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1 | INTRODUCTION

Trauma-induced bleeding is a leading cause of preventable
mortality worldwide.1–3 Severely injured bleeding trauma
patients frequently present with trauma-induced coagulopa-
thy (TIC).4,5 Platelets are important in hemostatic response
but can rapidly become dysfunctional in these patients,
which contributes to TIC, exsanguination, and early
mortality.5–13 Characteristically, circulating platelets display
increased levels of surface activation markers and have
a reduced ability to adhere and aggregate ex vivo, despite
normal counts.8,11–13 However, lack of a clear boundary
between platelet function and dysfunction hampers devel-
opment of specific diagnostic criteria.14 Besides their role in

hemostasis, platelets act as orchestrators of the initial
immune response, which could contribute to immuno-
thrombosis, organ dysfunction and late mortality.11,15

An appreciation of the “normal” adaptive response of
platelets to local injury is necessary to understand the
dysfunctional platelet response seen in TIC. Moreover, it
forms the basis for potential targeted treatments to
improve outcomes of severely injured trauma patients.

In this narrative review the aims are to: (1) describe
“normal” platelet function following local tissue injury,
(2) describe the characteristics of platelet dysfunction after
trauma, (3) outline potential mechanisms, and (4) summa-
rize current and novel treatment strategies for early and
late trauma-induced platelet dysfunction.
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2 | THE “RESTING” PLATELET
AND THE VASCULAR WALL

Resting platelets are disc-shaped, anucleate blood cells,
derived from megakaryocytes.16 Platelets have a short
lifespan (7–10 days), indicating a continuous production
to maintain blood counts between 150–350 � 109 per
liter.17,18 The exterior surface of resting platelets contains
a layer of glycoproteins and lipids (platelet glycocalyx)
(Table 1, Figure 1A).19,20 The negative charge of the
platelet glycocalyx prevents spontaneous aggregation
with surrounding cells.19,21 Furthermore, it facilitates
endocytosis of plasma proteins, which are stored in plate-
let granules.22 Platelet contain alpha granules, dense
granules and lysosomes.23–25 Alpha granules contain
adhesion molecules (e.g., P-selectin, von Willebrand
factor [VWF], fibrinogen), (anti)coagulation factors
(e.g., factor V, antithrombin, protease-nexin-1), fibrino-
lytic factors (e.g., plasminogen activator inhibitor-1 [PAI-1])
and immune molecules (e.g., cytokines).25,26 Dense
granules contain polyphosphates (PolyP), amines
(e.g., serotonin), nucleotides (e.g., ADP/ATP) and cat-
ions (e.g., Ca2+, K+, Mg2+). Lysosomes contain protein
degrading enzymes (e.g., collagenase), carbohydrate
degrading enzymes and phosphatases.25

Endothelial cells also have a glycocalyx, which has
important thromboresistant and anti-coagulant func-
tions. Endothelial cells release ectonucleotidases, which
break down ADP and ATP (CD39-CD73-adenosine path-
way), preventing ADP-induced platelet activation via the
P2Y1/P2Y12 receptor.

27 Endothelial cells also release pros-
tacyclin (PGI2) and nitric oxide (NO) which further
inhibits platelet activation (Figure 1A).28,29

3 | LOCAL PLATELET RESPONSE
TO VASCULAR INJURY

Inherent to local tissue injury is the disruption of the endo-
thelial wall, exposing subendothelial structures to blood
components (Figure 1B). Endothelial activation causes upre-
gulation and release of adhesion molecules such as intracel-
lular adhesion molecule-1 (ICAM-1), VWF, platelet agonists
and damage associated molecular patterns (DAMPs).28

Under high shear conditions, platelets cannot readily bind
to endothelial cells and subendothelial structures. Therefore,
immobilized VWF on subendothelial collagen or VWF mul-
timers on endothelial cells are needed to facilitate platelet
binding (through GPIbα-IX-V).30,31 More secure binding of
platelets with endothelial cells occurs through GPIIbIIIa via
fibrinogen which is bound to ICAM-1.32 Platelets securely
bind subendothelial structures through GPIaIIa (collagen)
and αVβ1 (fibronectin) (Figure 1B).

Once activated, platelets transform from disc- to
spherical shape, out of which extrusions grow (lamellipo-
dia), increasing the surface area of the platelet mem-
brane.33 Intracellular calcium levels in platelets can rise
up to 100-fold, causing activation.34,35 An example is the
calcium-dependent activation of the GPIIbIIIa complex,
which has binding sites for fibrinogen and other extracellu-
lar proteins.36 Upon activation, platelet granules fuse with
the outer membrane, releasing their contents, amplifying
coagulation and inflammation. Platelet–platelet interaction
(i.e., aggregation) occurs primarily through GPIIbIIIa bind-
ing to fibrinogen.36

Platelets can be functionally classified into subpopula-
tions, which differ in their contribution to clot forma-
tion.37,38 In some platelets, cytoskeletal shape change is
accompanied by phosphatidylserine (PS) mobilization to
the outer membrane, which results in a procoagulant
membrane surface.39 Upon strong agonistic stimulation,
PS-exposing platelets can transform into “coated” plate-
lets, which express procoagulant proteins (e.g., VWF)
with high fibrinogen-binding capacity.40,41 The decrease
in cytoskeletal proteins can also lead to transformation
into PS-positive, balloon-like platelets as well as the for-
mation of platelet extracellular vesicles (EVs).42,43 Platelet

TABLE 1 Platelet receptors and their ligand(s)

Receptor Main ligand(s)

Agonist receptors

Protease activated receptor
(PAR)

Thrombin

α2-adrenergic receptor (α2-
AG)

Epinephrine

5-HT2 Serotonin

Thromboxane receptor
(TP)

Thromboxane A2 (TXA2)

P2Y1/P2Y12 ADP

GPVI Collagen

Adhesion and aggregation receptors

GPIb-IX-V Von Willebrand factor (VWF)

GPIaIIa Collagen

αVβ1 Fibronectin

CD62P (P-selectin) P-selectin glycoprotein ligand-1
(PSGL-1)

GPIIbIIIa Fibrinogen

Pattern recognition receptors (PRR)

Toll like receptors (TLRs) DNA, histones, high-mobility
group box 1 (HMGB1),
S100-proteins

Receptor for advanced
glycation end products
(RAGE)
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EVs promote fibrin formation by tissue factor (TF)-
bearing cells (e.g., monocytes, endothelial cells).43 In this
regard, platelets contain considerable amounts of tissue

factor pathway inhibitor α (TFPIα) in the cytoplasm
which is secreted upon strong stimulation and expressed
on coated platelets.44 Likewise, PS-positive platelets

FIGURE 1 Platelets at rest and the local response to vascular injury. (A) Platelets possess a large variety of membrane receptors

(e.g., protease-activated receptors (PAR), thromboxane receptor (TP), P2Y1/P2Y12 receptors, and different glycoproteins (GP)) sensitive to

agonists such as thrombin, thromboxane A2 (TXA2), adenosine diphosphate (ADP), and collagen (Col). The surface of endothelial cells and

platelets is lined with a glycocalyx, which has anticoagulant properties. Endothelial cells also express and release various molecules such as

prostacyclin (PGI2), nitric oxide (NO), thrombomodulin (TM), and CD39 which inhibit platelet function. A disintegrin and

metalloproteinase with thrombospondin type 1 motifs, member 13 (ADAMTS13) cleaves Von Willebrand Factor (VWF)-multimers,

inhibiting platelet adhesion to the vessel wall (B) After local tissue injury, endothelial cells get activated, glycocalyx is shed, and platelets

come in contact with subendothelial structures such as collagen. Platelets are activated, resulting in a rise in intracellular calcium levels,

causing structural and functional changes. Platelets secrete their granular content and agonists, initiating a feed-forward reaction which

activates and binds nearby cells. In response to high intracellular calcium levels, platelet derived microparticles (PMP) are released. A

disintegrin and metalloproteinase (ADAM)10/17 cleave platelet glycoproteins, thereby reducing reactivity (C) A subset of platelets express

phosphatidylserine (PS), these promote coagulation by catalyzing the conversion of various coagulation factors, leading to thrombin

generation. Polyphosphates (PolyP) also aid in the activation of various coagulation factors. Furthermore, platelets release pro- and anti-

fibrinolytic proteins (e.g., PAI-1, tPA) and catalyze the conversion of plasminogen into plasmin. (D) Activated platelets bind to immune cells

such as neutrophils, inducing inflammation and neutrophil extracellular trap (NET) formation. Additionally, platelets recognize damage-

associated molecular patterns (DAMPs) by pattern recognition receptors.

SLOOS ET AL. S283



promote fibrin formation by serving as assembly sites for
intrinsic tenase (FIXa, FVIIIa, FX) and prothrombinase
(FXa, FVa, FII) complexes (Figure 1C).39 In addition,
platelets can both inhibit and promote fibrinolysis,
depending on their location within the thrombus archi-
tecture.45 During thrombus formation, release of PAI-1
and α2-antiplasmin may inhibit unwanted fibrinoly-
sis.46,47 On the other hand, activated platelets also cata-
lyze the conversion of plasminogen to plasmin on their
surface membranes.45,48

The immunological roles of platelets are also impor-
tant in the local response to tissue injury.49 Activated
platelets upregulate P-selectin, which interacts with P-
selectin glycoprotein ligand (PSGL)-1, connecting platelets
with different leukocytes (Figure 1D).49 Furthermore,
platelets produce leukocyte-stimulating molecules, pro-
moting platelet-leukocyte interaction and leukocyte activa-
tion. Platelets further stimulate neutrophil extracellular
trap (NET) formation, which is composed of DNA, his-
tones and high-mobility group box 1 (HMGB1).49,50 NETs
further promote platelet PolyP release, amplifying fibrin
formation.51

In all, platelets exert numerous functions following
local tissue injury orchestrating hemostasis and the initial
immune response.

4 | CHARACTERIZATION OF
PLATELET DYSFUNCTION AFTER
TRAUMA

Trauma-induced platelet dysfunction is poorly defined
and not fully understood. Specific pre-existing factors
(e.g., age, medical history, prior antiplatelet therapy),
trauma-related factors (e.g., injury severity, shock, trau-
matic brain injury [TBI]) and prehospital resuscitation
factors (e.g., use of crystalloids, blood products, calcium
and tranexamic acid [TXA]) may affect diagnosis of plate-
let function. Currently, clinical diagnosis of platelet dys-
function after trauma relies on platelet count and
viscoelastic hemostatic assays (VHAs).52 For research
purposes other tests are available (Table 2).

Decreased platelet counts after trauma and TBI have
been associated with increased risk of mortality.53,54

However, platelet counts remain relatively normal during
bleeding (>100 � 109 per liter) and only decrease 24-h
post-injury.11 Platelet dysfunction therefore often exists
despite normal counts.11,55 P-selectin9,14,56 and GPII-
bIIIa56 expression on platelet membranes are increased
after traumatic injury. However, after agonistic stimula-
tion, further upregulation of these receptors (i.e., platelet
reactivity) is impaired.12,57 Additionally, platelets from
trauma patients show reduced adhesion to collagen

compared to healthy platelets.7,10 Moreover, the platelet
response to agonists in aggregation assays9,11,12,58 and
VHAs (e.g., platelet mapping) is impaired after trauma
and is associated with injury severity, shock, transfusion
requirements and mortality.7,55,59

In the most severely injured patients, approximately
10% of all platelets have balloon-like shapes and an
increase in circulating platelet EVs is observed.7 Platelet-
leukocyte aggregate formation is also increased, which is
associated with increased platelet activation and
impaired function.7,60

In the post-resuscitation phase, there is an increased
risk of thrombosis and organ dysfunction.61,62 Shock,
injury severity, TBI and early platelet dysfunction are all
associated with these late complications.15 Platelet counts
drop during intensive care unit (ICU) stay, but rise 72-h
post injury, resulting in a reactive thrombocytosis,53 which
is correlated with increased cloth strength.63,64 This hyper-
coagulable profile is associated with (venous) thromboem-
bolic events (VTE).63,65 Post-injury arterial thrombosis is
less frequently diagnosed and is associated with older age,
indicating different underlying mechanisms.66–69 Patients
with VTE showed an increased maximum amplitude in
VHA compared to patients without VTE.62 Aggregation
and platelet mapping remained impaired until day five
of admission,11,57,70 which is associated with develop-
ment of VTE.67 Platelets likely participate in the pro-
gression towards thrombosis and organ failure on
the ICU.

5 | POTENTIAL MECHANISMS OF
PLATELET DYSFUNCTION AFTER
TRAUMA

The human body is well-adapted to deal with local tissue
injury. However, humans likely have not been evolution-
arily adapted to major traumatic injuries and shock.
Nonetheless, modern resuscitation techniques allow
many of these severely injured patients to survive, thus
causing the original “adaptive” changes of the platelet to
persists to later phases of the injury response where they
may become “maladaptive.”14

5.1 | Increased platelet activation:
Platelet exhaustion

Impaired platelet reactivity after trauma could be due to
early strong systemic activation of platelets, rendering
platelets “exhausted” and dysfunctional. Systemically ele-
vated levels of platelet agonists and DAMPs are thought
to play an important role. Despite high intracellular
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calcium levels, calcium mobilization within platelets is
impaired after trauma, which might explain the reduced
reactivity.57 Additionally, increased formation of platelet-
leukocyte aggregates in response to agonists and DAMPs
are thought to contribute to platelet exhaustion.60

5.2 | Reduced platelet adhesion:
Receptor shedding

After trauma, the adhesion receptor GPIbα and collagen
receptor GPVI are shed, which was associated with
decreased platelet adhesion and aggregation.8 Proteases
such as plasmin and thrombin are elevated after trauma
and can cleave platelet adhesion receptors.71,72 The shed-
ding of GPVI and GPIbα is mediated by a disintegrin and
metalloproteinase (ADAM)10 and ADAM17, in response
to elevated intracellular calcium.73 Platelet binding to col-
lagen and fibrin further contributes to GPVI shedding,
resulting in desensitization to subsequent agonist stimu-
lation.8,74 During bleeding, increased ADAM10 and
ADAM17 activity could be detrimental. Tissue inhibitors
of metalloproteinases (TIMP) 1 and 3 inhibit ADAM10
and ADAM17 activity. These inhibitors may reduce plate-
let dysfunction after trauma.75 However, due to the broad
mechanisms of action of ADAM10 and ADAM17, they
are a challenging target for treatment.

5.3 | Reduced platelet adhesion: The
deranged VWF-ADAMTS13 axis

Plasma concentrations of VWF are increased after trauma
and correlate with injury severity,76–79 but lower plasma
VWF can be associated with increased mortality and
TIC.77 Insufficient VWF could contribute to reduced plate-
let adhesion in trauma. VWF is regulated by its cleaving
enzyme a disintegrin and metalloproteinase with throm-
bospondin type 1 motifs, member 13 (ADAMTS13), but
possibly also by plasmin.80 ADAMTS13 is, in general,
decreased in concentration and activity after trauma.76,81,82

However, increased ADAMTS13 activity can also exist in
severely injured patients.76 Under normal circumstances,
ADAMTS13 circulates in an inactive form (its cleavage site
is protected by CUB-domains), and becomes activated
upon binding to unfolded VWF, underlining its specificity
to VWF.83–85 Several proteases that are elevated after trau-
matic injury (e.g., thrombin, plasmin) can degrade
ADAMTS13, decreasing its activity.86,87 However, specific
proteolysis of CUB domains of ADAMTS13 can enhance
ADAMTS13 activity and remove substrate specificity for
VWF.85,88 Hyperactive ADAMTS13 can cleave fibrinogen,
potentially impairing platelet adhesion andT
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aggregation.85,88 The CUB domains of ADAMTS13 also
directly inhibit platelet adhesion to collagen under flow.89

In all, various changes in the VWF-ADAMTS13 axis occur
after traumatic injury, which could affect platelet function.

5.4 | Reduced platelet aggregation

Low fibrinogen levels in trauma are associated with poor
outcomes and could contribute to the observed decrease
in platelet aggregation after trauma.90 Alternatively,
GPIIbIIIa shedding, induced by high intracellular cal-
cium concentration or by proteases such as plasmin may
also contribute.41 Acidosis and hypothermia could fur-
ther worsen platelet aggregation.91–93

5.5 | DAMPs and platelet dysfunction

DAMPs are thought to play a key role in trauma-induced
platelet dysfunction. DAMPs such as DNA, histones and
HMGB1 are released in high concentration into the circu-
lation after trauma.94 Histones can activate platelets and
facilitate platelet-dependent thrombin generation.95 His-
tones can induce platelet dysfunction after trauma.96 Par-
ticularly, histone H4 has been shown to induce platelet
ballooning and contribute to the formation of platelet
EVs.7 Histones have also been linked to the development
of thrombosis and organ dysfunction after traumatic
injury.97

Likewise, nuclear protein HMGB1 is increased up to
300-fold within the first hours after injury.94 Despite lack-
ing a nucleus, platelets have been identified as a major
source of HMGB1.98 HMGB1 can induce platelet activa-
tion and inflammation via the toll-like receptors (TLRs)
and receptor for advanced glycation end products
(RAGE). In an experimental trauma model, platelet-
specific HMGB1 knockout compared to wild type mice
showed reduced inflammation and decreased platelet
adhesion, highlighting the importance of HMGB1 in
platelet function.98,99 In line with this, high HMGB1
levels are associated with thrombosis and adverse out-
comes.94,98,100 Another DAMP activating TLR4 and
RAGE that has recently gained interest with regards to
trauma-induced platelet dysfunction is S100A8/A9.96,101–103

S100A8/A9 is a heterodimeric, intracellular protein, espe-
cially abundant in neutrophils, where it comprises almost
half of the cytoplasm proteins. Platelets may have some
capacity for de novo synthesis of S100A8/A9, but it is
unknown if they are the main source after trauma.104

In vitro data shows that neutrophils are able to transfer
S100A8/A9 to platelets upon activation, impairing plate-
let reactivity.105

In all, the precise mechanism by which DAMPs
impair platelet function after trauma is unknown, but
pattern-recognition receptors and their ligands are likely
involved.

5.6 | Endothelial dysfunction,
immunothrombosis, and organ
dysfunction

Endothelial activation, glycocalyx shedding, and
increased permeability are present early after trauma and
are associated with the presence of shock.106,107 Endothe-
lial dysfunction can be worsened by crystalloid resuscita-
tion.108 Additionally, platelet-endothelial interactions
distant from localized endothelial injury may aggravate
endothelial dysfunction and contribute to thrombosis.109

VWF multimers are continuously released, and
ADAMTS13 is decreased, associated with microthrombi
formation and organ dysfunction.76,78 Moreover, histones
and HMGB1 remain significantly elevated for multiple
days following injury.94,97 Furthermore, platelet TLR4
expression stimulates formation of platelet-leukocyte
aggregates.110 The extensive crosstalk between activated
platelets, damaged endothelium and primed leukocytes
could promote excessive release of platelet EVs,111

platelet-leukocyte aggregates7 and NETs.112 The sus-
tained inflammatory and procoagulant state which is
aggravated by endothelial dysfunction may result in
microvascular thrombosis and organ dysfunction.113

6 | TREATMENTS FOR
TRAUMA-INDUCED PLATELET
DYSFUNCTION

Targeted treatment of trauma-induced platelet dysfunction
is time-dependent. The treatment priority switches from
augmenting platelet hemostatic function during active
bleeding, towards preventing thrombosis in the post-
resuscitation phase. The exact timing of the shift from a
hypocoagulable to a hypercoagulable state may be patient-,
time-, injury- and/or shock dependent, but remains cur-
rently unclear. Figure 2 broadly summarizes (proposed)
intervention times of current and experimental treatments.

7 | CURRENT EARLY
TREATMENTS FOR PLATELET
DYSFUNCTION

Current trauma resuscitation consists of early adminis-
tration of TXA, permissive hypotension (i.e., limiting
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crystalloid infusion), a balanced transfusion strategy,
and fibrinogen and calcium supplementation. In addi-
tion, hypothermia and acidosis should be addressed
early as it affects platelet dysfunction.91–93 In some cen-
ters, treatment is guided by VHAs, which might be ben-
eficial for patients with TIC.114,115 Mechanisms of early
treatments are shown in Figure 3.

7.1 | Tranexamic acid

Early use of TXA has been shown to significantly improve
survival after trauma, including mild to moderate
TBI.116–118 TXA binds to plasminogen, preventing its con-
version to plasmin, decreasing fibrinolysis. Moreover,
in vitro, TXA improved clot strength, which could suggest
improved platelet function.119 Mechanistically, by plasmin
inhibition, TXA could decrease proteolysis of platelet
receptors. Plasmin also induces immune cell activation,
which could explain part of the beneficial effects of TXA
after trauma.120

7.2 | Platelet transfusion

Standard care is empiric transfusion of room temperature
stored (RT) platelets in a balanced ratio with red blood
cells and plasma.121 Early and high-dosed platelet trans-
fusion is associated with a significant reduction in

mortality.122 In contrast, in patients with mild TBI, plate-
let transfusion may be harmful.123,124

Despite the overall mortality benefits, it is unknown
how platelet transfusion affects platelet dysfunction.
Transfused platelets may adapt the same dysfunction as
their endogenous counterparts and do not appear to
improve platelet aggregation during active bleeding.125,126

Interestingly, circulating PAI-1 concentration increases
after platelet transfusion in trauma patients.125 The clini-
cal benefits of platelet transfusion could therefore be
partly due to a reduction in hyperfibrinolysis rather than
an improvement in platelet function.

The storage conditions and donor-related factors could
affect the function of transfused platelets.24 Cold-stored
platelets showed hemostatic superiority over RT-stored plate-
lets in vitro.127,128 Clinical trials need to assess the hemostatic
capacity of cold-stored platelets in trauma patients.

An alternative to platelet component transfusion is
whole blood (WB), which has gained renewed interest in
trauma resuscitation. Although WB may be clinical feasible
and showed survival benefits over component therapy in an
observational trial, randomized controlled trials (RCTs) are
needed to evaluate its safety and effectiveness.129–134

7.3 | Fibrinogen

Fibrinogen can be supplemented as fibrinogen concentrate
or as cryoprecipitate, the former of which has recently been

FIGURE 2 Proposed timing of

current and novel treatments for

trauma-induced platelet dysfunction.

Timing of treatment depends on

bleeding and thrombosis risk.

ADAMTS13, a disintegrin and

metalloproteinase with thrombospondin

type 1 motifs, member 13; DAMP,

damage-associated molecular pattern;

DDAVP, desmopressin; LMWH, low

molecular weight heparin; VWF, von

Willebrand factor.
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shown to improve survival after trauma.135,136 The mecha-
nism by which fibrinogen improves outcomes could be, in
part, due to promoting platelet adhesion and aggregation.
Cryoprecipitate also contains other pro-hemostatic factors,
such as FXIII, FVIII and VWF, and is associated with supe-
rior clotting kinetics in vitro.137,138 In vitro data suggest that
cryoprecipitate increases thrombin generation.137 More data
is necessary to evaluate to role of fibrinogen concentrate
and cryoprecipitate on platelet dysfunction.139

7.4 | Calcium

Hypocalcaemia is a common finding after trauma, associ-
ated with increased blood transfusion requirements, coa-
gulopathy and mortality.140 Ionized calcium is essential
for platelet activation, adhesion and aggregation.141 After
trauma, hypocalcemia is independently associated with
decreased platelet function and clot strength.142 Hypocal-
caemia cannot be detected in ROTEM, as calcium is
added ex vivo. Although some in vitro data exist, the
direct effect of supplementation of extracellular ionized
calcium on platelet function needs further exploration.

8 | NOVEL EARLY TREATMENT
STRATEGIES FOR PLATELET
DYSFUNCTION

Despite decreased mortality with current resuscitation
strategies, TIC and platelet dysfunction continue to be

present in severely injured patients, highlighting the need
for novel targeted treatments.

8.1 | Desmopressin

As mentioned, VWF is important for platelet adhesion.
Increasing VWF through desmopressin (DDAVP) could
therefore be beneficial in bleeding trauma patients.
Besides promoting platelet adhesion to collagen and
endothelium, DDAVP has various other pro-hemostatic
effects on platelets.143,144 A recent RCT showed that
DDAVP compared to vehicle reduced the amount of
blood product use during trauma rescusitation.145 A ret-
rospective study in TBI showed that platelet function
after treatment with DDAVP was comparable to patients
receiving platelet transfusion.146

8.2 | Potential role for (semi)synthetic
platelets

In recent decades, synthetic nanoparticles that mimic the
important hemostatic functions of platelets have gained
interest.147 These can be constructs derived and processed
from natural platelets (Figure 4A,B), or be fully synthetic
(Figure 4C,D). Ideally, such platelet-mimicking particles
would adhere at the site of injury and interact with
fibrinogen and locally activated platelets to form aggre-
gates, without any significant immunogenic or throm-
botic risks. Examples of semi-synthetic platelet products

FIGURE 3 Mechanisms of early treatments for trauma-induced platelet dysfunction. The goal early after traumatic injury should be to

increase platelet activation, adhesion and aggregation at the site of injury. Additionally, inhibiting DAMPs could decrease inflammation and

improve platelet function. DDAVP, desmopressin; TXA, tranexamic acid; VWF, von Willebrand factor.
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that are derived from natural platelets include infusible
platelet membranes148,149 and infusion of platelet EVs.150

Alternatively, loading platelets or fibrinogen coated-
nanoparticles with hemostatic agents such as thrombin or
TXA to more effectively reach the site of injury are promis-
ing novel treatment options for traumatic bleeding.151,152

Infusion of fully synthetic nanovesicles coated with
VWF binding, collagen binding, and fibrinogen mimetic
peptides (e.g., SynthoPlate design) was shown to be com-
parable to other platelet products in terms of safety and
hemostatic efficacy in animal models of thrombocytope-
nia and traumatic bleeding.153–155 Recently this design
has been refined by incorporation of PS, which promotes
thrombin generation.156 Similarly, ADP containing vesi-
cles coated with HHLGGAKQAGDV (H12), a fibrinogen
mimetic, were effective in an animal model of thrombo-
cytopenia and trauma.157,158 Although promising, rigor-
ous safety and efficacy clinical trials are needed to
translate these technologies to trauma patients.

9 | REDUCING INFLAMMATION,
IMMUNOTHROMBOSIS AND
ORGAN DYSFUNCTION

Once the bleeding has stopped, treatment goals shift from
promoting platelet hemostatic function to preventing and
treating inflammation and thrombosis. As mentioned,
activated endothelium, circulation of “exhausted plate-
lets” and DAMPs maintain a vicious pro-inflammatory
and procoagulant environment. These components have

been proposed as targets for novel treatments. Addition-
ally, and more directly, inhibiting platelet aggregation
might be necessary to prevent thrombosis (Figure 5).
However, individual bleeding risk assessment is needed.

9.1 | Targeting DAMPs: DNA, Histones,
and HMGB1

Targeting circulating DNA and NETs has potential bene-
ficial effects after trauma. DNase-1 is responsible for
removing most of the cell free DNA in the circulation,
making it a potentially promising treatment option. A
recent observational study in trauma showed that
DNase-1 is significantly decreased and coexisted with
increased circulating DNA after traumatic injury.159 In a
rodent model of traumatic injury, scavenging free mito-
chondrial DNA decreased organ dysfunction.160 Like cir-
culating DNA, histones and HMGB1 are promising
targets for treating platelet dysfunction after trauma. Sev-
eral endogenous molecules, such as protein C and glyco-
calyx components are shown to inhibit histone-induced
cytotoxicity.161–163 In a swine model of trauma and shock,
fresh frozen plasma (FFP) supplemented with histone
deacetylase inhibitor valproic acid significantly increased
plasma platelet activation markers P-selectin and
sCD40L, and improved outcomes compared to FFP
alone.164 Therapeutic strategies to inhibit HMGB1 have
been shown to reduce acute lung injury after trauma.165

The effect of anti-HMGB1 on platelet dysfunction after
trauma is currently unknown.

FIGURE 4 Examples of (semi)synthetic platelet designs. (A) Extracted natural platelet membranes integrated into a synthetic vesicle

(e.g., infusible platelet membrane, Thrombosome). (B) Natural platelets loaded with hemostasis-promoting agents to enhance platelet

function or for targeted drug delivery. (C) Synthetic vesicle coated with VWF binding, collagen binding, and fibrinogen mimetic peptides

(e.g., SynthoPlate design). (D) Latex beads, albumin or liposomes, coated with a fibrinogen mimetic such as HHLGGAKQAGDV (H12),

which binds GPIIbIIIa. These vesicles can be loaded with agonists such as ADP.
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Besides inhibiting their ligands, directly modulating
or inhibiting immune receptors could be another target
for trauma-induced platelet dysfunction. In experimental
models of TBI, HMGB1 receptor antagonists reversed
brain damage and decreased inflammation.166–168 In
addition, targeting platelet TLRs could be a promising
target for thrombosis after traumatic injury.169,170

9.2 | Recombinant thrombomodulin

Recombinant thrombomodulin (rTM) inhibits DAMPs
such as histones and HMGB1.162,171,172 rTM reduces
HMGB1 levels and improves inflammation and platelet
function.173 In a RCT in septic patients, rTM improved
coagulopathy.174 These results raise the question regarding
the utility of rTM for TIC, which differs markedly from
the coagulopathy in sepsis. In experimental models of coa-
gulopathy, rTM inhibited histone-induced platelet aggre-
gation.175,176 The effects of rTM could be attributable to

direct modulating effect on histone H4, or could be medi-
ated by increased activated protein C.162,175 In vitro data
suggest that platelets incubated with rTM have normal
aggregation, but reduced thrombin reactivity and tissue
factor induced EV formation.177 Besides the inhibitory
effects of rTM on DAMPs, rTM has been shown to prevent
thrombin induced degradation of ADAMTS13 in vitro,
which could prevent low ADAMTS13 levels in trauma.86

Dosage should depend on the phase after trauma
(i.e., bleeding vs. thrombosis risk), because high concentra-
tion of rTM activates protein C, which could exacerbate
early TIC.178–180

9.3 | Targeting endothelial dysfunction
to improve platelet dysfunction

The endothelium can be targeted to potentially improve
platelet dysfunction and reduce microthrombosis.113

Firstly, the endothelial glycocalyx can be protected by

FIGURE 5 Targets for late treatments to improve platelet dysfunction, reduce microthrombosis and organ dysfunction. (A) Platelets

remain dysfunctional (“exhausted”) during ICU stay, resulting in promiscuous platelet adhesion and aggregation and microthrombi

formation. This platelet dysfunction is maintained due to endothelial activation and prolonged circulation of DAMPs. (B) To break the

vicious cycle of late platelet dysfunction after trauma, various treatment strategies are possible.
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plasma transfusion, the benefits of which are shown in
severely injured trauma patients and in animal trauma
models.76,181,182 Secondly, VWF release can be targeted
by administration of recombinant ADAMTS13, associ-
ated with reduced endothelial permeability and organ
failure.76,79 Furthermore, the VWF-targeting thrombo-
lytic agent Microlyse has been shown to reduce microvas-
cular thrombosis, which may be beneficial after
trauma.183 Thirdly, prostaglandin receptor agonists
(e.g., iloprost) can reduce endothelial activation, glycoca-
lyx shedding, and platelet aggregation.184,185 Fourthly,
the CD39-CD72-adenosine pathway is a promising thera-
peutic target, as it inhibits ADP-induced platelet activa-
tion. In vitro, sCD39 inhibited platelet aggregation27 and
adenosine restored ADP induced platelet aggregation.186

Lastly, NO inhalation during ventilation may reduce
platelet activation and aggregation.187–189 Together, tar-
geting the endothelium may reduce organ dysfunction by
improving late trauma-induced platelet dysfunction.

9.4 | Targeting thrombosis: LMWH and
platelet aggregation inhibitors

Low-molecular weight heparin (LMWH) is the current
pharmacological thromboprophylactic treatment after
trauma and is associated with reduced VTE and mortality.190

However, VTE was independently associated with
acquired antithrombin deficiency 72 h post-injury, which
raises a question on timing and dose of LMWH.191 LMWH
reduced platelet aggregation in vitro.192 On contrary,
administration of LMWH did not reduce the hypercoagul-
able profile and still showed patients developing VTEs,
highlighting the need for additional therapies targeting
late platelet dysfunction.65 Patients on antiplatelet therapy
showed a reduction in progression of organ dysfunction
and late mortality.193 The P-selectin-PSGL-1 interaction
can be reduced by P-selectin antibodies (e.g., inclacumab,
crizanlizumab). In a model of arterial injury, PSGL-1 inhi-
bition compared to vehicle reduced thrombosis.194 Simi-
larly, inhibition of P-selectin prevented pulmonary
arterial thrombosis in a murine model of traumatic
chest injury.109 Platelet aggregation reduction can be
achieved by targeting GPIIbIIIa (e.g., tirofiban). In a
model of systemic inflammation, induced by extracor-
poreal circulation, tirofiban protected platelets and
decreased platelet-leukocyte binding.195 Lastly, specific
platelet-VWF interactions could be reduced by caplacizu-
mab, which in patients with thrombotic thrombocytopenic
purpura has been shown to reduce microthrombosis and
organ failure.196 The efficacy and optimal timing of these
potential treatments require further study in trauma
patients.

10 | CONCLUSION AND FUTURE
DIRECTIONS

Platelets play an important role in the hemostatic
response to local tissue injury, but can become dysfunc-
tional in severely injured trauma patients. Trauma-
induced platelet dysfunction is still poorly defined and
additional characterization is needed to formulate accu-
rate diagnostic criteria. Identification of potential mech-
anisms underlining platelet dysfunction after trauma
has led to the emergence of novel targeted treatment
options. Both early and late platelet dysfunction require
different therapeutic interventions, which should be
personalized based on the patient-specific coagulation
defects. Early treatments should prioritize bleeding con-
trol, while late treatments should target thrombosis. To
improve the care of severely injured trauma patients,
safety, timing, and dose of proposed treatments should
be further studied.
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