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Abstract

The assumption that the coronary capillary blood flow is exclusively regulated

by precapillary vessels is not supported by recent data. Rather, the complex

coronary capillary bed has unique structural and geometric characteristics that

invalidate many assumptions regarding red blood cell (RBC) transport, for

example, data based on a single capillary or that increases in flow are the result

of capillary recruitment. It is now recognized that all coronary capillaries are

open and that their variations in flow are due to structural differences, local

O2 demand and delivery, and variations in hematocrit. Recent data reveal that

local mechanisms within the capillary bed regulate flow via signaling mecha-

nisms involving RBC signaling and endothelial-associated pericytes that con-

tract and relax in response to humoral and neural signaling. The discovery

that pericytes respond to vasoactive signals (e.g., nitric oxide, phenylephrine,

and adenosine) underscores the role of these cells in regulating capillary diam-

eter and consequently RBC flux and oxygen delivery. RBCs also affect blood

flow by sensing PO2 and releasing nitric oxide to facilitate relaxation of peri-

cytes and a consequential capillary dilation. New data indicate that these sig-

naling mechanisms allow control of blood flow in specific coronary capillaries

according to their oxygen requirements. In conclusion, mechanisms in the cor-

onary capillary bed facilitate RBC density and transit time, hematocrit, blood

flow and O2 delivery, factors that decrease capillary heterogeneity. These find-

ings have important clinical implications for myocardial ischemia and infarc-

tion, as well as other vascular diseases.
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1 | INTRODUCTION

The primary function of the cardiovascular system is the
transportation of oxygen to cells, and “it is in the

microcirculation where the final local determinant of
oxygen supply, oxygen demand and their regulation are
decided” (Pittman, 2013). Coronary blood flow is closely
connected to myocardial contraction and is influenced by
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metabolic and myogenic autoregulation. Increases in O2

demand, as occur during exercise, are mostly met by
increases in coronary blood flow. Unlike other organs, arte-
rial flow is almost exclusively diastolic, whereas venous flow
is predominantly systolic (Chilian & Marcus, 1982), and
endo-myocardial flow is more complex than epi-myocardial
flow due to the higher surrounding interstitial pressure
(Fibich et al., 1993). Since the coronary capillary flow is
heterogeneous, oxygen diffusion in the microcirculation
needs to be considered because it is likely the primary deter-
minant when the flow is impaired (reviewed by Zuurbier
et al., 1999).

Because the capillary network is the final pathway for
oxygen delivery to cardiomyocytes, understanding the reg-
ulation of this pathway may explain the heterogeneities in
red blood cell (RBC) fluxes and oxygen supply. Recent evi-
dence reveals an active role for capillaries in regional dila-
tion and constriction, which affects blood flow, RBC
density distribution and velocity, and consequently oxygen
delivery (Clavica et al., 2016; Lee et al., 2021; Schmid
et al., 2015; Špiranec et al., 2018; Zhao et al., 2020).

A greater O2 extraction for a given level of arterial
flow can be achieved by an increase in the arteriolar con-
tent of O2, which is the product of hemoglobin concentra-
tion and O2 saturation, and a small amount dissolved in
the plasma. Other important considerations are erythro-
cyte transit time in the capillaries, hematocrit, the geom-
etry and density of the capillary bed, and the
heterogeneity of capillary perfusion. O2 delivery in the
myocardial capillary bed is more complex than in most
other organs, because of the effects of extravascular forces
and high O2 demand. This review addresses the roles of
structural and functional components of the coronary
capillary bed and presents recent evidence that the coro-
nary capillaries play a regulatory role in their regional
blood flow and O2 delivery to the cardiomyocyte.

2 | CAPILLARY MORPHOLOGY
AND GEOMETRY

Myocardial blood flow and oxygen delivery are facilitated
by the morphology, geometry, and organization of the
capillary bed. Accordingly, these characteristics are
closely linked to our understanding the physiology and
mechanics of the capillary circulation and are discussed
in this section of the review.

2.1 | Morphometric characteristics

Because of its dependence on aerobic metabolism and its
high metabolic demand, the myocardium is characterized

by a very extensive capillary network, a topic reviewed by
Tomanek (2013, pp 73–74), and several morphometric
parameters that provide insights into capillary functional
parameters. Capillary length density (LV), rather than
numerical density (NV), is the best quantitative measure
of the capillary bed (Tomanek et al., 1991). Capillary
diameter and volume density (Vv) are morphological
parameters related to capillary perfusion, while surface
density (Sv) is a key parameter for oxygen delivery. Extra-
cellular regions between capillaries and cardiomyocytes
seen in micrographs are usually artifacts associated with
tissue processing. Capillaries abut cardiomyocytes and
often indent into cardiomyocytes (Figure 1a,b). By inde-
nting into the surface of a cardiomyocyte, the size of a
capillary domain (the region of cardiomyocytes that
receives O2 from a capillary) is reduced. This feature is
an adaptation most notable in hearts exposed to chronic
hypoxia (Lund & Tomanek, 1980).

2.2 | Organization of the capillary bed

As seen in Figures 1c,d, collateral branches in the coro-
nary capillary bed are common and affect the flow and
hematocrit distribution, as discussed subsequently in this
review. A critical organizational feature of the capillary
channels is that no cardiomyocyte is devoid of an arterio-
lar portion (relatively O2-rich) adjacent capillary. This
arrangement, illustrated in Figure 2, indicates that at any
given level of a cardiomyocyte both venular and arterio-
lar portions of capillaries are present, an arrangement
that facilitates a more even O2 availability for each car-
diomyocyte. A second, compensatory structural feature
for minimizing the longitudinal variation in capillary PO2

is that the capillary network of venous capillaries is
denser than their arterial counterparts, and therefore
facilitates a more homogeneous tissue oxygenation (Batra
et al., 1989; Lücker et al., 2015; Rakusan et al., 1997).
These data suggest that such a structural arrangement in
microvascular design theoretically provides improved
geometrical conditions.

2.3 | Structural complexity of the
capillary bed and heterogeneity of capillary
spacing and perfusion

Heterogeneity of blood flow and myocardial oxygenation
are consequences of capillary spacing heterogeneity
(Hoofd et al., 1987; Rakusan & Turek, 1985), as well as
the heterogeneities of RBC distribution and O2 supply, all
of which “leads to heterogeneity in microvascular perfu-
sion and unique hemodynamic effects” (Goldman (2008).
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Moreover, the myocardial capillary bed is characterized
by segments with bifurcations and anastomoses
(Figure 1c,d), an architecture that significantly affects
hemodynamics and perfusion, including flow velocity,
RBC distribution, shear rate, and partial oxygen pressure
(Pries & Secomb, 2003).

2.4 | Increased blood flow is not a
consequence of capillary recruitment

The assumption that all capillaries in the heart are not per-
fused during resting conditions was originally based on rat
heart experiments that identified open capillaries on the
basis the presence of an RBC (Bourdeau-Martini
et al., 1974; Henquell & Honig, 1976; Korecky et al., 1982),
and led to the conclusion that inter-capillary distances
decreased when O2 demand increased during hypoxia and

increased when O2 demand decreased during hyperoxemia.
Because intracapillary spacing between RBCs (termed
plasma gaps) varies considerably with one-third of the gaps
exceeding 5 μm (Honig et al., 1989), the distribution vari-
ability is now well accepted (Schmid et al., 2015) and the
absence of an RBC in a capillary cross-section does not sig-
nify a flow-free channel. Indeed, by using fluorochromes to
study perfusion in hearts during rest and during hypoxia,
Vetterlein et al. (1982), established that, although plasma
passage is inhomogeneous, (1) all capillaries are labeled
within 5 s, and (2) hypoxia did not increase the number of
perfused capillaries containing the label. Moreover, rodent
studies (Vetterlein et al., 1989; Vetterlein & Schmidt, 1984)
provided data documenting that increases in coronary
blood flow in response to epinephrine or hypoxia caused
elongation of cardiomyocytes and thereby increased the
numerical density of both cardiomyocytes, but not their
numerical ratio. Thus, the decrease in cardiomyocyte

FIGURE 1 Myocardial capillaries in

electron micrographs (a,b) reveal

capillary (CAP) endothelial cells

(EC) abutting the sarcolemma of

cardiomyocytes (canine heart). A

capillary network seen in a rat ventricle

is displayed by the coronary cast

technique after digestion of all tissue (c).

Note the branching and anastomoses of

the network, which is provided in

tracings of selective portions of the cast

(d); multiple anastomoses are seen at the

asterisk. The bar length represents

10 μm in a, 0.5 μm in b and 50 μm in c
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diameters decreased the distances between capillaries.
Their work also documented that the number of capillaries
(revealed by basement membrane labeling) and the num-
ber of perfused capillaries (fluorescein plasma labeling)
were identical. Moreover, even a seven-fold increase in cor-
onary flow of the canine heart did not result in the recruit-
ment of additional capillaries (Eliasen & Amtorp, 1985a),
which further supports the conclusion that increases in
myocardial capillary perfusion are not a consequence of
capillary recruitment.

2.5 | Capillary bifurcations

Capillary RBC heterogeneity and flow distribution are due,
in large part, to a nonuniform partitioning or “phase separa-
tion” of RBCs at bifurcations of the network (Klitzman &
Johnson, 1982). Moreover, the RBC decrease at bifurcations
is more pronounced as the angle of the bifurcation increases
(McHedlishvili & Varazashvili, 1982). The importance of
bifurcation angle and daughter vessel diameter in the distri-
bution of RBCs has been documented by data indicating
that more RBCs tend to enter the high flow ratio daughter
branch, whereas the low flow branch tends to draw a
higher proportion of plasma (Hyakutake & Nagai, 2015;
Secomb, 2016). These data illustrate how structural factors
contribute to heterogeneity of RBCs in the microcirculation
(Figure 3).

The recognition that capillary flow, although variable,
does not cease in coronary capillaries, indicates that
attention can now focus on the mechanisms within the

capillary bed that regulate flow and cardiomyocyte oxy-
genation. As detailed in this review, these mechanisms
facilitate increases in hematocrit, blood flow, and blood
flow homogenization (Angleys & Østergaard, 2020;
Østergaard, 2020). Even in skeletal muscle, noted a
decade ago, a longitudinal RBC flux, rather than capillary
recruitment is the major factor in meeting O2 demand
(Poole et al., 2011).

3 | CAPILLARY REGULATION OF
BLOOD FLOW AND OXYGEN
EXTRACTION

Since the length density of capillaries in the heart is more
than 100 units greater than arterioles, as documented in
animal models (Chen et al., 1994; Dedkov et al., 2014;
Lamping et al., 2005; Wang et al., 2003), and humans
(Dedkov et al., 2006), cardiomyocytes are nearly totally
dependent on oxygen derived from capillaries. It is well
known that capillaries function in coupling blood flow
and muscle metabolism (Murrant & Sarelius, 2000), a
coupling that occurs by not one, but several mechanisms,
as described in this review. Although coronary capillaries
do not close, they display vasomotion in response to vaso-
active substances via their closely associated contractile
pericytes, a process that only recently has been
recognized.

3.1 | Capillary transit time, diameter,
and hematocrit

3.1.1 | RBC capillary transit time is a major
determinant of O2 delivery

As noted in canine hearts, a large transient time hetero-
geneity becomes homogeneous only during maximal
vasodilation (Rose & Goresky, 1976), and the time spent
by RBCs traversing the microcirculation in rabbit hearts
is a major determinant of O2 transport to cardiomyocytes
(Allard et al., 1993). Moreover, experiments in closed-
chest dogs revealed that cardiac metabolic activation pro-
longed capillary RBC transit times and thereby decreased
their heterogeneity (Cousineau et al., 1983). Normal car-
diac function depends on the balance between O2 supply
and demand, and this balance is regulated in large part
by capillary transit time (Østergaard et al., 2014;
Østergaard (2020). To affect capillary flow homogeneity
and adequate tissue oxygen, high blood flow must be
accompanied by a decrease in transit time heterogeneity.
Thus, the distribution of capillary transit times is a major
determinant of the extraction of diffusible substances and

FIGURE 2 Venular and arteriolar capillary segments are

staggered along the length of a cardiomyocyte providing a more

optimal level of oxygen. As illustrated here, both types of segments

are seen along the side of the cardiomyocyte
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indicates that a single capillary transit time is not repre-
sentative of the whole. This finding underscores the sig-
nificance of longer myocardial transit times and higher
O2 extraction levels with lower blood flow and higher
vascular resistance in highly trained athletes (Heinonen
et al., 2014).

3.1.2 | Role of capillary diameter in
perfusion

In vitro experiments, utilizing models of cerebral micro-
vascular networks, suggest that capillary dilation causes
increases in RBC line density and residency time in the
dilated segment of the network, and thus, facilitates a
greater oxygen supply to the corresponding tissue
(Clavica et al., 2016). Moreover, a significant dilatory
response of canine epicardial coronary capillaries occurs
during reactive hyperemia (Kiyooka et al., 2005). Thus,
the larger capillary diameter facilitates a greater volume
of blood flow through the capillary and thereby increases
O2 delivery (Korpisalo et al., 2011).

3.1.3 | Microvascular hematocrit

An increase in RBC density is associated with a higher
hematocrit and consequently a better O2 delivery/con-
sumption, as occurs in men adapted to high altitude

(Grover, 1973). They were found to have a 30% increase
in O2 extraction from coronary blood, associated with a
higher RBC volume, compared to a sea-level control
group. The fact that in the distal portions of coronary
capillaries, the distances between RBCs is decreased pro-
vides a compensatory mechanism for minimizing the
drop in VO2 (Silverman & Rakusan, 1996). In dogs, the
importance of hematocrit distal to a coronary artery with
a decreased blood flow revealed that both hematocrit and
oxygen delivery to the myocardium in the stenotic distal
artery was lower than control values and was accompa-
nied by an increase in the fraction of plasma volume
(Eliasen & Amtorp, 1985b). Moreover, graded coronary
stenosis in the porcine left ventricle caused a progres-
sively heterogeneous mismatch of regional O2 delivery/
consumption (Alders et al., 2015). These findings indicate
that during ischemia the myocardium suffers the conse-
quences not only a diminished blood supply, but also is
perfused with blood containing a smaller number of
RBCs, and therefore has a lowered oxygen delivery
capacity.

3.1.4 | RBC distribution, properties, and
signaling

About half of the resistance to O2 transfer occurs in the
capillaries (Hellums, 1977), and the critical maximum
distance between RBCs is four-cell lengths, whereas RBC

FIGURE 3 The effect of capillary diameter on red blood cell (RBC) spacing is a determinant of hematocrit. As seen in (a) the smaller

(left) branch has a lower hematocrit due to more plasma between RBCs known as erythrocyte associated transients (EATS), which

theoretically indicates lower PO2 gradients between RBCs. As seen in B, a reduction in capillary diameter via constriction (right branch) that

is sufficient to cause RBC deformation, enhances RBC interaction with the glycocalyx of the endothelium and activates mechanical stresses

that act on RBCs. The glycocalyx–RBC interaction enhances RBC deformability and oxygen release, a mechanism that compensates, in part,

for the lower hematocrit due to fewer RBCs per unit capillary length
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separation distance cannot exceed one cell length during
maximal O2 consumption (Federspiel & Sarelius, 1984).
PO2 gradients between RBCs are manifested as rapid PO2

fluctuations or EATs. However, mechanisms in the
microvasculature that increase O2 release from RBCs
have been shown to compensate for the drop in PO2 asso-
ciated with hemodilution (Barker et al., 2007). Although
O2 supply in the vasculature is influenced by the unequal
partition of flow and RBC distributions, capillary dilation
and constriction provide a mechanism that can alter the
distribution of RBCs locally and thus regulate O2 delivery
(Schmid et al., 2015). Adaptations to hypoxia include an
increase in hemoglobin–oxygen (Hb–O2) affinity, which
has been shown to enhance O2 delivery to hypoxic
regions in the heart and brain (Yalcin & Cabrales, 2012).
A recent review of the topic concluded that “high Hb–O2

affinity is a potentially advantageous adaptation to high
altitude in several animal species” and that high Hb–O2

affinity in humans is associated with a smaller increase
in heart rate during exercise and a higher arterial O2 sat-
uration at rest (Webb et al., 2022). Low-oxygen tensions
in hypoxic tissues are sensed by RBCs and they subse-
quently release signaling molecules (e.g., nitric oxide and
ATP) that affect changes in blood flow (Richardson
et al., 2020). The authors proposed that the deformation
of RBCs, as occurs in response to shear stress and cell
deformation, facilitates the release of the vasoactive mol-
ecules, a view consistent with the finding that erythrocyte
flexibility (deformability) facilitates microvascular PO2 ,
and O2 uploading in the lungs and downloading in tis-
sues (Cabrales, 2007).

3.1.5 | Capillary endothelial cell glycocalyx
in blood flow regulation

The seminal observation by Luft (1966) of a coating on
luminal endothelial surfaces that has a high affinity for
acidic mucopolysaccharides and constitutes a glycocalyx
opened the door for investigations regarding its role in
capillary perfusion (Figure 3). A review of the mechani-
cal and biochemical properties of the glycocalyx indi-
cates that this luminal surface layer undergoes
deformation from fluid shear stress and transduces
the fluid shear stress into the intracellular cytoskeleton
of endothelial cells (Weinbaum et al., 2007; Zhou
et al., 2014). Moreover, the glycocalyx interacts with red
blood cells and functions in the regulation of blood flow
and oxygen transport in capillaries (Pries et al., 2000),
by modulating RBC motion (Damiano, 1998) and
thereby enables a more homogeneous blood flow
(McClatchey et al., 2016). As illustrated in Figure 3b,
the mechanical stimulation by the capillary wall

enhances the RBC's flexibility facilitating its passage
through the narrow capillary segment by activating
mechano-sensitive channels, most likely the non-
selective Piezo 1 channel (Danielczok et al., 2017). Acti-
vation of the channel results in a loss water and a
shrinking of the RBC.

3.2 | Capillary blood flow and oxygen
heterogeneity

As discussed in a recent review (Premont et al., 2020),
oxygen supply to tissues in the microvasculature
involves a complex interplay between hemoglobin, oxy-
gen, carbon dioxide, and nitric oxide (three gas respira-
tory cycle). Both oxygen consumption and local blood
flow in the myocardium are heterogeneous, as docu-
mented in dogs (Loncar et al., 1998) and rabbits
(Schwanke et al., 2000). These studies indicate that
when inflow is unrestricted, O2 supply to low-flow
regions meets metabolic demand, whereas high-flow
regions reflect a high O2 demand. As oxygen sensors,
RBCs can regulate vascular tone by releasing ATP,
which stimulates the synthesis and release of multiple
endothelial cell vasodilators (reviewed in Ellsworth
et al., 2009). Nearly, four decades ago, Cousineau
et al. (1983) increased oxygen consumption and
coronary flow in dogs by coronary sinus pacing and
found that capillary heterogeneity, characteristic of the
control dogs, declined substantially, while capillary
permeability-surface product (a measure of the area
available for O2 diffusion) increased. They concluded
that these two factors amplify the capacity of increased
flow to deliver substrates to muscle.

3.2.1 | Signals from RBCs regulate blood
flow and oxygen delivery

By sensing physiological oxygen and facilitating vasocon-
striction under high PO2 and vasodilation under low PO2 ,
RBCs play a key role in microvascular blood flow
(Ellsworth et al., 1995). Thus, erythrocyte signaling pro-
vides for an increase in O2 delivery to a local area in
need. One mechanism by which heterogeneity of blood
flow in capillaries may be reduced is by release of ATP
from RBCs in response to low PO2 , which in hamster
cheek pouch muscle has been shown to increase capillary
RBC supply by 31% and 81% in the arteriolar and
venular portions of capillaries respectively (Ellsworth
et al., 1995). In addition to increasing the number of
RBCs in capillaries, the nitric oxide produced by RBCs
inhibits cell adhesion and increases RBC deformability,
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factors which promote blood flow in capillaries (reviewed
by Simmonds et al., 2014). Activation of RBC nitric oxide
facilitates deformability of RBCs, as evidenced by data
that documented impaired RBC deformability when the
RBC proteins were modified (Grau et al., 2013; Zhao
et al., 2018). Moreover, RBC release of nitric oxide from a
coronary capillary facilitates local oxygen delivery during
hypoxia (Zhao et al., 2018), which can occur by two path-
ways, that is, one that facilitates Hb releasing O2 or the
other that improves RCB deformability (Premont
et al., 2020).

3.2.2 | Capillary outflow saturation
heterogeneity

Because PO2 distribution at the ends of capillaries is a key
determinant of tissue oxygenation, its heterogeneity indi-
cates the oxygen supply to tissue regions most vulnerable
to hypoxia (Lücker, Secomb, Barrett, et al., 2018). How-
ever, data from mouse somatosensory cortex revealed
that the diffusive O2 exchange among capillaries (diffu-
sive interaction), that is, oxygen provided by adjacent
capillaries, significantly reduces capillary outflow satura-
tion interaction heterogeneity (Lücker, Secomb, Weber, &
Jenny, 2018. This finding indicates that “diffusive interac-
tion contributes greatly to the microcirculation's ability to
achieve tissue oxygenation despite heterogeneous capil-
lary transit time and hematocrit distribution.” Such an
adaptation allows the microcirculation to achieve ade-
quate tissue oxygenation despite heterogeneous capillary
transit time and hematocrit distribution.

4 | PERICYTES REGULATE
CAPILLARY BLOOD FLOW

4.1 | Pericytes are contractile cells

As illustrated in Figure 4, pericytes lie within the basal
lamina of capillaries where their numerous extensions
encircle the endothelium and regulate capillary diameter.
As demonstrated in artificial networks, capillary dilation/
constriction constitutes a mechanism for altering RBC
distribution and consequently the local regulation of O2

(Schmid et al., 2015). Contractile activity of pericytes is
controlled by changes in cytosolic free Ca2+ concentra-
tion (reviewed in Burdyga & Borysova, 2018), and their
morphology and function has recently been detailed
(Alarcon-Martinez et al., 2021). That capillary pericytes
contract and relax in response to neural or humoral stim-
uli and regulate regional flow within the capillary bed is
well documented (Almaça et al., 2018; Hall et al., 2014;
Hamilton et al., 2010; Methner et al., 2019; Špiranec
et al., 2018). Endothelial cell-derived agents, such as
endothelin-1, thromboxane A2, and angiotensin II trigger
constriction (reviewed by Hamilton et al., 2010), whereas
nitric oxide and adenosine, two major vasodilators of cap-
illaries, facilitate pericyte relaxation by increasing K+

(Hamilton et al., 2010). As documented in rat brain, cap-
illary dilatation occurs in response to prostaglandin E2

via its EP4 receptor (Hall et al., 2014. Taken together,
these studies, which focused on various circulations
(brain, pancreas, leg, and cremaster muscle) indicate that
pericytes are major regulators of capillary regional blood
flow, as well as RBC transit time, and O2 delivery.

FIGURE 4 Pericytes (contractile

cells) on the abluminal surface of

endothelium play a key role in

regulating the diameters of capillary

segments, as they have receptors for

vasoactive molecules. Capillary

constriction occurs when pericyte

calcium levels increase via vasoactive

substances, such as noradrenaline,

phenylephrine, or endothelin-1 (ET-1).

In contrast, capillary dilation occurs

when calcium levels fall in response to

adenosine or nitric oxide. Note the less

extensive distribution of pericyte

processes in the dilated capillary

TOMANEK 3205



4.2 | Pericytes modulate local capillary
blood flow

Pericytes modulate capillary diameter in response to neu-
ronal activity and are sensitive to damage during patho-
logical insults, such as ischemia, Alzheimer disease, and
diabetic retinopathy (reviewed by Hamilton et al., 2010).
Capillary dilation, as occurs by nitric oxide inhibition of
pericyte constriction, is a major determinant of capillary
blood flow (Hall et al., 2014). Brain capillaries dilate
before arterioles and are estimated to produce 84% of the
increase in blood flow. Similar data, from pancreatic
islets, revealed that adenosine is the mediator of capillary
dilation (Almaça et al., 2018). Endothelial C-type natri-
uretic peptide has been shown to regulate microcircula-
tory flow in mouse cremaster muscle and retina by
affecting two pericyte pathways: (a) activation of cGMP-
dependent protein kinase I to activate downstream vaso-
dilators and (b) inhibition of cAMP levels that increase
pericyte calcium (Špiranec et al., 2018). Ca2+ mediates
pericyte constriction, whereas K+ mediates pericyte
relaxation (Gonzales et al., 2020). The elevation of
pericyte Ca2+ that occurs during ischemia in mice retinas
persists after recanalization (Alarcon-Martinez
et al., 2019), and thereby prolongs the ischemic period.
Subsequent work from their laboratory (Alarcon-
Martinez et al., 2020) documented the presence of
nanotube-like pericyte processes that form a functional
network on capillaries connected by gap junctions and
serve as conduits for intercellular Ca2+ waves. The net-
work is not limited to single capillaries but extends to
adjacent ones. Using a model of mouse skeletal muscle
hyperemia following femoral artery constriction, the role
of pericytes in capillary constriction was addressed
(Methner et al., 2019). In transgenic mice with partial
pericyte depletion, the number of capillary segments that
constricted was only 14% compared to a 33% capillary
segment number in wild-type littermate controls. These
data support selective flow regulation in the capillary
bed, via diameter changes and implicate pericytes as key
mediators that facilitate metabolic demand with capillary
blood flow in several organs, especially skeletal muscle
(reviewed by Attrill et al., 2020).

4.3 | Cardiac pericytes

Recent evidence documents the abundance of pericytes
(Figure 4) in the heart where they perform tissue-specific
functions (Lee et al., 2021; Lee & Chintalgattu, 2019).
Their position within the basement membranes of endo-
thelial cells underscores a system of intimate communi-
cation that is a prerequisite for “conducted vasodilation,”

that is, rapid transmission of electronic dilation signals
within the microvasculature (Lee & Chintalgattu, 2019;
Nees, Weiss, & Juchem, 2013; Nees, Weiss, Partsch, &
Juchem, 2013). Pericytes are also important for endothe-
lial integrity, as a decrease in their number causes a
decrease in coronary flow (Lee & Chintalgattu, 2019).
Their role in the no-reflow phenomenon, that occurs
after coronary ischemia and reperfusion, was shown to
be the result of pericyte constriction of capillaries and
was associated with a 37% reduction in capillary diameter
in the affected region where pericytes were present on
the capillary wall (O'Farrell et al., 2017). Administration
of the pericyte relaxant adenosine increased capillary
diameter by 21% and perfusion volume by 57%. Because
of its clinical significance, that is, ischemia and infarct
expansion, the role of pericytes in the no-reflow phenom-
enon in the microcirculation, and especially the capillary
bed, deserves attention (Costa et al., 2018).

Most recently, Lee et al., 2021) documented the car-
diac pericyte cell's role in capillary constriction and dila-
tion under normal physiological conditions. They
established that cardiac pericytes express α-adrenergic
activation of calcium flux for contraction, and contract in
response to phenylephrine via the alpha-adrenergic acti-
vation pathway proteins and relax in response to adeno-
sine and nitric oxide. Cardiac pericytes are the second
most nonmyocyte cell in the heart and communicate
with endothelial cells via their specialized intracellular
junctions which link the two cell types (Su et al., 2021).
Pericyte motility is influenced by several cytokines from
endothelial cells. A feedback mechanism for restoring
ATP levels in cardiomyocytes has been documented in a
model of mouse papillary muscle (Zhao et al., 2020), and
is illustrated in Figure 5. When ATP consumption
exceeds its production, openings in KATP channels are
increased and cardiomyocytes are electrically biased
toward hyperpolarization, which triggers relative hyper-
polarization of electrically connected cells, namely capil-
lary endothelial cells and pericytes, as well as smooth
muscle cells. The consequential drop in Ca2+ in these
cells facilitates an increase in microvascular blood flow.
Opening of KATP channels by pinocidil and activation of
“electro-metabolic signaling” revealed that capillaries
and small arterioles dilate via relaxation of pericytes and
smooth muscle cells. This recently discovered system
explains how cardiomyocyte ATP can be rapidly restored
by increased blood flow in the microcirculation. Note-
worthy is the fact that the inner mitochondrial mem-
brane of cardiomyocytes contains several K+ channel
types including those that are ATP-sensitive and voltage-
regulated (Kulawiak et al., 2021).

Taken together, the data reveal a major role for capil-
lary dilation in the enhancement of blood flow, and a
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more homogeneous flow distribution. Therefore, the reg-
ulation of blood perfusion and oxygen delivery by capil-
laries via constriction and relaxation of the pericyte cells
that surround their endothelial walls is independent of
arterioles. This close arrangement of the two cell types
facilitates control of blood flow within small segments of
a capillary bed in response to local metabolic require-
ments. These data support the concept that pericytes reg-
ulate flow in daughter branches by controlling the static
symmetry of capillary junctions. Pericyte relaxation and
the consequential increase in flow in a segment of the
capillary bed diminishes resistance to flow and enhances
flow homogeneity, thereby contributing to an increase in
total flow of the capillary bed. This is of importance, as
noted previously, because about half of the resistance to
O2 occurs in the capillary bed (Hellums, 1977). Dynamic
measurements of the microcirculation and its perfusion
are now possible with the development of state-of-the-art
optic imaging systems (Zhao et al., 2020) and may pro-
vide insights into the role of pericytes in therapeutic
approaches for diseases, for example, ischemia and
infarction, stroke, diabetes Alzheimer's and various neu-
rological diseases (Cheng et al., 2018; Hartmann
et al., 2021; Nortley et al., 2019).

5 | SUMMARY/CONCLUSION

The first portion of this review addressed the structural
and geometric characteristics of the coronary capillary
bed, with attention to its organization, spacing, unique
distribution (staggered arrangement of the arteriolar and
venular capillary segments, indentation of capillaries on
myocyte surfaces, diameter variations), and how these

characteristics affect perfusion and oxygen delivery. The
complexities of this network indicate that many assump-
tions regarding RBC transport through capillaries are not
valid, for example, assumptions based on a single capil-
lary and the idea that increased flow through the capil-
lary bed is accomplished by capillary recruitment.
Moreover, and of major importance, is the evidence from
recent studies that flow within capillaries is not limited
to regulation by arterioles. Thus, numerous recent find-
ings, contradict the notion that the cluster of endothelial-
lined channels is a passive system solely dependent on
the forces of precapillary vessels.

Accordingly, emerging data reveal that there exist sig-
naling mechanisms that allow control of blood flow in spe-
cific segments of the myocardial capillary bed, and even in
individual capillaries. These mechanisms regulate the con-
tractile elements of pericytes and control regional capillary
flow when they are stimulated or inhibited, thereby
decreasing or increasing capillary diameter. Signals for
these responses come from several molecules, which work
by activating or inhibiting Ca2+ Cardiac pericytes contract
in response to several vasoactive substances including
phenylephrine, noradrenaline, endotelin-1 and angioten-
sin II, and relax in response to nitric oxide and adenosine.
Increases in capillary diameter, as occurs during adenosine
activation, increases RBC density, hematocrit, and transit
time, factors that facilitate oxygen delivery. Flow regula-
tion is also a function of oxygen sensing RBCs and their
signals, which activate or inhibit pericyte contraction and
thereby activate contraction or relaxation. Moreover, the
release of O2 from hemoglobin is facilitated by the sensing
of hypoxia by RBCs.

In conclusion, blood flow and oxygen delivery are
influenced by regulatory mechanisms within coronary

FIGURE 5 Cardiomyocyte

electrical signaling regulates capillary

blood flow. When cardiomyocyte ATP

consumption exceeds its production,

KATP openings increase, resulting in

hyperpolarization of the cell. This

hyperpolarization affects a relative

hyperpolarization of pericytes and

endothelial cells, which are adjacent to

the cardiac myocardial cell, causing a

drop in pericyte Ca2+ levels and

consequently inhibition of contraction

(details published by Zhao et al., 2020).

As seen in the right side of the figure

the extent of a capillary covered by

pericytes increases or decreases

substantially during constriction and

dilation, respectively
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capillaries, as well as those in arterioles. These mecha-
nisms facilitate increases in RBC density and transit time,
hematocrit, blood flow and O2 delivery. They enable local
capillary regulation as a means of increasing flow homo-
geneity. Moreover, the recent data indicate that local reg-
ulation by capillaries has important clinical implications
for myocardial ischemia and infarction, as well as other
clinical entities. Taken together the scientific evidence
noted in this review indicates that regulation of the coro-
nary microcirculation includes numerous mechanisms
within the capillary channels that are independent of the
precapillary vessels. Accordingly, a greater research
emphasis on the coronary capillary network is indicated.
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