synthetase, which enables the synthesis of glutamine [197,198].

These neurotransmitters must be continually re-synthesized as
uptake of GABA by astrocytes is limited and glutamate is used as a
substrate for oxidation to compensate for the huge energetic costs
of glutamate uptake (reviewed by [199]). Readers interested in the
biochemistry underpinning the glutamate–glutamine cycle and the
re-syntheses of glutamate and glutamine are invited to consult a

comprehensive review on these matters by O'Gorman Tuura et al.
[198].

However, there are some key points germane to the discussion
below. First, the cycle is highly dependent on energy supplied by
glucose oxidation and optimal mitochondrial function [200]. Sec-
ond, KBs are the preferred oxidative substrate for “powering” the
glutamate–glutamine cycle in the environment of cerebral glucose
hypometabolism seen in neurodegenerative and neuroprogressive
disorders [201]. Third, and perhaps expectedly, evidence of dys-
function or dysregulation of this cycle is present in at least some
regions of the brain in patients with SZ [202], MDD [203], BPD
[204], AD [205], HD [206], ALS [207], and PD [208]. Moreover,
impairment of this cycle is a major element in the development of
disturbed glutamate homeostasis, with glutamate excitotoxicity,
and reduced GABAergic signaling, which play a causative role in
the pathogenesis of most if not all neurodegenerative and neuro-
progressive conditions [209,210]. Finally, the weight of evidence
suggests that the ultimate source of glutamate and GABA dysho-
meostasis seen in these illnesses is the presence of chronic astro-
gliosis [211,212].

Nutritional ketosis, astrogliosis, and glutamate synthetase

Astrogliosis is associated with reduced activity of glutamine synthase
and GABA synthesis and relative failure of astrocyte-mediated glu-
tamate reuptake as well as disruption of the glutamate–glutamine
cycle [211–213]. Astrogliosis is also associatedwith increased expres-
sion of the cysteine/glutamate antiporter channel (Xc

�) resulting in
increased glutamate signaling and oxidative downregulation of the
astrocyte glutamate uptake receptors EAAT1 and EAAT2, which in
turn leads to the development of glutamate-mediated N-methyl-D-
aspartate (NMDA) receptor excitotoxicity [166,214,215]. Impaired
glutamate synthetase (GS) activity results in the accumulation of
glutamate and impaired glutamate uptake thus making a contribu-
tion to the development of excitotoxicity [216].

Several research teams have reported that GS activity in humans
and animals is downregulated in a cerebral environment of chronic
oxidative and nitrosative stress and that such downregulation
results in elevated intracellular glutamate and reduced glutamine

Figure 3. Disruption of central nervous system homeostasis resulting from astrogliosis.
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levels [217–220]. Moreover, there are replicated in vivo data dem-
onstrating that a major cause of GS inhibition in vivo is nitrosyla-
tion or nitration of functional residues secondary to excessive
NMDA receptor activity and perhaps even more importantly that
in vivo inhibition of extrasynaptic NMDA results in the upregula-
tion of GS activity and increased levels of glutamine [221,222].

This is of interest as a mechanism known to downregulate
NMDA activity in vivo is NO-mediated S-nitrosylation of func-
tional thiol groups in NMDA receptor subunits and animal studies
have reported raised NO levels in the CNS following consumption
of a diet aimed at inducing ketosis [223–225].

It is also noteworthy that ex vivo studies have demonstrated a
direct inhibitory effect ofMCFAs onNMDA receptor excitotoxicity
via the inhibition of NMDAAMPA subunits [226–228] which is of
interest as MCT supplemented versions of the KD produced sig-
nificant benefits in the treatment of patients with AD. Ex vivo data
also suggest a positive effect of MCFAs on astrocyte mitochondrial
biogenesis (reviewed by [229]).

Nutritional ketosis, astrogliosis, glutamate release, and
synthesis

There are some ex vivo and in vivo data suggesting that KBs
suppress the release of glutamate from astrocytes and neurones
by inhibiting the actions of vesicular glutamate transporters
(VGLUTs) and via an as yet undelineated mechanism [230]. The
reduction of glutamate synthesis by BHB in vitro in a dose-
dependent manner has also been reported [196]. An in vivo study
involving rodents conducted by Olson et al. also appears to be
worthy of consideration in the context of the potential beneficial
effects of the KD on glutamate and GABA homeostasis. These
authors reported that the reduction in glutamate and increase in
GABA levels seen in the hippocampus of their study animals was
effected by KD-induced changes to the microbiota [231].

Astrogliosis and EAAT function

However, despite the presence of data suggesting that diet-induced
ketosismay have beneficial effects on some drivers of glutamate and
GABA dyshomeostasis, it must be noted that there appears to be no
direct evidence that a KD exerts positive effects on the activity or
levels of astrocyte glutamate transporters (EAAT1 and EAAT2).
This is an important point as the weight of evidence suggests that
dysfunction and/or downregulated expression of EAAT2, which is
responsible for approximately 90% of glutamate reuptake by
humans astrocytes, is a major cause, if not the major cause, of
glutamate-mediated NMDA receptor excitotoxicity, which appears
to be causatively implicated in the pathogenesis and pathophysiol-
ogy of all neurodegenerative and neuroprogressive disorders
[232,233].

The results of human and animal studies point to a major cause
of such downregulated expression or dysfunction of these receptors
seen in all these illnesses as being the upregulated canonical NF-κB
signaling and elevated levels of PICs such as tumor necrosis factor
alpha (TNF-α) and interleukin (IL)-1β, ROS andRNS characteristic
of the intracellular environment of reactive astrocytes ([234];
reviewed by [233]). TNF-α appears to downregulate the transcrip-
tion of the EAAT2 gene [209,235] while IL-1β primarily has a
negative effect on the membrane density of the receptor by enhanc-
ing its endocytosis and sequestration in the cytoplasm
[236,237]. There is also evidence suggesting that the function of
EAAT2 (and indeed EAAT1) is compromised in

neurodegenerative and neuroprogressive illnesses as a result of
S-nitrosylation of crucial thiol residues, which play an indispens-
able role in their function (reviewed by [238]).

There is robust in vivo evidence that increasing ROS scavenging
and GSH production, using N-acetylcysteine, can increase EAAT
and decrease Xc

� expression in reactive astrocytes [239]. Hence, the
consumption of a KD, which also results in increased GSH pro-
duction in the brain via the upregulation of Nrf2 [43,46] would be
expected to have a similar beneficial effect. There are also an
increasing number of publications reporting reduced levels of
NF-κB and PIC levels in astrocytes and indeed other regions of
the brain following ingestion of various manifestations of the KD
[1,240] and hence the diet seems to have the capacity to exert a
corrective influence on several elements driving the EAAT2
downregulation seen in neurodegenerative and neuroprogressive
disorders.

In addition, EAAT transcription is a downstream target of
PPAR whose upregulation has a range of neuroprotective effects
in neuropathological conditions in vivo [241,242]. This is of par-
ticular importance as there are several studies reporting upregula-
tion of PPAR activity following the prolonged ingestion of a KD and
this provides another mechanism by which diet-induced ketosis
could upregulate the transcription of EAATs in reactive astrocytes
[127,131]. In addition, there is an accumulating body of data
suggesting that the upregulation of PPAR reduces neuroinflamma-
tion, which is of interest because the presence of this phenomenon
is amajor trigger of increased astrocyte reactivity as discussed above
[136]. Furthermore, PPAR activation may rescue the compromised
mitochondrial bioenergetics and dynamics seen in diseases such as
AD and SZ [137,138].

Nutritional ketosis, astrogliosis, and NKA function

This is of paramount importance from the perspective of this
article. Glutamate and GABA uptake are energy consuming pro-
cesses as previously discussed [199,243] due in part to the reliance
of EAATs on the option function ofNKA receptors which coexist in
the same molecular complex [244] (reviewed by [243]). This
enzyme, as the name suggests, is in turn dependent on adequate
supplies of ATP [245] and hence its function is likely to be com-
promised in an environment of impaired bioenergetics character-
istic of astrocytes in their reactive state [55].

Improving the function of NKA is clearly a desirable therapeutic
target and in that context, it is important to note that several
research teams have reported that protracted, acute, or intermittent
ketosis activates or increases the expression NKA pumps in the
brain [68,246,247]. It should be stressed that this finding is not only
important from the perspective of glutamate homeostasis as the
interplay between NKA and EAATs, but also plays an important
role in regulating levels of K+ ions throughout the CNS [248]. From
the perspective of K+ homeostasis, however, the weight of evidence
suggests NKA is the most important player in this molecular
partnership and plays the dominant role in K+ uptake into astro-
cytes, which in turn regulates neural function and excitability
[167]. The dependence of K+ uptake into astrocytes on NKA
activity goes some way to explaining evidence supplied by several
authors confirming that the maintenance of K+ homeostasis is the
most energy intensive role of astrocytes [249] and thus dependent
on adequate supplies of ATP [250,251]. The function of NKA and
its indispensable role in astrocyte is well documented and hencewill
not be considered here but any readers interested in a detailed
consideration of the biochemistry underpinning its structure and
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functions are referred to excellent reviews by Roy et al. [245] and
Rodrigo et al. [252].

However, from the perspective of this article, it should be
emphasized that the activity of NKA is not just dependent on
adequate supplies of ATP but is heavily influenced by the redox
state of the intracellular and extracellular environment. Unsurpris-
ingly, animal and human studies confirm that oxidative and nitro-
sative stress inhibits NKA activity in rat hippocampus and
prefrontal cortex [253,254] and in patients with SZ and BPD
[255,256]. A combination of oxidative stress would also appear to
explain the downregulation of NKA activity seen inMDD, AD, and
other neurodegenerative diseases (reviewed by [257]). These are
important observations as accumulating evidence suggests that
downregulation of NKA is partly responsible for the impaired
ability of reactive astrocytes to regulate K+ homeostasis [211,258].

The causative role played by oxidative and nitrosative stress in
NKA downregulation is further emphasized by studies reporting
that prolonged use of antioxidant combinations such as vitamin C
and E or N-acetylcysteine, α-tocopherol, and α-lipoic acid can
produce clinically significant increases in NKA activity in the brain
and periphery [259,260]. Thus, there is a prospect that the well-
documented antioxidant properties of the KD may exert a similar
effect assuming a similar effect size and may well underpin the
observations reporting a positive effect of the KD on improving
NKA function discussed above. However, there may be another
mechanism by which nutritional ketosis may improve NKA func-
tion, which would appear to be under-discussed.

Briefly, several authors have also reported strong negative cor-
relations between the extent of membrane lipid peroxidation and
NKA activity in vivo in illnesses as diverse as cardiovascular disease,
SZ, and BPD [255,256,261]. The relationship between increased
membrane lipid peroxidation and increasing NKA dysfunction
appears to be mediated by decreased membrane fluidity and PUFA
content [260,262]. This is of importance as several studies have
reported a significant increase in NKA activity following dietary
supplementation with PUFAs [260,263–265]. These observations
may be explained by reference to data confirming that dietary
PUFAs can integrate into lipid membranes in the periphery and
the brain combatting the drivers of lipid peroxidation and increas-
ing membrane fluidity via mechanism (reviewed by [266]). In this
context, it is noteworthy that the KD can elevate levels of PUFAs in
the circulation, cerebrospinal fluid, and brain [267,268] and hence
this property may afford yet another route by which diet-induced
ketosis might upregulate NKA levels and function. There is also
some evidence to suggest that reducing lipid membrane peroxida-
tion and improving membrane stability in astrocytes may help to
increase the expression of another receptor, which also plays an
indispensable role in K+ homeostasis mediated by these glial cells,
namely the aforementioned weak inwardly rectifying Kir family
containing Kir4.1 [269–271]. This is important as the downregula-
tion of this receptor in reactive astrocytes is the othermajor cause of
impaired K+ homeostasis in the brain [183,184].

Nutritional ketosis, astrogliosis, and Kir4.1 function

These findings are a reflection of the fact that astrocyte-mediated K+

buffering is mainly enabled by the presence of Kir family potassium
channels containing Kir4.1 and Kir4.1/5.1 subunits [272,273]. Much
evidence suggests that the Kir4.1 is the most important channel in
astrocyte-mediated spatial buffering andmay be responsible for up to
45% of potassium buffering in the hippocampus [274,275]. Readers
interested in regarding the structure and mechanisms underpinning

the operation of Kir4.1 and other astrocyte Kir family channels are
invited to consult the work of Brill et al. [276].

Kir4.1 activity has been associated with several other elements
involved in astrocyte structure and function such as the regulation
of astrocyte cell volume, astrocyte K+ conductance, resting mem-
brane potential, and glutamate uptake [277,278]. Importantly, sev-
eral research teams have reported that inhibition of this channel
leads to increased K+ concentrations in the extracellular space and
impaired glutamate uptake [279,280]. The resultant increase of
glutamate in the synaptic cleft resulting from Kir4.1 inhibition
results in abnormal modulation of synaptic transmission and net-
work level communication [277,281] and is associated with
the development and maintenance of neuroinflammation
[282,283]. The pathological significance of Kir4.1 downregulation
in a neuroinflammatory environment is further emphasized by the
results of several in vivo studies reporting reduced expression
and/or function of this receptor in several neurodegenerative dis-
eases, most notably multiple sclerosis and AD [284–287].

Downregulation of Kir4.1 is also seen in patients withMDD [288]
and there is some evidence to suggest that reduced Kir4.1 expression
plays a causative role in the development of SZ and ASD [289].

Given the potential therapeutic importance of improving Kir4.1
expression and/or function, it is encouraging to note that there is
evidence that some of the elements responsible for the downregula-
tion of astrocytic Kir4.1 receptors in an environment of chronic
neuroinflammation are very similar if not identical to the drivers of
impaired EAAT expression and activity discussed above with
increased IL-1 [270,282,290] and glutathionylation [291] playing
important inhibitory roles. Hence, the proven capacity of nutri-
tional ketosis to reduce levels of oxidative stress and inflammation
in the brain discussed on several occasions abovemight be expected
to improve the expression and function of this receptor assuming
that such reductions are of sufficient magnitude needed to produce
such an effect. Other factors known to reduce Kir4.1 expression
in vivo seen in neurodegenerative and neuroprogressive conditions
include high levels of extracellular glutamate, which stimulate
NMDA receptors located on astrocytes leading to Kir4.1 down-
regulation [292–294].

Hence, improvements in glutamate reuptake by astrocytes
coupled with amelioration of glutamate dyshomeostasis, which
may stem from nutritional ketosis would be expected to produce
concomitant improvements in Kir4.1-mediated astrocyte K+ buff-
ering. Increased levels of ATP fostered by the bioenergetic and
metabolic consequences of induced ketosis may also be of thera-
peutic benefit as far as improving K+ homeostasis mediated by
Kir4.1 is concerned as the optimum function of this receptor is also
dependent on adequate levels of ATP [285,286,295,296]. Conse-
quently, the documented improvements in oxidative stress, neu-
roinflammation, glutamate homeostasis, and ATP production in
the CNS following prolonged ingestion of various KDs would be
expected to result in beneficial effects on Kir4.1 levels and function.

Nutritional ketosis, astrogliosis, AQP4, and gap junction
function

There are replicated in vivo data confirming that nutritional ketosis
and/or BHB administration may upregulate AQP4 activity [70,297]
and normalize Cx43 gap junction function [298–300]. This is also
important from the perspective of K+ homeostasis as the activity of
Kir4.1 channels in astrocyte-mediated K+ buffering is aided by the
activity of AQP4 (reviewed by [301]) and astrocyte gap junctions
[275].
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The expression, structure, and activity of AQP4 is significantly
compromised in the environment of chronic neuroinflammation seen
in neurodegenerative and neuroprogressive disorders [302,303].
These ROS- and NO-mediated alterations lead to compromised
performance of the receptor in regulatingK+ homeostasis and several
other dimensions of CNS homeostasis such as water balance, gluta-
mate uptake, adult neurogenesis, and astrocyte migration (reviewed
by [304]). Impaired expression of AQP4 perpetuates and exacerbates
neuroinflammation and astrogliosis and this phenomenon also
underpins the detrimental role played by this receptor in the path-
ophysiology of AD, PD, MDD, and ASD [305] (reviewed by [303]).

Astrocytic Cx43 gap junctions and pannexin hemichannels are
held in an open configuration in a state of chronic neuroinflamma-
tion and oxidative stress as a result of the S-nitrosylation and oxida-
tive modification of regulatory cysteine thiol motifs leading to
conformational changes and loss of functional plasticity (reviewed
by [306,307]). This compromised functionnot only impairs their role
in K+ homeostasis but also negatively impairs astrocyte-mediated
glutamate uptake and dispersal [308,309]. There is also evidence that
a state of chronically open gap junctions induces and exacerbates
neuroinflammation [308,309] (reviewed by [310]).

These consequences would appear to underpin at least in part
evidence implicating gap junction andpannexin hemichannel dysfunc-
tion as another causative factor in the development of neurodegener-
ative and neuroprogressive disorders [309,311] (reviewed by [312]).

Nutritional ketogenesis, astrogliosis, and KATP channel function

Several animal studies have reported that prolonged ingestion of the
KD or administration of the KD results in the opening of Kir6.1
family KATP channels located in cell plasmamembranes (sKATP) and
in the outer membranes of mitochondria (mtKATP) [44, 313–315]. It
could be argued that this effect results from increasing ATP levels,
which are increased following ingestion of various KDs as discussed
above. However, given the fact that these channels are opened in an
environment of lowATP and highATP [316,317] and the significant
increase in ATP production in the brain induced by the KD, it is
possible that KATP opening ismediated by decreasing oxidative stress
and neuroinflammation. This argument is strengthened by evidence
demonstrating inhibition of KATP channels by glutathionylation in
an environment of increased oxidative stress [309–311, 318].

Irrespective of the mechanisms underpinning such upregula-
tion, however, there is evidence to suggest that increased activity of
these channels also has positive consequences for astrocyte func-
tion. For example, one such consequence is improved sequestration
of K+ into mitochondria via a mechanism, which is similar in many
respects to the mechanism enabling the sequestration of iron
[312,313]. There is also evidence, albeit in vitro, of a positive
association between the activation of astrocytic mtKATP channels
and upregulation of electrical coupling between astrocytes in the
hippocampus which is an effect mediated via increased efficiency of
Cx43 gap junction function secondary to upregulated ERK signal-
ing in astrocytic mitochondria (reviewed by [299]). It is also note-
worthy that opening of astrocyte mtKATP channels may also be
important from the perspective of CNS homeostasis as its upregu-
lation appears to be an important element in maintaining the
stability of the wider astrocyte neurovascular unit [314].

There are also replicated data suggesting that opening mtKATP

channels may make a significant contribution to astrocyte survival
in an environment of chronic inflammation and oxidative stress by
inhibiting the translocation of Bax and the release of cytochrome c
oxidase from mitochondria into the cytosol thereby inhibiting

ROS- or TNF-mediated apoptosis [315–317]. Finally, one team of
researchers has produced tantalizing evidence of an association
between the opening of KATP channels and the inhibition of astro-
cyte activation and the prevention of astrogliosis [318].

Caveats and Uncertainty

Although the data reviewed above suggest that BHB entry into the
brain is amajor driver of the therapeutic benefits of the KD or of KB
supplements, it should be emphasized that other factors may be
involved and the mechanisms underpinning such therapeutic ben-
efits are not completely understood either in the case of epilepsy or
otherwise. For example, several authors have reported profound
changes in the composition of the microbiota following the admin-
istration of a KD in children with intractable epilepsy, which appear
to be important if not essential for seizure control [231,319,320]. In
general, increases in Firmicutes and Actinobacteria are seen in
KD-responding children. Although, increases in Alistipes and
Ruminococcaceae are apparent in nonresponders [319]. Similar
patterns have been reported by authors investigating KD effects
in animal models of epilepsy, with a positive effect being associated
with changes in the composition of the microbiota associated with
relative increases in levels of Akkermansia and Parabacteroides
[231]. Data suggesting that fecal transplants based on Akkermansia
and Parabacteroides also exert an antiseizure effect are also of
interest [231]. The association between changes in the microbiota
and improved seizure control can be understood in the context of
accumulating evidence demonstrating that the composition of the
microbiota exerts profound effects on metabolism and inflamma-
tory status via numerous mechanisms such as influencing levels of
short-chain FAs and intestinal barrier integrity [321,322]. For
example, increased levels of Akkermansia and Parabacteroides
increase intestinal barrier integrity via a positive effect on epithelial
tight junction proteins and hence reduce the translocation of
commensal antigens into the blood, the latter being a powerful
driver of peripheral inflammation [323–325]. Elevated levels of
BHB also result in the suppression of peripheral inflammation via
the inhibition of NF-κB and the NLRP3 inflammasome (reviewed
by [1]). This latter point is important because peripheral inflam-
mation is also a driver of pro-inflammatory dysbiosis via mecha-
nisms explained in [326] and [321]. Hence, the reduction in
peripheral inflammation seen in individuals following protracted
consumption of a KD could potentially explain the positive effects
on the composition of the gut population seen above, which in turn
could make an independent contribution to the reduction of periph-
eral inflammation. This is an important point because peripheral
inflammation in the guise of elevated PICs is a major driver of
microglial and astrocytic activation, proliferation and/or dysfunction
[327,328], which are all involved in the development of severe
intractable epilepsy [329,330]. Hence, it is tempting to conclude that
the reduction in peripheral inflammation explains the positive effects
of a KDon seizure control and on themicrobiome.However, rodents
consuming a KD have an increased GABA/glutamate ratio in their
brains, which appears to stem from positive changes to the compo-
sition of themicrobiota [278]. This observation is supported by other
lines of evidence suggesting that manipulation of the gut commensal
population can exert positive effects on glutamatergic neurotrans-
mission, which is compromised in patients with intractable epilepsy
and neuroprogressive disorders [331–333]. In addition, the reduc-
tion of dysbiosis or positive changes to the composition of the
microbiota can exert a number of additional neuroprotective effects
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mediated via the enteric nervous system and the vagus nerve
(reviewed by [326]). Thus, the positive effects on seizure control
effected by the KD associated with changes in the microbiota are
likely underpinned by multifactorial mechanisms.

There is also evidence to suggest that a KD may exert antiseizure
and neuroprotective effects by inducing a unique metabolic state of
increased serum leptin in combination with reduced serum insulin
[334–337]. This state is associated withmodification of the PI3k/Akt/
mTOR signaling axis and AMPK levels and therefore may be respon-
sible for the reduced levels of mTOR and Akt seen in the hypothal-
amus following prolonged intake of a KD [338,339]. Increased leptin
in the brain may result in improved function of KATP channels,
inhibition of AMPA receptors, and improved function of NMDA
receptors via a mechanism dependent on increased PI3K signaling
[340,341]. Reduced levels of insulin in the periphery in patients with
metabolic syndrome or type 2 diabetes mellitus, frequently seen in
patients with neuroprogressive disorders [342], can also exert neuro-
protective effects by reducing the translocation of ceramide into the
CNS which is often described as the liver–brain axis of neurodegen-
eration (reviewed by [343]). The range of neuroprotective effects
potentially resulting from a metabolic state of increased leptin and
reduced insulin in the periphery and the mechanisms involved are
numerous and readers interested in pursuing this area are invited to
consult an excellent review of the subject by [339].

An attempt at explaining the neuroprotective effects of induced
ketosis or ketonemia is further complicated by evidence suggesting
that a low glycemic index diet may also exert antiseizure activity
[344]. This neuroprotective effect could potentially be explained by
reduced insulin and triglyceride levels coupled with improved
insulin resistance, which both induce anti-inflammatory effects
and hence would be expected to reduce levels of glial cell pathology
via mechanisms discussed above [345,346]. However, a perusal of
the literature suggests that low glycemic carbohydrates have largely
been used in the context of a KD and hence the effectiveness of this
approach is difficult to assess [347]. A study comparing the effects
on seizure control of a low glycemic diet, which does not involve the
induction of ketosis compared with the use of low glycemic carbo-
hydrates in the context of a KDmay well provide clarity in this area.

Conclusions

This article illustrates how the entry of KBs and FAs into the CNS,
as a result of a ketotic state resulting from nutritional ketosis, has
effects on the astrocytic glutamate–glutamine cycle, GS activity, and
on the function of VGLUTs, EAATs, NKA, Kir4.1, AQP4, Cx34,
and KATP, as well as on astrogliosis, which would tend to mitigate
the changes seen in a wide range of neurodegenerative and neuro-
progressive disorders. These disorders include, but are not limited
to, AD, PD, HD, SZ, BPD, MDD, and ASD. It is therefore plausible
to hypothesize that nutritional ketosis may have therapeutic appli-
cations in the treatment of such disorders. However, it must also be
stated that the KD results in a number of effects in the periphery
such as changes in the composition of the microbiota, and alter-
ations in levels of leptin and insulin, which combined with a
reduction of inflammation, may also contribute to the antiseizure
and neuroprotective effects of induced ketosis or ketonemia.
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Glossary

ACA acetoacetate
AD Alzheimer’s disease
ALS amyloid lateral sclerosis
AQP4 aquaporin-4
ASD autistic spectrum disorder
BBB blood–brain barrier
BDNF brain-derived neurotrophic factor
BHB β-hydroxybutyrate
BPD bipolar disorder
CNS central nervous system
Cx43 connexin 43
ETC electron transfer chain
FA fatty acid
FFA free fatty acid
GS glutamate synthetase
GSH reduced glutathione
HD Huntington’s disease
KB ketone body
KD ketogenic diet

LPS lipopolysaccharide
MCFA medium-chain fatty acid
MCT medium-chain triglyceride
MDD major depressive disorder
NEFA nonesterified fatty acid
NKA Na+, K + -ATPase
PC pyruvate carboxylase
PD Parkinson’s disease
PIC pro-inflammatory cytokine
PUFA polyunsaturated fatty acid
RNS reactive nitrogen species
ROS reactive oxygen species
SIRT sirtuin
SOD superoxide dismutase
SZ schizophrenia
TCA tricarboxylic acid
VGLUT vesicular glutamate transporter
Xc

- cysteine/glutamate antiporter
channel
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