
Research Article
Analysis of Transcription Factor-Related Regulatory
Networks Based on Bioinformatics Analysis and Validation in
Hepatocellular Carcinoma

Shui Liu ,1,2 Xiaoxiao Yao ,1,2 Dan Zhang ,1,2

Jiyao Sheng ,1,2 XinWen ,3 QingyuWang ,4 Gaoyang Chen ,4 Zhaoyan Li ,4

Zhenwu Du ,4,5 and Xuewen Zhang 1,2

1Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, China
2Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases,
The Second Hospital of Jilin University, Changchun 130041, China

3The Second Hospital of Jilin University, Changchun 130041, China
4Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
5Research Center of Second Clinical College, Jilin University, Changchun 130041, China

Correspondence should be addressed to Zhenwu Du; doom99106@163.com and Xuewen Zhang; zhangxw@jlu.edu.cn

Received 2 April 2018; Revised 3 July 2018; Accepted 25 July 2018; Published 29 August 2018

Academic Editor: Ji-FuWei

Copyright © 2018 Shui Liu et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hepatocellular carcinoma (HCC) accounts for a significant proportion of liver cancer, which has become the secondmost common
cause of cancer-related mortality worldwide. To investigate the potential mechanisms of invasion and progression of HCC,
bioinformatics analysis and validation by qRT-PCRwere performed.We found 237 differentially expressed genes (DEGs) including
EGR1, FOS, and FOSB, which were three cancer-related transcription factors. Subsequently, we constructed TF-gene network and
miRNA-TF-mRNA network based on data obtained from mRNA and miRNA expression profiles for analysis of HCC. We found
that 42 key genes from the TF-gene network including EGR1, FOS, and FOSBwere most enriched in the p53 signaling pathway.The
qRT-PCR data confirmed thatmRNA levels of EGR1, FOS, and FOSB all were decreased in HCC tissues. In addition, we confirmed
that the mRNA levels of CCNB1, CCNB2, and CHEK1, three key markers of the p53 signaling pathway, were all increased in HCC
tissues by bioinformatics analysis and qRT-PCR validation. Therefore, we speculated that miR-181a-5p, which was upregulated in
HCC tissues, could regulate FOS and EGR1 to promote the invasion and progression of HCC by p53 signaling pathway. Overall,
the study provides support for the possible mechanisms of progression in HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the common
digestive systemmalignancies with highmortality, which has
become the second most common cause of cancer-related
mortality worldwide [1, 2]. There are more than 466,100
estimated new cases and 422,100 estimated death cases every
year in China [3]. Although there is extensive research about
the therapies for HCC, the specific mechanisms of HCC
occurrence and developmentwere not clear. It is significant to
investigate the underlying mechanisms of HCC invasion and

progression to develop effective diagnostic and therapeutic
strategy.

Over the last decades, bioinformatics and microarray
technology have been widely used to screen the molecu-
lar mechanisms of HCC, which provide powerful research
support for the diagnosis and treatment of HCC [4–6]. By
bioinformatics analysis andmicroarray technology, functions
of some differentially expressed genes (DEGs) in HCC have
been explored, which paved the way for exploring compli-
cated process in the occurrence and development of HCC
[5, 7–9]. As an important part of participating in life activities,
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transcription factors (TFs) have been reported to play an
important role in the development of HCC by numerous
studies [10, 11]. A work by S. Hua et al. found that ETS1, a
cancer-related TF, could through interaction with miR-139-
5p inhibit cell proliferation, migration, and invasion in HCC
[12]. Another research reported that NF𝜅B/EGR1 signaling
pathway induced miR-3928v to promote the progression of
HCC [13]. Even so, more research is still needed to explore
the specific role of different TFs in the progression of HCC.

During the present study, we analyzed 4 mRNAmicroar-
ray datasets and 1 miRNA microarray dataset from Gene
Expression Omnibus (GEO) to obtain DEGs and differ-
entially expressed miRNAs (DEMs) between HCC tissues
and adjacent noncancerous tissues by GEO2R. Subsequent-
ly, Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis, and pro-
tein-protein interaction (PPI) network analysis were per-
formed to reveal the interaction relationship between DEGs
and DEMs and to explore the underlying molecular mecha-
nisms in the carcinogenesis and progression of HCC [14–17].
In addition, we screened differentially expressed TFs inHCC,
constructed miRNA-TF-mRNA networks, and proposed a
potential miRNA-TF-signaling pathway axis, which identi-
fied a systematic exposition of the relevant transcriptional
regulation modes associated with invasion and progression
of HCC.This study could provide insightful information and
the valuable clue for biomarker discovery and novel treatment
strategy in HCC.

2. Materials and Methods

2.1. Microarray Data Information and DEGs Identification.
NCBI-GEO is a free database of microarray/gene profile and
next-generation sequencing, from which HCC and adjacent
nontumor tissue gene expression profile of GSE84402,
GSE33006, GSE84005, GSE12941, and GSE64632 were
obtained [4, 18, 19, 21]. The DEGs and DEMs between HCC
tissues and adjacent nontumor tissues were screened using
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r), which
was an interactive web tool for identifying DEGs across ex-
perimental conditions among two or more datasets in a
GEO series. Identification of commonly differentially ex-
pressed mRNAs from the four cohort profile data sets
(GSE84402, GSE33006, GSE84005, and GSE12941) was per-
formed by FunRich software (available online: http://www
.funrich.org/). |logFC| (fold change) >1 and P value <0.05
were considered statistically significant. The pipeline of the
whole process of this study was shown in Figure 1.

2.2.Construction of Transcription FactorNetworks. Transcrip-
tional regulatory element database (TRED) (https://cb.utdallas
.edu/cgibin/TRED/tred.cgi?process=home) is a database of
transcriptional regulatory elements, which provides 36 can-
cer-related TFs and corresponding regulatory networks
[22]. Transcriptional Regulatory Relationships Unraveled by
Sentenced-basedTextmining version 2.0 database (TRRUST)
(available online: http://www.grnpedia.org/trrust/) is a data-
base based on the literature to reflect the relationship between

transcriptional regulation [23]. And theprediction ofmiRNA-
target genes was performed by miRTarBase (http://mirtar-
base.mbc.nctu.edu.tw/php/index.php) [24]. According to the
regulatory interaction, TF-target network and miRNA-TF-
mRNA network were constructed based on gene expression
profile, TRRUST version 2, TRED, andmiRTarBase byCytos-
cape 3.6.0 software.

2.3. Functional and Pathway Enrichment Analysis. Omics-
bean is an online biological information database that inte-
grates biological data and analysis tools and provides a
comprehensive set of functional annotation information of
genes and proteins for users to extract biological information.
To analyze the function of DEGs, GO and KEGG pathway
enrichment analysiswere performed usingOmicsbean online
database (http://www.omicsbean.com:88). P value<0.05 was
considered statistically significant.

2.4. Validation in TCGA Dataset and Modular Analysis of the
Key Genes. Validation of the key genes in the TCGA Data-
set was performed by UALCAN (http://ualcan.path.uab.edu/
index.html) [25]. We performed Kaplan-Meier plots and
boxplots to verify the differential expression of the key genes
between primary tumor and normal liver and effect of key
genes expression level onLIHCpatients' survival. Correlation
analysis was performed by Linkedomics (http://www.linke-
domics.org) [26].

2.5. Validation of the Key Genes byQuantitative Real-TimeRT-
PCR (qRT-PCR). A total of 20 HCC patients were recruited
for tumor and adjacent nontumor tissues collection from the
China-Japan Union Hospital of Jilin University, Changchun,
China. This study was approved by the Ethics Committee
of the Second Clinical Medical College, Jilin University, and
each patient consented in a written informed consent form.
The data were analyzed anonymously. All tissues were taken
from the surgery room and snap-frozen and stored in liquid
nitrogen within 10 min after the resection. The clinicopatho-
logical characteristics of 20 HCC patients were shown in
Table S1.

Tissue RNA was isolated using Trizol (Invitrogen, CA,
USA) and further purified using the MiniBEST Universal
RNA Extraction Kit (TaKaRa, China) according to the man-
ufacturer's instructions. RNA concentration was then mea-
sured using theNanoDrop 2000 spectrophotometer (Thermo
Scientific, MA, USA) with A260/A280 ratio in the range 1.8∼
2.0 and RNA concentration ranged from 100 ng/𝜇l to 1 𝜇g/𝜇l.

For qRT-PCR analysis, less than 5 𝜇g total RNA includ-
ing microRNA was reverse transcribed to cDNA with 1st
strand cDNA Synthesis Kit (Takara, China) and miRNA
First Strand cDNA Synthesis (Sangon, China); the expres-
sion of mRNA and microRNA was examined by qRT-PCR
with TransStart � Top Green qPCR SuperMix (TransGen
Biotech, China), microRNAs qPCR Kit (Sangon, China), and
Applied Biosystems 7500 Fast Real-Time PCR System. The
relative expression of mRNA and microRNA was normal-
ized to GAPDH/U6 expression by comparative Ct method
(2−ΔΔCt, ΔCt =Cttarget-CtGAPDH/U6, and ΔΔCt=ΔCttumor-
ΔCtnon-tumor). All primers were designed with Primer 7.0
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Figure 1: Process of TF-related regulatory network construction and key genes identification in HCC.
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Figure 2: Identification of 237 common DEGs from the four cohort profile data sets. (a) 57 commonly upregulated DEGs. (b) 180 commonly
downregulated DEGs. Different color areas represented different datasets. The cross areas meant the commonly changed DEGs. DEGs were
identified with classical t-test; statistically significant DEGs were defined with p<0.05 and |logFC| >1 as the cut-off criterion.

Software; primer sequences for amplification were listed in
Table 8.

2.6. Statistical Analysis. Data from qRT-PCR were analyzed
withGraphPadPrismversion 7.0, and differences between the
two groupswere statistically evaluated by two-tailed Student’s
t-test with p value <0.05 considered as significant. The Pear-
son correlation coefficient was used to examine the relation-
ship between key genes.

3. Results

3.1. Identification and Enrichment Analysis of DEGs in HCC.
HCC and adjacent nontumor tissue gene expression profile
of GSE84402, GSE33006, GSE84005, and GSE12941 were
obtained from NCBI-GEO. We used p<0.05 and |logFC| >1
as cut-off criterion. After integrated bioinformatical analysis,

a total of 237 differentially expressed genes were identified
from the four profile datasets, including 57 upregulated genes
and 180 downregulated genes (Tables 1–3, Figure 2).

The enrichment analysis of DEGs was performed. As
shown inTable 4 and Figure 3, in the biological process group,
the DEGs were mainly enriched in response to chemical.
In the cellular component group, the DEGs were most
enriched in the extracellular region. In the molecular func-
tion group, the DEGs were most enriched in protein binding.
And the most enriched KEGG pathway was complement and
coagulation cascades.

3.2. Identification and Functional Analysis of Key Differentially
Expressed Genes, Construction of TF-Related Networks in
HCC. We intersected 237 common DEGs and curated 36
cancer-related TF families to get three differentially expressed
TFs (EGR1, FOS, and FOSB) in HCC (Table 5). We searched
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Figure 3: Enrichment analysis of DEGs.

Table 1: The information of expression profiles.

Series Platform Tissues Adjacent tissues Tumor tissues Reference
GSE84402 GPL570 mRNA Liver 14 14 [4]
GSE33006 GPL570 mRNA Liver 3 3 [18]
GSE84005 GPL5175 mRNA Liver 38 38 -
GSE12941 GPL5175 mRNA Liver 10 10 [19]
GSE64632 GPL18116 miRNA Liver 3 3 [20]

the target genes and regulators of the three TFs through
TRRUST version 2 database. Based on the results, we found
that STAT6, a cancer-related TF, regulated FOS and FOSB,
while FOS and EGR1 were coregulated by 2 cancer-related

TFs, including BRCA1 and SP1, respectively. Similarly, TP53
and NKFB1 were coregulated by FOS and EGR1, respectively.
Since FOS and EGR1 are linked to each other by 4 cancer-
related TFs including BRCA1, SP1, TP53, and NKFB1, we also
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Table 2: The differentially expressed genes of downloaded expression profiles (P value<0.05, FC>2).

Upregulation Downregulation Total
GSE84402 2232 1363 3595
GSE33006 1680 2696 4376
GSE84005 481 530 1011
GSE12941 175 385 560
Co-overexpression DEGs 57 180 237

Table 3: The common DEGs of four gene expression profiles (P value<0.05, FC>2).

Common DEGs Gene symbol

Downregulated
DEGs

CLEC4M, CXCL14, NAT2, FOSB, CFP, CRHBP, MARCO, CYP1A2, CLEC4G,
FCN3, CNDP1, ABCA8, APOF, GYS2, GLS2, BMPER, ADRA1A, OIT3, VIPR1,
GBA3, CDA, SDS, MT1G, SHBG, CYP3A4, HAMP, HAO2, GREM2, CYP39A1,

HGFAC, C7, ANGPTL1, TIMD4, DPT, FOS, INMT, NNMT, TAT, C9, DNASE1L3,
AKR1D1, IGJ, CYP8B1, PGLYRP2, TDO2, GPM6A, HHIP, BBOX1, CYP2B6, MT1X,
RDH16, NPY1R, ZG16, DCN, GNMT, F9, C8A, HPGD, CETP, MFAP4, PLAC8,
SRD5A2, AFM, ITIH4, LIFR, STAB2, HGF, C14ORF68, SRPX, TMEM27, ASPA,
KLKB1, EGR1, ALDH8A1, SAA4, PHYHD1, CYP2C9, C6, DIRAS3, GHR, GNA14,
ALPL, CD5L, PCK1, STEAP4, BMP5, IGF1, AGXT2, PZP, PON3, ACMSD, EPHA3,

HPX, PRG4, RBMS3, ST3GAL6, FBP1, HBB, HAL, FTCD, ENO3, COLEC10,
STEAP3, PROZ, CXCL12, SPP2, PDE7B, P2RY13, SLC38A4, ECM1, C8ORF4,
SLC7A2, PRELP, C8B, CCL19, PTPRB, ITGA9, CHST4,ENG, RAMP3, GDF2,

GPR128, ABCA9, CCDC3, VSIG4, GZMK, RND3, MBL2, LAMA2, EMR1, SOCS2,
F8, CCBE1, CD69, CD163, PTGIS, FXYD1, DNAJC12, CA2, UROC1, GCH1,

WDR72, RASGEF1B, COLEC11, IGFBP3, RGN, IFITM1, FBLN5, CYP2C18, CD4,
GCDH, PKHD1, OLFML3, FGFR2, TEK, CPS1, TRIM22, ID1, GNAO1, SLC5A1,

DHODH, PLSCR4, THBS1, ADH6, VNN1, HSD17B2, AXL, ZFP36, BGN,
PDCD1LG2, SLC17A2, ASPN, SERPINA4, EHD3, FXYD6, IGFBP1, ACADSB,

ADAMTS1, SFRP5, C1ORF162

Upregulated
DEGs

ENAH, TXNRD1, MCM4, GNPAT, FAM38B, SORT1, SRXN1, ECT2, TARBP1,
RGS5, RFX5, TKT, RAP2A, TP53I3, TUBG1, ITGA6, PRKDC, AKR1C3, CCT3,
TLCD1, ATAD2, HSPB1, CENPF, NUSAP1, SLC44A5, SPP1, CHEK1, CDH13,
PEG10, MKI67, ASPM, ROBO1, CCNA2, BUB1, CKAP2, CDC6, UCK2, DTL,

AURKA, TPX2, MDK, DEPDC1, GPC3, CAP2, UBE2T, PTTG1, CDKN3, RRM2,
PRC1, FOXM1, CCNB2, SPINK1, ANLN, KIF4A, PBK, CCNB1, GINS1

included these four TFs in the subsequent data of network
construction.We screened the 4TFs in theTRRUSTversion 2
database query to get eachTF target genes and theDEGs from
four profile datasets in GEO and TF-target genes for intersec-
tion analysis to obtain 42 differentially expressed target genes
of the TFs (key genes) (Table 6), which laid the foundation
for our next step to construct the gene signaling regulatory
network in HCC.

Based on the above TRRUST version 2 database, we con-
structed the TF-target transcription regulatory network with
the 42 key genes in HCC by Cytoscape 3.6.0 software
(Figure 4). The TF-target network complex contained 42 key
genes and 7 TFs. We performed enrichment analysis for the
42 key genes; the results were followed in Figure 6.

Subsequently, the HCC and adjacent tissue gene expres-
sion profile of GSE64632 were analyzed by GEO2R. We use
p<0.05 and |logFC| >1 as cut-off criterion to obtain 703
DEMs, including 452 upregulated DEMs and 251 downreg-
ulated DEMs. The interactions between TFs and microRNAs
were predicted by miRTarBase. And we performed intersec-
tion analysis between the miRNA-targeting genes and DEMs

in the microRNA assay data from GEO. Based on the above
TRRUST version 2 database andmiRTarBase, we constructed
miRNA-TF-mRNA regulatory network by Cytoscape soft-
ware (Figure 5). The results showed that some genes were
coregulated by the same miRNA or a few miRNAs, which
suggested that miRNAs could play an important role in the
progression of HCC. Using these coregulatory genes com-
bined with regulatory networks, we constructed the miRNA-
TF-mRNA regulatory network, which was shown in Figure 5.
In addition, The Prediction results of differentially expressed
miRNA targets revealed that EGR1 and FOS are coregulated
by 2 microRNAs including hsa-miR-181a-5p and hsa-miR-
192-5p, which were upregulated in HCC based on microRNA
assay data. In the targeting relationship between miR-181a-5p
and EGR1, FOS has been experimentally validated, especially.

3.3. Functional and Pathway Analysis of the Key Genes. In the
current study, we performed enrichment analysis for the 42
key genes which were differentially expressed inHCC tissues.
And the results were shown in Figure 6 and Table 7. And the
most enriched KEGG pathway of key genes was p53 pathway.
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Table 4: Enrichment analysis of DEGs.

(a) Top 10 enriched biological processes of DEGs

GO Name GO ID P value Count
response to chemical GO:0042221 8.60E-31 103
cellular response to chemical stimulus GO:0070887 9.67E-27 80
response to stimulus GO:0050896 2.83E-25 158
single-organism metabolic process GO:0044710 1.07E-24 129
response to organic substance GO:0010033 1.49E-22 75
small molecule metabolic process GO:0044281 2.85E-22 76
single-multicellular organism process GO:0044707 6.06E-20 109
negative regulation of biological process GO:0048519 6.44E-20 91
negative regulation of cellular process GO:0048523 8.35E-20 86
regulation of response to stimulus GO:0048583 9.64E-20 82

(b) Top 10 enriched cell components of DEGs

GO Name GO ID P value Count
extracellular region GO:0005576 1.17E-37 110
extracellular region part GO:0044421 3.22E-35 96
membrane-bounded vesicle GO:0031988 3.92E-29 83
extracellular space GO:0005615 5.47E-29 60
vesicle GO:0031982 5.72E-29 89
extracellular vesicle GO:1903561 7.65E-27 67
extracellular organelle GO:0043230 7.96E-27 67
extracellular membrane-bounded organelle GO:0065010 2.19E-26 66
extracellular exosome GO:0070062 3.55E-26 66
cytoplasmic part GO:0044444 6.80E-14 136

(c) Top 10 enriched molecular functions of DEGs

GO Name GO ID P value Count
protein binding GO:0005515 4.15E-21 146
identical protein binding GO:0042802 2.61E-09 30
protein homodimerization activity GO:0042803 3.74E-09 22
oxygen binding GO:0019825 1.97E-08 8
growth factor binding GO:0019838 4.52E-08 10
extracellular matrix binding GO:0050840 6.88E-08 7
oxidoreductase activity GO:0016491 7.54E-08 32
binding GO:0005488 1.17E-07 186
protein dimerization activity GO:0046983 1.97E-07 27
oxidoreductase activity, acting on CH or CH2 groups GO:0016725 2.42E-07 4

(d) Top 10 enriched KEGG pathways of DEGs

Pathway Name Pathway ID P value Count
Complement and coagulation cascades hsa04610 1.79E-06 10
Metabolic pathways hsa01100 1.78E-05 43
p53 signaling pathway hsa04115 3.88E-05 8
Prion diseases hsa05020 3.97E-05 6
Histidine metabolism hsa00340 6.78E-05 5
Retinol metabolism hsa00830 1.93E-04 7
Steroid hormone biosynthesis hsa00140 6.97E-04 6
Tryptophan metabolism hsa00380 8.26E-04 5
Cell cycle hsa04110 2.17E-03 8
Caffeine metabolism hsa00232 3.35E-03 2
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Table 5: Curated 36 cancer-related TF families.

Family Full Name Members (Official Gene Symbols)
AP1 Activator Protein 1 FOS, FOSB, JUN, JUNB, JUND
AP2 Activator Protein 2 TFAP2A, TFAP2B, TFAP2C, TFAP2D, TFAP2E
AR Androgen Receptor AR
ATF Activating Transcription Factor ATF1 – 7
BCL B-cell CLL/lymphoma BCL3, BCL6
BRCA breast cancer susceptibility protein BRCA1 – 3
CEBP CCAAT/enhancer binding protein CEBPA, CEBPB, CEBPD, CEBPE, CEBPG
CREB cAMP responsive element binding protein CREB1 - 5, CREM
E2F E2F transcription factor E2F1 – 7
EGR early growth response protein EGR1 – 4
ELK member of ETS oncogene family ELK1, ELK3, ELK4
ER Estrogen Receptor ESR1, ESR2
ERG ets-related gene ERG
ETS ETS-domain transcription factor ETS1, ETS2, ETV4, SPI1
FLI1 friend leukemia integration site1 FLI1
GLI glioma-associated oncogene homolog GLI1 - 4
HIF Hypoxia-inducible factor HIF1A, ARNT, EPAS1, HIF3A
HLF hepatic leukemia factor HLF
HOX homeobox gene HOXA, HOXB, HOXD series, CHX10, MSX1, MSX2, TLX1, PBX2
LEF lymphoid enhancing factor LEF1
MYB myeloblastosis oncogene MYB, MYBL1, MYBL2
MYC myelocytomatosis viral oncogene homolog MYC
NFI nuclear factor I; CCAAT-binding transcription factor NFIA, NFIB, NFIC, NFIX
NFKB Nuclear factor kappa B, reticuloendotheliosis oncogene NFKB1, NFKB2, RELA, RELB, REL
OCT Octamer binding proteins POU2F1 - 3, POU3F1 - 2, POU5F1
p53 P53 family TP53, TP73L, TP73
PAX paired box gene PAX1 – 9
PPAR Peroxisome proliferator-activated receptor PPARA, PPARD, PPARG
PR Progesterone Receptor PGR
RAR retinoic acid receptor RARA, RARB, RARG
SMAD Mothers Against Decapentaplegic homolog SMAD1 - 9
SP sequence-specific transcription factor SP1 – 8
STAT signal transducer and activator of transcription STAT1 - 6
TAL1 T-cell acute lymphocytic leukemia-1 protein TAL1
USF upstream stimulatory factor USF1, USF2
WT1 Wilms tumor 1 (zinc finger protein) WT1

Table 6: Differentially expressed target genes of the transcription factor.

Gene symbol

differentially expressed
target genes of the
transcription factor

CXCL14, FOSB, CYP1A2, ADRA1A, CYP3A4, FOS, PGLYRP2, CYP2B6, CETP, HGF, EGR1,
PCK1, IGF1, FBP1, CXCL12, CCL19, CHST4, ENG, F8, CD69, CD163, IGFBP3, RGN, TRIM22,
ID1, THBS1, ADH6, HSD17B2, BGN, ASPN, IGFBP1, CCNB1, TP53I3, PRC1, MKI67, ASPM,

FOXM1, PTTG1, CHEK1, CCNB2, CCNA2, SPP1

We queried all the samples from TCGA liver hepato-
cellular carcinoma (LIHC) with RNA-seq v2 data in our
study.The boxplots showed that the expression level of EGR1,
FOS, and FOSB was significantly lower in primary tumor
than that in the normal liver for LIHC patients from TCGA
(p<0.001) (Figure 7(a)). The overall survival analysis of the

three TFs was performed using the Kaplan-Meier curve.
We found that the overexpression of FOSB in HCC was
associated with reduced survival in cases with three TFs
high expression, compared with the remaining cases with
low/medium expression (Figure 7(b)). Through correlation
analysis, we found that there was a strong positive correlation
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Figure 4: TF-related regulatory network. (a) TF-target network of these 42 key genes in HCC. (b) The brief framework of this network.
TF-target network consisted of 42 nodes and 62 edges. The ellipses in the TF-gene network represented mRNAs with red (upregulated) and
green (downregulated), and the diamonds represented TFs. The ellipses with a number were the clustered genes in the brief framework and
the number of genes is shown inside. The interaction relationship between TFs and mRNAs were represented by arrows, and the direction
of the arrow was from the source to the target. Different colors in the lines represented the different interaction relationship between the TFs
and targets: red was for activation, green for repression, and grey for unknown.

between the expression level of EGR1 and FOS mRNA. And
there existed strong positive correlation toward coexpression
of FOS and FOSB among target samples. The correlation
between the expression level of EGR1 and FOSB mRNA was
moderate (Figure 7(c)).

Moreover, CCNB1, CCNB2, and CHEK1, which were
three of key genes in the TF-target network, were involved
in the p53 pathway. The boxplots showed that the expression
levels of CCNB1, CCNB2, and CHEK1 were significantly
higher in primary tumor than those in the normal liver for
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LIHC patients from TCGA (p<0.001). The overall survival
rates of patients with high expression of CCNB1, CCNB2,
and CHEK1 were all significantly lower than those of patients
with low/medium expression.The correlation analysis results
showed that there existed strong positive correlation among
CCNB1, CCNB2, and CHEK1 mRNA expression (Fig-
ure 7(c)).

3.4. qRT-PCR. We performed qRT-PCR to examine the ex-
pression of three differentially expressed TFs including
EGR1, FOS, and FOSB mRNA in HCC. The relative expres-
sions of EGR1, FOS, and FOSB mRNA were 0.493±0.558-
, 0.494±0.476-, and 0.500±0.551-fold downregulated in 20
tumor tissues versus adjacent nontumor tissues, respectively
(Figure 8). Similarly, we performed qRT-PCR to explore the
relationship among miR-181a-5p, TFs, and the key markers
of p53 signaling pathways including CCNB1, CCNB2, and
CHEK1. The relative expressions of CCNB1, CCNB2, and
CHEK1 mRNA were 3.938±3.887-, 3.225±3.388-, and 3.186±
3.508-fold upregulated in 20 tumor tissues versus adjacent
nontumor tissues, respectively (Figure 8). And the relative
expression of hsa-miR-181a-5p was 1.694±1.236-fold upregu-
lated in 20 tumor tissues versus adjacent nontumor tissues.

4. Discussion

Although some progress has been made in the study of HCC,
the exact mechanisms of occurrence and development in
HCC are not yet clear. In the current study, we constructed
networks related to transcription regulatory modes in HCC

and performed functional and KEGG pathway analysis for
the key genes. The enrichment analysis results showed that
key genes in the TF regulatory network were enriched in the
p53 signaling pathway. In addition, we performed qRT-PCR
and verification in the TCGA Dataset to confirm the results
based on bioinformatics analysis.

FOS (also known as c-FOS) and FOSB were both pro-
tooncogenes, which belong to the activator protein 1(AP1)
family [27]. Many studies have reported that FOS was
involved in proliferation, migration, and invasion of some
malignancies [28, 29]. In some cases, expression of the FOS
gene has also been associated with apoptotic cell death
[30]. However, there still existed some contradictions about
the role that c-FOS might play in the tumor progression.
Some studies showed that overexpression of FOS might be
associated with inhibition of tumor [31, 32]. Oliveira-Ferrer L
et al. reported that c-FOS overexpression increased the apop-
totic potential of ovarian cancer cells and inhibited tumor
growth and metastasis, which could be achieved by chang-
ing the adhesion of human ovarian cancer cell [33]. A study
by Guo J et al. showed that the expression of c-FOS in the
tumor tissues of pancreatic cancer seemed to be lower than
that in adjacent nontumor tissues [34]. However, some other
research showed that FOS could contribute to carcinogenesis
[35, 36]. Therefore, the above research work indicated that
c-FOS is expressed differently in different histological types
and is closely related to the proliferation, differentiation,
invasion, and apoptosis of tumor cells, which provided a new
therapeutic target for cancer by regulating the expression
of c-FOS. EGR1 (early growth response 1) belongs to EGR
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Figure 6: Enrichment analysis of key genes.

family of transcription factors that includes four members:
EGR1, EGR2, EGR3, and EGR4. It is a nuclear protein and
functions as a transcriptional regulator, which is a component
of p53 signaling [37, 38]. Abundant studies found that
expression of EGR1 was associated with HCCmetastasis and
proliferation [39, 40]. And a number of studies suggested
that EGR1 exhibits prominent tumor-suppressive activity
by activating major tumor suppressor factors, including
transforming growth factor-𝛽1, p53, p73, fibronectin, and
PTEN [40, 41]. In the present study, the mRNA expression
of FOS and EGR1 was lower in HCC tissues than that in
nontumor adjacent tissues based on bioinformatics analysis

and qPCR verification. And the low expression of FOS and
EGR1 was negatively associated with overall survival of HCC
patients based on TCGA data, although this correlation was
not statistically significant. The results above suggested that
EGR1, FOS, and FOSB, three cancer-related TFs, could play
an important role in the progression of HCC.

In the current study, we found that miR-181a-5p was
upregulated in HCC based on miRNA microarray data and
qRT-PCR verification. As a member of the miR-181 family,
the level of miR-181a-5p was overexpressed in many cancers
including breast cancers, multiple myeloma, pancreatic and
gastric cancer, and hepatocellular carcinoma [42–45]. And
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Table 7: Enrichment analysis of key genes.

(a) Top 10 enriched biological processes of key genes

GO Name GO ID P value Count
response to chemical GO:0042221 4.35E-16 29
cellular response to chemical stimulus GO:0070887 8.93E-16 25
response to oxygen-containing compound GO:1901700 4.92E-14 18
response to drug GO:0042493 7.49E-14 12
response to stimulus GO:0050896 2.07E-13 38
response to organic substance GO:0010033 2.53E-13 23
negative regulation of cellular process GO:0048523 6.20E-13 26
regeneration GO:0031099 1.64E-12 9
animal organ development GO:0048513 1.78E-12 22
negative regulation of biological process GO:0048519 6.23E-12 26

(b) Top 10 enriched molecular functions of key genes

GO Name GO ID P value Count
protein binding GO:0005515 4.10E-08 32
oxidoreductase activity, acting on CH or CH2 groups,
quinone or similar compound as acceptor GO:0033695 5.81E-06 2

caffeine oxidase activity GO:0034875 5.81E-06 2
cyclin-dependent protein kinase activity GO:0097472 8.20E-06 3
growth factor binding GO:0019838 3.10E-05 4
extracellular matrix binding GO:0050840 4.22E-05 3
chemokine activity GO:0008009 4.81E-05 3
oxidoreductase activity, acting on CH or CH2 groups GO:0016725 5.31E-05 2
receptor binding GO:0005102 5.38E-05 10
oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen, reduced
flavin or flavoprotein as one donor, and incorporation of
one atom of oxygen

GO:0016712 6.90E-05 3

(c) Top 10 enriched cell components of key genes

GO Name GO ID P value Count
extracellular region part GO:0044421 1.59E-09 20
extracellular region GO:0005576 1.97E-09 22
extracellular space GO:0005615 2.94E-09 14
membrane-bounded organelle GO:0043227 1.77E-08 38
cytoplasm GO:0005737 2.42E-08 36
platelet alpha granule lumen GO:0031093 5.55E-07 4
organelle GO:0043226 1.09E-06 38
platelet alpha granule GO:0031091 1.90E-06 4
cytoplasmic part GO:0044444 2.72E-06 30
membrane-bounded vesicle GO:0031988 3.14E-06 15

(d) Top 10 enriched KEGG pathway of key genes

Pathway Name Pathway ID P value Count
p53 signaling pathway hsa04115 8.24E-09 7
Cell cycle hsa04110 1.31E-04 5
Retinol metabolism hsa00830 1.31E-04 4
AMPK signaling pathway hsa04152 1.36E-04 5
Drug metabolism - cytochrome P450 hsa00982 1.65E-04 4
Metabolism of xenobiotics by cytochrome P450 hsa00980 2.06E-04 4
Progesterone-mediated oocyte maturation hsa04914 6.36E-04 4
Oocyte meiosis hsa04114 1.49E-03 4
Steroid hormone biosynthesis hsa00140 1.65E-03 3
FoxO signaling pathway hsa04068 2.04E-03 4
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Figure 7: Study of the clinical association of EGR1, FOS, FOSB, CCNB1, CCNB2, and CHEK1 with the clinicopathologic parameters of
hepatocellular carcinoma. (a) Boxplots depicting RNA expression levels of key genes in HCC (n = 371) versus nonmalignant liver (n = 50)
fromTCGA. (b) Kaplan-Meier plots comparing the overall survival rates in HCC cases (n=365) with high expression or without low/medium
expression. The data was recruited from UALCAN. P<0.05 was considered statistically significant. (c) Correlation analysis of three TFs and
three p53 markers. The data was recruited from Linkedomics (http://www.linkedomics.org).

http://www.linkedomics.org
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Table 8: Primer sequences used for qRT-PCR amplification.

Primer 5 > 3

EGR1 CACCTGACCGCAGAGTCTTT
GAGTGGTTTGGCTGGGGTAA

FOS GGGGCAAGGTGGAACAGTTA
AGTTGGTCTGTCTCCGCTTG

FOSB GCGCCGGGAACGAAATAAAC
AACTGATCTGTCTCCGCCTG

CCNB1 AATAAGGCGAAGATCAACATGGC
TTTGTTACCAATGTCCCCAAGAG

CCNB2 CCGACGGTGTCCAGTGATTT
TGTTGTTTTGGTGGGTTGAACT

CHEK1 ATATGAAGCGTGCCGTAGACT
TGCCTATGTCTGGCTCTATTCTG

GAPDH GACAGTCAGCCGCATCTTCT
ACCAAATCCGTTGACTCCGA

hsa-U6 CTCGCTTCGGCAGCACA
AACGCTTCACGAATTTGCGT

hsa-miR-181a-5p ACGCTGACCTATGAATTGACAGCC

some studies have reported that miR-181a was involved in
the pathogenesis of HCC by inducing hepatocyte epithelial-
mesenchymal transition and decreasing autophagy [46, 47].
A study by C. Zou et al. confirmed that miR-181a plays an
important role in the progression of HCC autophagy-related
modulator [48]. We found that FOS and EGR1 were both
targeted by miR-181a-5p based on prediction results of key
genes target, and the targeting relationship between miR-
181a-5p and FOS, EGR1, has been confirmed in some studies
[49, 50]. And based on correlation analysis from TCGA
data, there was a tendency to a positive association between
FOS and EGR1. Furthermore, the expression of FOS protein
downregulated by miR-181a has been reported [51]. And
another study revealed that aberrant EGR1 expression could
be suppressed by miR-181a-5p directly [52].

The role of the p53 pathway in the progression ofHCChas
been reported in the literature [53, 54]. As an important com-
ponent of the p53 pathway, TP53 (tumor protein p53) is the
common target of EGR1 and FOS. Studies found that in-
creased EGR1 expression could activate p53 signaling path-
way to induce apoptosis in HCC cells [55, 56]. Association
between FOS and p53 signaling has also been reported, but
the specific interaction relationship is not yet clear [57]. In
the current study, we found thatCCNB1, CCNB2, andCHEK1
were the target genes of TP53 based on bioinformatics analy-
sis and literature confirmation. Cyclin B1 (CCNB1) and cyclin
B2 (CCNB2) are important members of the cyclin family and
are important cell cycle regulators related to G2/M detec-
tion sites [58, 59]. One of its important roles is to modulate
and form a complex with cyclin-dependent kinase 1 (CDK1)
to phosphorylate the substrate, initiate the cell to G2/M phase
from G1/S, and promote mitosis [60]. Checkpoint kinase 1
(CHEK1), as a DNA damage sensor and cell death pathway
stimulator, regulates the progression of the cell cycle at the
S phase, G2/M checkpoint [61]. Damaged DNA activates
CHEK1, causing cell cycle arrest and repairing damaged
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Figure 8: Validation of key genes and hsa-miR-181a-5p expression
in 20 pairs of HCC and adjacent nontumor tissues by qRT-PCR.
Detection of EGR1, FOS, FOSB, CCNB1, CCNB2, and CHEK1
mRNA expression and hsa-miR-181a-5p expression in HCC versus
adjacent nontumor tissues was performed using qRT-PCR. Levels
of EGR1, FOS, and FOSB mRNA were 0.493±0.558-, 0.494±0.476-,
and 0.500±0.551-fold downregulated in tumor tissues, respectively,
compared to those in the adjacent nontumor ones. And the
levels of CCNB1, CCNB2, and CHEK1 mRNA were 3.938±3.887-,
3.225±3.388-, and 3.186±3.508-fold upregulated.The relative expres-
sion of hsa-miR-181a-5p was 1.694±1.236-fold upregulated.∗p<0.05,
∗∗p<0.01, and ∗ ∗ ∗p<0.001.

DNA; if extensive damage is not repaired, it induces apopto-
sis, thereby maintaining genome integrity and stability [62].
Due to its anti-injury effect, CHEK1 plays an important
role in tumor development and apoptosis [63–65]. Many
studies have reported that CCNB1, CCNB2, and CHEK1
were involved in p53 signaling pathway [66–68]. We found
that mRNA levels of three p53 markers including CCNB1,
CCNB2, and CHEK1 were significantly upregulated in 20
HCC tumor tissues versus nontumor adjacent tissues by bio-
informatics analysis and experimental verification, and their
mRNA expression levels were all negatively correlated with
HCC patients’ survival rates (p<0.001). Therefore, we specu-
lated that as an onco-microRNA, miR-181a-5p could inhibit
expression of FOS and EGR1 to regulate p53 signaling path-
way, which may be achieved through the upregulation of
CCNB1, CCNB2, and CHEK1, thereby promoting the pro-
gression of HCC.

5. Conclusion

Using multiple cohorts profile datasets and integrated bioin-
formatical analysis, we identified commonly 237 DEGs, and
finally found EGR1, FOS, and FOSB, 3 cancer-related TFs,
which were downregulated in HCC. In addition, we con-
structed the transcription factor-related regulatory networks
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based on EGR1, FOS, and FOSB and identified possible
miR-181a-5p→FOS/EGR1→p53 signaling pathway axis. It
should be noted that this study examined the conclusion by
qRT-PCR and bioinformatics analysis; further research needs
to be done to explore more specific mechanisms. Notwith-
standing its limitation, these findings significantly improved
the understanding of underlying molecular mechanisms in
HCC, and the key genes and pathways could be used as
diagnostic and therapeutic targets and diagnostic biomarkers.
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