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Abstract Background: Alzheimer neuropathology is found in almost half of patients with nonsemantic
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primary progressive aphasia (PPA). This study examined hippocampal abnormalities in PPA to
determine similarities to those described in amnestic Alzheimer disease.
Methods: In 37 PPA patients and 32 healthy controls, we generated hippocampal subfield surface
maps from structural magnetic resonance images and administered a face memory test. We analyzed
group and hemisphere differences for surface shape measures and their relationship with test scores
and APOE genotype.
Results: The hippocampus in PPA showed inward deformity (CA1 and subiculum subfields) and out-
ward deformity (CA2–41 dentate gyrus subfield) and smaller left than right volumes. Memory per-
formance was related to hippocampal shape abnormalities in PPA patients, but not controls, even in
the absence of memory impairments.
Conclusions: Hippocampal deformity in PPA is related to memory test scores. This may reflect a
combination of intrinsic degenerative phenomena with transsynaptic or Wallerian effects of neocor-
tical neuronal loss.
� 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

The clinical course of primary progressive aphasia (PPA)
is characterized by the initial progressive loss of language
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abilities and relative preservation of other cognitive func-
tions, such as episodic memory [1]. There are three subtypes
of PPA, each based on the most prominent type of language
deficit in the clinical profile [2], but the preservation of
memory is most easily demonstrated in nonsemantic
PPA subtypes, namely, the agrammatic and logopenic
variants, because they have relatively preserved language
comprehension. Neuropathologically, PPA is heteroge-
neous: although the amyloid plaques and neurofibrillary
tangles of Alzheimer’s disease (AD) are predominant in
the brains of some PPA patients, frontotemporal lobar
degeneration (FTLD) pathology is predominant in others
imer’s Association. This is an open access article under the CC BY-NC-ND
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[3–5]. Post-mortem studies have revealed that the prevalence
of AD pathology in nonsemantic PPA subtypes ranges from
30% to 60% [4–7], and is highest in the logopenic
subtype [4,6,8]. Although a significant accumulation of
neurofibrillary AD pathology can be seen in the
hippocampus/entorhinal cortex of PPA patients, its
entorhinal-to-neocortical ratio is lower in PPA when
compared with this ratio in post-mortem analysis of
individuals with the more typical amnestic dementia of
AD [3].

Medial temporal neurofibrillary pathology is the most
characteristic feature of AD pathophysiology [9,10]. In
AD associated with the amnestic dementia of the AD type
(DAT), the neurofibrillary tangles accumulate in the
entorhino-hippocampal complex at the earliest stages of
the disease, even before symptom onset [11–13], and lead
to regional atrophy of hippocampal subfields [14] and
entorhinal [15] cortices as the disease progresses. In DAT,
deficits in visual and verbal memory are known to
correlate with both post-mortem neuropathological
measures [16] and in vivo atrophy of the entorhinal cortex
and hippocampus [11].

Although neuroimaging has revealed atrophy of the left
hemisphere language network in PPA [17], less consistency
is found in the hippocampus. For example, van de Pol et al.
[18] found no significant hippocampal atrophy in patients
with progressive nonfluent aphasia, but Gorno-Tempini
et al. [19] found atrophy of the anterior left hippocampus
in a nonsemantic logopenic subtype. A study of nine patients
with nonsemantic progressive nonfluent aphasia and 21
controls found no overall total hippocampal volume
difference between groups, although the left was smaller
than the right in the patient group [20]. Using spherical
harmonics, the same study found inward deformity in the
patients’ left hippocampus relative to the controls. These
studies tended to have small sample sizes and all but one
study examined only volumes but not shape, factors that
may have contributed to inconsistent results.

The goal of this study was to compare the shape of
the hippocampal surface, including its subfields,
between PPA subjects and matched controls. We
predicted a spectrum of hippocampal deformity in PPA
based on the fact that some might have AD neuro-
pathology, whereas others might not. We also predicted a
greater degree of deformity in the left hippocampus,
reflective of the left hemispheric focus of PPA. Study
methodology involved a new multiatlas FreeSurfer-
initiated Large-Deformation Diffeomorphic Metric Map-
ping (ma-FSLDDMM) procedure for the mapping of the
hippocampal structure, and the assessment of nonverbal
memory to correlate with hippocampal morphology.
ma-FSLDDMM was based on our previously published
single-atlas technique (sa-FSLDDMM) [21,22], for
automated brain segmentation in high-resolution structural
scans which combined initial FreeSurfer segmentation of
gray and white matter structures (http://surfer.nmr.mgh.
harvard.edu) with a smoothed approximation via Large-
Deformation Diffeomorphic Metric Mapping (LDDMM)
[23]. Compared with single-atlas methods, approaches that
combine maps from multiple atlases that best match any in-
dividual subject’s scan features have been shown to improve
segmentation accuracy and reduce biases [24]. We chose the
nonverbal Faces subtest in the Wechsler Memory Scale III
(WMS-III) [25] to assess episodic memory. Although even
an apparently nonverbal memory test can elicit internal
verbalization [26], this choice avoided the pitfalls of using
story or word-list recall to test episodic memory in patients
with PPA [19,27]. Finally, the ε4 allele of the apolipoprotein
ε (ApoE) gene has been revealed as a risk factor for amnestic
but not aphasic dementias [28]. Because the genotype does
not predict AD pathology in PPA, we hypothesized that
the presence of the ApoE ε4 allele would not influence a
patient’s hippocampal shape or memory performance.
2. Methods

2.1. Participants and assessments

The present study consisted of the analysis of data derived
from a larger PPA Research Program at Northwestern
University Feinberg School of Medicine, and included
37 PPA and 32 control participants. The protocol for
recruitment, comprehensive assessment of language and
nonlanguage cognitive functions, magnetic resonance
imaging (MRI) scanning, and ApoE genotyping was
approved by the Institutional Review Board of Northwestern
University; informed consent was obtained before
evaluation.

All participants were right-handed. Diagnoses were
established by consensus from experienced clinicians
(MM, SW) according to previously published criteria [2]
based on clinical interview, cognitive testing with the
Uniform Data Set of the National Institute on Aging
Alzheimer Disease Centers program [29], and review of
prior diagnostic tests such as MRI and Positron Emission
Tomography (PET) scans. ApoE genotyping was completed
at Northwestern University using previously described
methods [28]. PPA participants had obtained the diagnoses
of PPA-G (nonfluent, agrammatic) and PPA-L (logopenic)
variants, referred to in this article as nonsemantic variants.
Aphasia severity was assessed using the Aphasia Quotient
score from the Western Aphasia Battery [30] containing
subtests of auditory comprehension, naming, repetition,
and spontaneous speech.

Episodic memory was assessed using the WMS-III Faces
subtest of visual-nonverbal recognition memory [25]. A
similar test, the Warrington Recognition Memory Test
(RMT), which assesses the immediate recognition of
both words and faces, has been shown to be sensitive to
hippocampal damage [31]. The WMS-III Faces test was
chosen because of the addition of a delayed recognition
condition, whereas the RMT tests only immediate
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recognition. On tests of visual memory, particularly memory
for faces, participants benefit from mental verbalization of
stimuli [26]. However, because WMS-III Faces is primarily
visually mediated, this test may to a degree circumvent
verbal deficits of PPA. Because face encoding involves
primarily the right medial temporal lobe and right dorsal
frontal cortex [32], PPA patients’ greater left-sided cortical
atrophy [33] may disrupt the face-encoding system to a
lesser extent than other modalities. Participants first studied
24 faces, presented serially for 2 seconds each. Immediately
afterward, these faces were presented serially among 24
novel faces, and the participant selected the previously
presented faces. Then, following a 25- to 35-minute delay,
participants were given a similar test of the 24 original faces,
to be discriminated from yet a third set of novel faces.
Accuracy scores (hits) from these immediate and delayed
recognition tests were recorded.
2.2. MR scanning and ma-FSLDDMM

Magnetization prepared rapid gradient echo sequences
(repetition time 5 2.3 seconds, echo time 5 2.86 millisec-
onds, flip angle 5 9�, field of view 5 256 mm, 160 slices,
resolution 5 1 ! 1 ! 1 mm3) were obtained on a Siemens
TIM Trio 3-Tesla system using a 12-channel head coil.

Hippocampal segmentations were generated using
ma-FSLDDMM, which consisted of a 38-scan multiatlas
library and their expert manual segmentations. The manual
segmentations followed the delineation protocol described
in Haller et al. [34] See Table 1 for descriptions of the
multiatlas library and Fig. 1 for descriptions of the
ma-FSLDDMM procedure.

In the ma-FSLDDMM procedure, 38 individual
sa-FSLDDMM hippocampal segmentations and a voxel-
wise average were first generated for each subject
(Fig. 1A, B). Next, surfaces with corresponding vertices
were created for each of the 38 segmentations and the
average, using a previously developed template surface
injection procedure (Fig. 1B) [37,38]. Then, sum-of-
Table 1

Multiatlas library for ma-FSLDDMM

Study source/reference Brief description, scan type N (gr

Current study 3T scans manually segmented by

one of the authors (AC/JR)

14 (c

Alzheimer’s Disease

Neuroimaging Initiative [35]

1.5 T scans manually

segmented by one of the

authors (AC)

10 (t

Unpublished data 3T scans with manual segmentation

(LW)

8 (co

University of New South Wales

Memory and Ageing Study [36]

3T scans with manual segmentation

(Sachdev et al.)

6 (co

Abbreviations: ma, multiatlas; FSLDDMM, FreeSurfer-initiated Large-Deforma

male; MCI, mild cognitive impairment patients; AD, Alzheimer’s disease patient

NOTE. This library is composed of 38 scans and their expert manual segmenta

Haller et al. [34].
squared errors between the average surface and each
sa-FSLDDMM surface were calculated (Fig. 1C). Across
all subjects, 14 sa-FSLDDMM maps consistently showed
substantially larger error than others and were subsequently
removed from further analysis (Fig. 1D), giving rise to a new
average segmentation (Fig. 1E). Finally, an expert rater (AC)
inspected the new average segmentation embedded in the
MR scan, and made minor manual edits whenever necessary.
We separately demonstrated high reliability for manual
editing in 10 randomly selected scans (five patients and
five controls)—volume intraclass correlation coefficient
was 0.945 (AC/JR). A final hippocampal surface was
generated by injection [37,38].

The final surface was adjusted for individual head size by
multiplying vertex coordinates by a scaling factor, defined as
the cubic root of (population average intracranial volume/
individual intracranial volume) [39], where intracranial
volumes were provided by FreeSurfer. Adjusted hippo-
campal volume was calculated as volume enclosed within
the hippocampal surface. Adjusted hippocampal surfaces
were used in subsequent shape analysis.
2.3. Hippocampal shape and volume comparison

To visualize between-group shape differences, whole
hippocampal surfaces were first rigidly aligned into a
previously established template space [38], and a population
average was generated. Perpendicular displacements were
computed between corresponding vertices from this average
to each subject. T-scores between the patient and control
displacements were calculated and visualized. The CA1,
subiculum, and combined CA2, 3, 4, and dentate gyrus
(CA2–4 1 DG) hippocampal subfields were delineated on
the surface along previously defined and validated borders
during the template injection procedure [40]. Previously, a
team of neuroanatomy experts had manually segmented
the CA1, CA2, CA3, CA4, DG, and subiculum subfields in
coronal sections of the template MR scan [40] using
reference sections based on the Duvernoy neuroanatomical
oup) Demographics mean (SD) age, M/F

ontrol) Age 5 61.9 (7.2), M/F 5 7/7

hree control/three MCI/four AD) Control: Age 5 75.3 (2.1), M/F 5 0/3

MCI: Age 5 67.7 (10.2), M/F 5 1/2

AD: Age 5 76.8 (5.9), M/F 5 1/3

ntrol) Age 5 75.4 (8.3), M/F 5 6/2

ntrol) Age 5 77.1 (4.5), M/F 5 4/2

tion Diffeomorphic Metric Mapping; SD, standard deviation; M/F, male/fe-

s.

tions. Manual segmentations followed the delineation protocol described in



Fig. 1. Atlas-based segmentation multiatlas FreeSurfer-initiated Large-Deformation Diffeomorphic Metric Mapping (ma-FSLDDMM) with selection,

illustrated for a single subject. (A) Thirty-eight individual single-atlas FSLDDMM hippocampal segmentations and a voxel-wise average were first generated

for the subject. (B) Surfaces with corresponding vertices were created for each of the 38 segmentations and the average, using a previously developed template

surface injection procedure [37,38]. (C) Sum-of-squared errors between the average surface and each sa-FSLDDMM surface were calculated. (D) Across all

subjects, 14 sa-FSLDDMM maps consistently showed substantially larger error than others and were subsequently removed from further analysis. (E) New

average segmentation.
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atlas [41]. These subfield segmentations were projected onto
the template surface. CA2, CA3, CA4, and DG were com-
bined into a single CA2–41DG as in prior studies because
of their limited size and hence limited accuracy and reli-
ability of defining each individually [12,42]. However, this
combination restricts the ability to make specific
inferences for these individual subfields. Shape measures
were calculated for the whole hippocampus, and
individually for each of the three subfields via principal
component analysis of the displacements. Ten principal
components (PCs) accounting for at least 90% of the
variance in whole or subfield displacements were used in
statistical analyses.

The data for the present study consisted of volume, shape
PC scores for the whole hippocampus, shape PC scores for
each subfield, memory test scores, and demographic
variables. Age and educationwere used as covariates, because
normative scores on cognitive tests decline with age, and
are frequently higher for those with advanced education
[25]. Statistical analyses were performed using SPSS [43].

Main effects of group (between-subjects factor),
hemisphere (within-subjects repeated factor), and group-
by-hemisphere interactions on hippocampal volume and
on whole hippocampus and subfield shape PC scores were
tested using repeated-measures analysis of variance
(within-subject repeated PC factor was not tested). Signifi-
cance was corrected for multiple comparisons of three
subfields by setting the significance level at P 5 .017
(i.e., 0.05/3). WMS-III Faces scores were analyzed with
the analysis of covariance and independent sample t-tests
(APOE ε4 present/absent).

Correlations between measures of shape and cognitive
performance were explored within the PPA group. To do
this, shape summary scores were generated for each subject,
separately for the whole hippocampus and each subfield in
each hemisphere, by applying stepwise logistic regression
procedures to the respective shape PC scores. These scalar
summary scores represented a continuum of overall shape
variation (i.e., as opposed to individual PCs which
represented dimensions of shape variation) such that a
more positive shape summary score would indicate a more
abnormal shape. Pearson correlation coefficients between
the summary scores and WMS-III Faces Immediate and
Delay scores were computed within the PPA group and
within the control group separately. Significance was not
corrected for the number of subfields and type of WMS-III
Faces scores (immediate or delayed) because of the
exploratory nature of the analysis [44].
3. Results

3.1. Participants and assessments

PPA and controls did not differ in age, gender, and
education, nor in WMS-III Faces raw scores and scaled
scores (the latter based on comparison with published
norms) [25] (Table 2). Across groups, the raw scores on
the WMS-III Faces tests were positively correlated with



Table 2

Subject characteristics

PPA, n 5 37 Control, n 5 32

M/F (% male) 16/21 (43.2%) 16/16 (50%)

Mean (SD) age in years 64.9 (7.2) 62.5 (7.0)

Mean (SD) education

in years

16.1 (2.1) 15.8 (2.5)

Race (Caucasian/Asian/

African American)

37/0/0 26/1/5*

Mean (SD) [range] WAB

Aphasia Quotient

86.9 (7.5) [73.9-97.2] –

Mean (SD) [range] n 5 34 n 5 28

Immediate Raw Score 35.9 (5.0) [26-44] 37.4 (3.8) [27-43]

Delay Raw Score 37.3 (4.3) [28-45] 37.6 (3.5) [29-45]

Immediate Scaled Score 11.1 (3.3) [6-17] 11.7 (2.7) [6-17]

Delay Scaled Score 12.5 (3.3) [6-18] 12.3 (2.6) [6-18]

Abbreviations: PPA, primary progressive aphasia; SD, standard devia-

tion, WAB, Western Aphasia Battery.

NOTE. The demographic information of the study sample and WMS-III,

Wechsler Memory Scale, Third Edition (WMS-III Faces) raw and scaled

scores for Immediate and Delayed recognition. On the WMS-III Faces

test, three PPA patients performed in the mildly impaired range for Imme-

diate Recognition, with one of those three also for Delayed Recognition.

Two control subjects also performed in the mildly impaired range for Imme-

diate Recognition, and one for Delayed Recognition (normal: scaled score

greater than 6, mild impairment: 5–6, moderate: 3–4, severe: 1–2). The

WAB was administered only to PPA patients, because healthy adults are ex-

pected to obtain a perfect score of 100. Lower scores signify increasing lan-

guage deficits [45].

*P , .01.
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education as expected (immediate: Pearson’s r 5 0.35,
P 5 .005; delay: r 5 0.40, P 5 .001), and negatively corre-
lated with age only for delayed memory (immediate:
r 5 20.16, P 5 .20; delay: r 5 20.25, P 5 .049).
Normatively, on the WMS-III Faces test, three PPA patients
performed in the mildly impaired range (i.e., equivalent to
the 9th percentile) for immediate recognition, and one of
those three also for delayed recognition. Two control
Fig. 2. Shape comparison (T-score) between PPAvs. control subjects. Cooler shad

whereas warmer shades represent greater outward deformity of the PPA group rel

CA2–41DG subfield divisions. Abbreviations: PPA, primary progressive aphasia
subjects also performed in the mildly impaired range for
immediate recognition, and one for delayed recognition.

3.2. Volume and shape comparison

There was no group difference for whole hippocampal
volume [mean (SD) 5 PPA: left 5 1912 (240) mm3,
right 5 1992 (238) mm3; control: left 5 1993 (204) mm3,
right 5 1977 (188) mm3; F(1,65) 5 2.4, P 5 .13]. Whole
hippocampal shape comparison using PC scores showed
significant group difference [F(9,57) 5 6.9, P , .001],
with both inward (indicated by cooler shades) and outward
deformities (indicated by warmer shades) observed in PPA
(Fig. 2). CA1 and subiculum subfields showed mostly
inward deformity [F(9,57) 5 3.2, P , .01; F(9,57) 5 2.8,
P , .01, respectively], and CA2–41DG showed mostly
outward deformity [F(9,57) 5 4.3, P , .001].

With regard to left-right asymmetry, a significant
group-by-hemisphere interaction was found in volume
[F(1,65) 5 9.7, P 5 .003], primarily driven by a leftward
asymmetry of volume loss within the PPA group. Also, sig-
nificant group-by-hemisphere interactions were found in the
shape of the whole hippocampus [F(9,57) 5 4.5, P , .001],
and in CA1 [F(9,57) 5 3.0, P , .01] and CA2–41DG
[F(9,57)5 4.0, P, .001] subfields, driven by a greater effect
of left hippocampal deformity (e.g., whole hippocampus
mean PC effect size: left hp

2 5 .06, right hp
2 5 .03).

3.3. Correlation of hippocampal shape and volume with
visual memory scores

Hippocampal shape summary scores were derived from
discriminant function analyses (i.e., stepwise logistic
regression) on the PC scores, and were positive for the
PPA (i.e., diseased) and negative for the controls across all
PCs (Table 3). Because these summary scores represent a
continuum of overall shape variation, they were used to
examine the relationship between shape and cognition.
es represent a greater inward deformity of the PPA group relative to controls,

ative to controls. Borders on the surfaces indicate the CA1, subiculum, and

; CA2–41DG, CA2, 3, 4 and dentate gyrus.



Table 3

Mean hippocampal shape summary scores in PPA and control subjects

Mean (SD) PPA Control

Whole hippocampus, left 0.97 (1.26) 20.67 (1.24)

Whole hippocampus, right 0.49 (0.76) 20.27 (1.00)

CA1, left 1.09 (1.56) 20.68 (1.24)

CA1, right 0.97 (1.25) 20.72 (1.43)

Subiculum, left 0.68 (1.18) 20.41 (0.92)

Subiculum, right 0.43 (0.75) 20.15 (0.79)

CA2–41DG, left 1.44 (1.75) 21.06 (1.50)

CA2–41DG, right 0.64 (0.85) 20.47 (1.26)

Abbreviations: SD, standard deviation; PPA, primary progressive apha-

sia; CA2–41DG, CA2, 3, 4 and dentate gyrus.

NOTE. Note that the mean scores for the PPA subjects are positive and for

controls are negative. This signifies that scores that are more positive repre-

sented hippocampal shape that deviated farther from the control group and

are indicative of PPA characteristics, whereas negative scores are indicative

of control characteristics.
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Within the PPA group, lower immediate visual memory
scores were correlated with increased shape deformity
in the right whole hippocampus (r 5 20.50, P , .01),
CA1 (r 5 20.48, P 5 .01), and subiculum (r 5 20.34,
P5 .05) (Fig. 3A–C). There were trends toward significance
in correlation of the shape abnormalities of the left CA1 and
CA2–41DG with immediate visual memory performance
(r 5 20.31, P 5 .08; r 5 20.33, P 5 .06; respectively)
(Fig. 3F,H). There was no correlation between hippocampal
volume and immediate visual memory scores. No significant
correlations were observed within the control group.

Lower delayed visual memory scores were correlated with
the measure of increased shape deformity in the left CA1
(r 5 20.38, P 5 .03) (Fig. 3N). There were trends toward
significance in the correlation of shape of the right whole
hippocampus and CA2–41DG with reduced delayed visual
memory (r520.30P5.10; r520.31,P5.09; respectively)
(Fig. 3I,L). There was no correlation between hippocampal
volume and delayed visual memory scores. No significant
correlations were observed within the control group.
3.4. ApoE genotyping

Of the 33 PPA patients in the present study with both
ApoE genotyping and memory data, 21% (n 5 7) had the
AD risk factor allele, ε4. T-tests yielded no significant
difference in memory scores between those with the allele
present and absent [raw scores: immediate, t(31) 5 1.2,
P 5 .24; delay, t(31) 5 0.7, P 5 .49; scaled scores:
immediate, t(31) 5 1.5, P 5 .15; delay, t(31) 5 0.8,
P 5 .40)] (Table 4). In fact, compared with normative data
(WMS scaled scores), the three PPA patients in the study
with mild impairment in memory all did not possess an ε4
allele, and those with an ε4 allele had average or better
memory. T-tests on shape summary scores for the whole
hippocampus and each subfield in both hemispheres yielded
no significant differences between APOE ε4 present and
absent groups (all P . .25).
4. Discussion

Post-mortem studies suggest a significant hetero-
geneity in the neuropathologic diagnosis associated with
nonsemantic PPA, with 30% to 60% having atypically
distributed AD pathology [4–7]. For this study, we
hypothesized that because AD pathology would be present
in a portion of the patients studied, hippocampal changes
would be variable, and some would share common
features with those reported in typical amnestic forms of
AD [12,46]. In fact, compared with typical hippocampal
patterns reported in studies of DAT [14], we found
similarities, in the inward deformity of CA1 and subiculum,
but also differences, in the outward deformity of CA2–
41DG.

The PPA patients showed asymmetry in a pattern of
smaller left than right hippocampi that was not observed in
the controls, and bilateral shape deformities that were
more pronounced in the left hippocampus than the right
compared with the controls. Moreover, the volume and
shape asymmetry indicates that shape deformity in the left
hippocampus is accompanied by volume loss, and abnormal-
ity of the left hippocampus is a consistent finding in previous
PPA, studies [18,20,47,48]. Furthermore, although there was
no absolute episodic memory impairment, interindividual
variations in delayed face recognition memory
performance correlated with left CA1 shape measures in
PPA, whereas variations in the immediate memory
performance correlated with right whole hippocampal
shape deformity. In both instances, increased shape
deformity was correlated with worse episodic memory
performance, and no such correlations were found in
controls. These observed patterns in delayed memory are
consistent with the known dominant role of the left
hippocampus in all types of episodic memory, and the
patterns for immediate memory are consistent with the
role of the right temporal lobe in the working memory
functions underlying face processing [32,49]. Specifically,
positron emission tomography of healthy subjects has
revealed that although the right hippocampus is essential
for face processing, the left is recruited during episodic
memory judgments of face stimuli [49]. Furthermore, the
imaging of healthy subjects making judgments on face
stimuli revealed early right hippocampal involvement and
gradually increasing left hippocampal involvement only
with greater memory load or time interval [50,51].

We also found that PPA patients with the ApoE ε4 allele
did not show impaired memory or different hippocampal
shape compared with PPA patients with other ApoE
genotypes. A pattern of memory impairment and hippocam-
pal atrophy consistent with amnestic dementia was not
expected in the PPA patients with an ε4 allele, because the
ε4 allele in this diagnostic group does not increase the
accuracy of predicting underlying AD neuropathology
[28]. Although post-mortem data were not available in this
study, we would expect that the neuropathologic source of



Fig. 3. Correlation between hippocampal shape scores and visual memory (WMS-III Faces) performance within the PPA group. Shape scores that are more

positive represent a hippocampal shape that deviates farther from the average control. (A–D) Correlation between hippocampal shape scores in the whole right

hippocampus and its subfields and immediate visual memory (WMS-III faces: immediate scores) within the PPA group. (A)Whole hippocampal shape score vs.

WMS-III faces immediate score (P, .01). (B) CA1 subfield shape score vs. WMS-III Faces Immediate score (P5 .01). (C) Subiculum subfield shape score vs.

WMS-III Faces Immediate score (P5 .05). (D) CA2–41DG subfield shape score vs. WMS-III Faces Immediate score (P5 .20). Declines in immediate visual

memory performance were correlated with an increased shape deformity in the right whole hippocampus, CA1, and subiculum. (E–H) Correlation between

hippocampal shape scores in the whole left hippocampus and its subfields and immediate visual memory (WMS-III Faces: immediate scores). (E) Whole

hippocampal shape score vs. WMS-III Faces Immediate score (P 5 .99). (F) CA1 subfield shape score vs. WMS-III Faces Immediate score (P 5 .08).

(G) Subiculum subfield shape score vs. WMS-III Faces Immediate score (P5 .11). (H) CA2–41DG subfield shape score vs. WMS-III Faces Immediate score

(P 5 .06). There were trends toward significance in the left CA1 and CA2–41DG. (I–L) Correlation between hippocampal shape scores in the whole right

hippocampus and its subfields and delayed visual memory (WMS-III Faces: Delay scores). (I) Whole hippocampal shape score vs. WMS-III Faces Delay score

(P5 .10). (J) CA1 subfield shape score vs. WMS-III Faces Delay score (P5 .25). (K) Subiculum subfield shape score vs. WMS-III Faces Delay score (P5 .12).

(L) CA2–41DG subfield shape score vs. WMS-III Faces Delay score (P 5 .09). There were trends toward significance in the right whole hippocampus and

CA2–41DG. (M–P) Correlation between hippocampal shape scores in the whole left hippocampus and its subfields and delayed visual memory (WMS-III

Faces: delay scores). (M) Whole hippocampal shape score vs. WMS-III Faces Delay score (P 5 .77). (N) CA1 subfield shape score vs. WMS-III Faces Delay

score (P5 .03). (O) Subiculum subfield shape score vs. WMS-III Faces Delay score (P5 .28). (P) CA2–41DG subfield shape score vs. WMS-III Faces Delay

score (P5 .15). Declines in delayed visual memory performance were correlated with increased shape deformity in the left CA1. Abbreviations: PPA, primary

progressive aphasia; WMS-III, Wechsler Memory Scale, Third Edition; CA2–41DG, CA2, 3, 4 and dentate gyrus.
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localized hippocampal changes in PPA may vary. In some
PPA patients with AD pathology, the hippocampus may
contain neurofibrillary tangles and amyloid plaques that
cause neuronal death and morphological distortion within
the hippocampus [3]. In AD cases and in those with FTLD
pathology, peak neurodegeneration sites in the PPA patients
may encompass neocortical regions that project to the
hippocampus. Prefrontal and temporal cortices in PPA
patients have shown atrophy as the disease progresses
[17]. Tracing studies of hippocampal connectivity in the
rhesus monkey have revealed corresponding afferent and
efferent cortical projections in the hippocampal formation,
particularly throughout the CA1 and subicular subfields
[52,53]. Diffusion tensor imaging studies in PPA have also
suggested damage to white matter tracts that project to
atrophic cortical areas [54,55]. The particular mechanism
whereby cortical atrophy, white matter damage, and
hippocampal CA1/subiculum deformity correspond has yet



Table 4

ApoE genotyping in PPA

ε4 allele absent,

n 5 26 (79%)

ε4 allele present,

n 5 7 (21%)

ApoE allele ε2/ε2 (1) ε3/ε3 (25) ε3/ε4 (6) ε4/ε4 (1)

Mean (SD) (range)

Immediate Raw Score 35.5 (5.1) [26–44] 38.0 (4.5) [30–43]

Delay Raw Score 37.0 (4.7) [28–45] 38.3 (2.2) [35–41]

Immediate Scaled Score 10.7 (3.1) [6–17] 12.7 (3.1) [8–17]

Delay Scaled Score 12.2 (3.5) [6–18] 13.4 (2.2) [11–17]

Abbreviations: ApoE, apolipoprotein ε; PPA, primary progressive apha-

sia; SD, standard deviation.
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to be determined. Alterations of shape through Wallerian or
transsynaptic mechanisms are potential explanations.
Furthermore, although some studies have examined overall
cortical and subcortical densities in aphasic and amnestic
AD [3,56], differences in the focal distribution of pathology
among hippocampal subfields have yet to be determined.
Therefore, future work in these areas will be integral to the
understanding of hippocampal shape change in PPA.

The greater abnormality of the left hippocampus may
reflect the asymmetrically greater degeneration of the
language-dominant (usually left) hemisphere in PPA. Regard-
less of the underlying mechanisms, the resultant hippocampal
abnormalities seem to have been functionally compensated
because the patients on average did not evidence recognition
memory impairments compared with healthy individuals.
However, the morphological abnormalities were not inconse-
quential, because they were related to interindividual varia-
tions in performance on memory tasks. In the future such
in vivo investigations can be combined with post-mortem or
biomarker data concerning the underlying pathology, such as
tau and amyloid PET imaging, to explore the cellular basis
of hippocampal deformities and their functional impact.

Finally, our analysis indicated that although overall hip-
pocampal volume could not distinguish PPA from controls,
hippocampal shape measures revealed strong group differ-
ences in different subfields. This indicates that hippocampal
subfield shape can be used as an in vivo marker of structural
changes that are not reflected in volumetric measures in
patients with PPA. Many of the individuals in this study
have agreed to brain donation at the time of death, which
will allow for the further validation of these findings.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed the literature on
in vivo neuroimaging findings on the hippocampus
in nonsemantic primary progressive aphasia (PPA).
Although the hippocampus has been well-studied in
typical Alzheimer’s disease (AD), detailed exami-
nations have not been previously conducted for
nonsemantic PPA.

2. Interpretation: Hippocampal shape abnormalities in
PPA showed both differences and similarities to the
typical AD pattern. Furthermore, damage to hippo-
campal subregions that are related to memory
impairment in typical AD is also related to the level
of memory ability in PPA, despite the preserved
functional memory of patients with PPA.

3. Future directions: Combining our computational
anatomy methods with cellular measures from
post-mortem or biomarker data will advance our
understanding of specific effects of the varied pa-
thology in this disease. The use of statistical learning
algorithms on imaging data will also allow for the
examination of potential pathological subsets in
PPA.
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