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A B S T R A C T   

To explore the spatiotemporal evolution characteristics of heat vulnerability in the Pearl River 
Delta urban agglomeration during heatwave disasters, this research employs the Entropy Weight 
Method (EWM) to calculate the heat vulnerability assessment results for nine cities in the region 
spanning from 2001 to 2022. Through the application of kernel density estimation, Moran’s I, and 
the Geographically and Temporally Weighted Regression (GTWR) model, which is proven to be 
superior to traditional model such as OLS, this study analyzes the dynamic distribution patterns of 
heat vulnerability in the study area and dissect the trends of influencing factors. The results reveal 
that from 2001 to 2022, the overall heat vulnerability index in the study area demonstrates a 
fluctuating downward trend. Key contributors to heat vulnerability include high-frequency and 
long-duration heatwaves, population sensitivity, and changes in residents’ consumption levels. 
Throughout this period of development, the disparity in heat vulnerability among cities has 
gradually widened, indicating an overall pattern of uneven development in the region. Future 
attention should be focused on formulating heat adaptation strategies in areas with high 
vulnerability to enhance the overall sustainability of the study area.   

1. Introduction 

Under the influence of climate change, there has been a significant increase globally in the frequency, intensity, and duration of 
extreme heat events or heatwaves [1,2]. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report highlighted 
that global warming is projected to reach 1.5 ◦C within the period from 2021 to 2040 [3]. Heat disasters have had significant impacts 
on human health, ecosystems, the economy, agriculture, energy, and water resources [4,5]. The 2003 heatwave in France, for instance, 
led to the tragic death of over 15,000 people [6]. In 2006, the heatwave in California resulted in approximately 1200 hospitalizations 
and prompted 16,000 people to seek emergency room treatment [7]. In the summer of 2010, a heatwave caused over 600 wildfires in 
western Russia, releasing toxic gases [8]. Three heatwave events occurring between 2011 and 2013 resulted in economic damages of 
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approximately $60 billion in the USA [9]. The recent heatwave event in the North American region in 2022 caused at least 486 sudden 
deaths in the Canadian province of British Columbia within five days in June, a figure three times higher than historical records [10]. 
Meanwhile, the heatwave in China caused economic losses of $7.6 billion, accompanied by numerous issues such as frequent fires, 
dried-up rivers, suspended shipping, and power shortages [11]. 

In China, there is a spatial pattern of heatwave frequency and cumulative days, generally characterized by a distribution of “high in 
the south and low in the north” [12]. Over the past 42 years, the mortality burden caused by heatwaves has exhibited a non-linear, 
rapid growth in temporal evolution [13], with a more significant impact observed in the eastern and central regions. In the sum-
mer of 2022, Shanghai, Zhejiang Province, Fujian Province, and Guangdong Province have experienced the most intense heatwave 
since 1961 [14]. Furthermore, Chongqing witnessed more than twenty consecutive days with the daily maximum temperature 
exceeding 40 ◦C [15]. 

Heat and heatwaves in the Pearl River Delta have led to a range of challenges, including reduced crop yields, reservoir drying [16], 
insufficient drinking water supply, power shortages, and an increase in heat-related illnesses [17–19]. In 2004, drought, reduced 
rainfall, and prolonged high temperatures caused high forest fire risk, while on July 7, 2014, Guangdong’s power grid load peaked at 
90,214 million kilowatt-hours, the first in China to exceed 90 million under centralized dispatching [20]. The summer heat accelerated 
epidemic spread [21], with southern Guangdong, a dengue fever hotspot, reporting 45,189 cases in 2014, 90.51 % of which were in 
Guangzhou and Foshan [22]. In 2021, heatwaves caused the Xinfengjiang Reservoir, a key water source for the Pearl River Delta urban 
agglomeration, to drop to historic lows, challenging water supply security in the Dongjiang River Basin [23]. 

The research perspective on heatwave disasters has evolved from the traditional “disaster-risk” framework to the more compre-
hensive “human-environment system vulnerability” framework [24]. Initially drawing attention from meteorologists and medical 
scholars, the focus was on understanding patterns of heat stress and its impacts on human and environmental health [25]. In the future, 
it is anticipated that heatwaves will become more frequent and more intense [26]. With the involvement of scholars in geography and 
sociology, many researchers have adopted the Heat Vulnerability Index (HVI) to quantify the impact of heat disasters, differentiating 
spatially at national or city levels [27–30]. This approach assessed the sensitivity and adaptive capacity of social, economic, and 
environmental systems to heat risk. The HVI effectively characterizes regional vulnerability features and differences in vulnerability 
levels, enabling the formulation of targeted strategies [31]. 

However, determining heat vulnerability involves considering a multitude of factors, and there is no universally accepted set of 
criteria for assessing heat vulnerability [27]. The number of factors used in studies on heat vulnerability varies, ranging from 4 to 19, 
with selected indicators encompassing hazard exposure factors to elements related to population characteristics, socioeconomic 
conditions, and the built environment [32]. For instance, Cutter et al. proposed and developed the Social Vulnerability Index, listing 
population, environmental and social factors, including demographic characteristics like age, gender, and race, vulnerable populations 
with special needs, quality of human settlements, and characteristics of the built environment [33]. Numerous studies have built upon 
and refined Cutter’s research [29]. Various methodologies, including principal component analysis and composite indices, are 
commonly employed to extract vulnerability factors or compute the HVI [28]. Subsequently, these indices are visualized spatially, 
creating maps that reveal vulnerability patterns and social disparities in extreme heat [34,35]. Some scholars utilized remote sensing 
techniques to identify extreme heat and employ the Principal Component Analysis (PCA) or the Entropy Weight Method (EWM) to 
explore the spatial distribution of the HVI. Researches have shown that city centers often tend to exhibit higher vulnerability ag-
gregation [36,37]. The study of heat vulnerability spanned a broad range of scales, from focusing on communities [38] to national 
scales [39]. Indeed, not confined to disaster-prone regions, HVI calculations have also been extended to cold regions [40]. 

The vulnerability concept framework of Exposure-Sensitivity-Adaptive Capacity (ESA) has been widely applied in the vulnerability 
assessment of heat disasters [35,41–43]. This framework, encompassing vulnerability assessments of various components within the 
system, has provided a comprehensive understanding of the potential risk levels the system may face under different scenarios. 
Exposure reflects the characteristics, intensity, frequency, or degree of danger that a complex system in a given region faces from heat 
risk. Sensitivity refers to the degree of change in the internal structure and functions of the system under the stress of heat, contingent 
on the stability of the system. Adaptive capacity [24] refers to the system’s ability to responds disaster events, as well as its ability to 
recover from disaster losses, reflecting the degree to which the system can mitigate and reduce the damage from disasters. 

At the same time, as comprehensive research into vulnerability drivers and evolutionary mechanisms gradually deepens, regression 
analysis methods have been widely used in studies related to disaster vulnerability, such as traditional OLS regression [44,45], 
Geographically Weighted Regression (GWR) [46], Multiscale Geographically Weighted Regression(MGWR) [47], and Spatial Autor-
egressive Models (SAM) [48]. Although models like GWR can effectively capture spatial heterogeneity, they do not inherently account 
for temporal dynamics [49], which are crucial for the evolution of heat vulnerability. The Geographically and Temporally Weighted 
Regression (GTWR) model, a variant of the GWR model, can incorporate spatial and temporal information into the weighting matrix, 
thus identifying spatiotemporal heterogeneity. This model is currently gaining attention in research on spatiotemporal [50]. 

In general, vulnerability is dynamic [51–53]. On one hand, the intensity of heatwave disasters consistently surpasses thresholds, 
and the environmental and socio-economic context influencing vulnerability is continually changing. However, existing studies on 
heat vulnerability are primarily constrained by surface temperature data [54] and rely on cross-sectional data with large time spans 
[55,56]. There is still room for exploration in establishing a heat vulnerability framework that integrates a complete understanding of 
the dynamic process of heatwaves. On the other hand, existing research predominantly focuses on the selection of heat vulnerability 
indicators [28], framework construction [57], and vulnerability distribution patterns [58,59], with less attention to the spatiotemporal 
evolution and underlying causes of vulnerability. Simultaneously, the study area exhibits imbalances in climate change and 
socio-economic development, which may lead to significant variations in heat vulnerability at the spatial or regional level [60] that has 
received relatively less research attention. 
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Therefore, this study extends existing research by constructing a heat vulnerability assessment framework and indicator system 
from the dimensions of exposure, sensitivity, and adaptive capacity. This research utilizes the EWM and addition-subtraction method 
[61] to calculate multi-year heat vulnerability assessment results. Additionally, methods such as Kernel density estimation and 
Geographically and Temporally Weighted Regression(GTWR) model [62] have been employed to identify the spatiotemporal evo-
lution characteristics and influencing factors of heat vulnerability at the regional scale of the study area from 2001 to 2022. 

This study is the first to conduct a continuous dynamic analysis of heat vulnerability specifically for the Pearl River Delta urban 
agglomeration, enriching the indicator framework and offering higher temporal resolution compared to previous research. Meanwhile, 
methodologically, it innovatively employs the GTWR model, which has a higher robust goodness-of-fit, for investigating the causes of 
heat vulnerability, fully accounting for temporal and spatial non-stationarity. 

The aim of this research is to comprehensively illustrate the spatiotemporal dynamic development trends of heat vulnerability in 
the Pearl River Delta urban agglomeration, elucidate the characteristics of heat disasters, and explore more response information of the 
study region. The research intends to provide a theoretical reference to promote the establishment of a climate community of shared 
destiny in the study area and support regional coordinated development. 

2. Data and methodology 

2.1. Overview of the study area 

This study focuses on the urban agglomeration comprising Guangzhou, Shenzhen, Foshan, Dongguan, Zhongshan, Zhuhai, Huiz-
hou, Jiangmen, and Zhaoqing in the Pearl River Delta (Fig. 1), which is chosen as the primary research area due to its high level of 
urbanization and close economic ties. Covering a total area of 54,766,62 square kilometers, it represents only 0.52 % of the national 
territory but is home to 5.55 % of the whole country’s population. Moreover, in 2022, its GDP accounted for 8.65 % of the national 
total [63,64]. 

The majority of the region is located south of the Tropic of Cancer, featuring diverse topography that includes plains in the central 
part, as well as mountainous areas, hills, and islands. Influenced by both continental monsoons and maritime monsoons, the climate in 
this region is complex and variable. Simultaneously, global warming and rapid urbanization have garnered significant attention, 
particularly in relation to heat-related environmental issues [65]. 

As of the 7th National Population Census in 2021, the population in the study area has increased from 561, 18 million in 2010 to 
780, 14 million in 2020, reflecting a growth of 39 %, and this upward trend is expected to continue. In 2022, the overall climate in the 
region was characterized by a high number of hot days with strong intensity [66]. As a result, against the backdrop of climate change 

Fig. 1. Geographic Location of the study area. 
[Image Source: Map drawn by the author based on Survey Numbers GS(2022)4314 and Yue S(2022)315] 
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and rapid population growth, the study area is expected to face severe challenges related to water resource security, as well as sig-
nificant pressure for disaster prevention, reduction, and relief efforts [67,68]. 

2.2. Data sources 

This study adopts the criteria established by the China Meteorological Administration regarding high-temperature weather and 
heatwaves. It categorizes days with daily maximum temperatures ≥35 ◦C as high-temperature days [43]. When such high-temperature 
conditions persist for three or more consecutive days, it is identified as a heatwave [31]. 

29 national meteorological stations have been chosen within the study area from 2001 to 2022 (Fig. 1). Utilizing python and 
ordinary kriging spatial interpolation based on the latitude and longitude of meteorological stations, the study generated daily 0.1◦

raster maps of maximum temperatures (Table 1). By combining administrative boundary data of prefecture-level cities in China with 
temperature raster maps, the study calculated the daily average maximum temperature values for prefecture-level cities within the 
study area. 

2.3. Methods 

2.3.1. Construction of the heat vulnerability framework 
The risk of heat disasters is jointly determined by the exposure, sensitivity, and adaptive capacity of the vulnerable system. Drawing 

upon previous studies [69,70], the study selected 19 specific, feasible, and scientifically sound quantitative indicators from these three 
dimensions, to assess the heat vulnerability of spatial units in study area (Table 2). Indicators related to heatwaves have been included 
in the framework. In addition, the study further subdivided the sensitivity and adaptive capacity dimensions into environmental, 
economic and social dimensions, in order to assess the vulnerability in all aspects. 

First of all, non-dimensional standardization is performed on positive indicators (larger values are better) and negative indicators 
(smaller values are better) based on the extreme value method. 

Positive indicators: 

xʹ
ij =

xij − min
{
x1j,…, xnj

}

max
{
x1j,…, xnj

}
− min

{
x1j,…, xnj

} (1) 

Negative indicators: 

xʹ
ij =

max
{
x1j,…, xnj

}
− xij

max
{
x1j,…, xnj

}
− min

{
x1j,…, xnj

} (2)  

Where xij represents the value of the j-th indicator for the i-th city (i = 1, 2, …, n. j = 1, 2, …, m). The normalized value is denoted as x́ij, 
but for convenience, the normalized data in the following calculations is still represented as xij. In the establishment of the compre-
hensive model for vulnerability assessment indicators, the weights of various dimension indicators are determined using the EWM [83] 
to avoid the subjective impact of assigning weights. The mathematical expressions of the entropy method are as follows: 

Calculate the proportion of the i-th city for the j-th indicator: 

pij =
xij

∑n

i=1
xij

(3) 

Calculate the entropy value for the j-th indicator: 

ej = − k
∑n

i=1
pij ln pij (4) 

Table 1 
Sources of research data.  

Data Name Date Resolution Source 

Administrative boundary 
data 

2022 / Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences 
(https://www.resdc.cn/) 

Daily maximum 
temperature data 

2001–2022 Daily China Surface Climate Daily Value Dataset V3 (https://data.cma.cn/) 

Socioeconomic data 2001–2022 Annually China Statistical Yearbook, China Urban and Rural Statistical Yearbook, Guangdong Statistical 
Yearbook, Statistical Yearbooks of 9 prefecture-level cities, National Economic and Social 
Development Statistical Bulletin 

Population quantity and 
structure data 

2000, 2010, 
2020 

Annually the Fifth, Sixth, and Seventh National Population Censuses 

Water resource data 2001–2022 Annually Guangdong Provincial Water Resources Bulletin 
NDVI data 2001–2022 Annually NASA MOD13A3 Dataset (https://search.earthdata.nasa.gov/search)  
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In the formula: k = 1
ln n, ej ≥ 0. 

Calculate the redundancy of information entropy for the j-th indicator: 

dj =1 − ej (5) 

Calculate the weights for each indicator： 

Table 2 
Framework for heat vulnerability assessment in study area.  

Measurement 
System for Heat 
Vulnerability 

Target layer Dimension Layer Indicator layer Definition of Indicators Unit (of 
measure) 

Weights References 

Heat 
Exposure 

Exposure Average annual 
maximum 
temperature 

Annual maximum mean 
temperature 

◦C (+) 0.206 [71] 

High temperature 
days 

Number of days with daily 
maximum temperature 
greater than or equal to 
35 ◦C 

Day (+) 0.165 [31,69] 

Heatwave 
frequency 

Number of heatwave events Times (+) 0.162 [27,31] 

Duration of 
heatwaves 

Total duration of heatwave 
events 

Day (+) 0.150 [31] 

Intensity of 
heatwaves 

Cumulative temperature 
above 35 ◦C during 
heatwave events 

◦C(+) 0.149 [27,31] 

Permanent resident 
population 

Population Exposed to heat 
risk 

Ten thousand 
(+) 

0.168 [31] 

Heat 
Sensitivity 

Environmental 
Sensitivity 

Population density Spatial distribution 
aggregation of population 

Person per 
square 
kilometers (+) 

0.055 [37,41,72] 

Water resources 
emergency capacity 

Total water resources Billion cubic 
meters per year 
(− ) 

0.151 [73,74] 

Economic 
Sensitivity 

Local fiscal general 
public budget 
expenditure 

Public financial expenditure a hundred 
million (− ) 

0.176 [72] 

Regional gross 
domestic product 
(GDP) 

Economic level a hundred 
million (− ) 

0.172 [31] 

Consumer price 
index 

Resident consumption 
power 

% (− ) 0.116 [74] 

Social Sensitivity Proportion of 
female population 

Reflects the vulnerability 
characteristics of the female 

% (+) 0.126 [43,75] 

Proportion of 
population aged 0- 
14 

Reflects the vulnerability 
characteristics of the 
children 

% (+) 0.098 [76] 

Proportion of 
population over 65 
years old 

Reflects the vulnerability 
characteristics of the elderly 

%(+) 0.105 [37, 
77–79] 

Heat 
Adaptive 
Capacity 

Social Factors Number of health 
institutions 

Alternative indicators for 
the level of health 
protection against heatwave 
disasters 

(− ) 0.212 [43,80,81] 

Number of beds in 
health institutions 

Alternative indicators for 
the level of health 
protection against heatwave 
disasters 

(− ) 0.171 [81] 

Number of health 
technical personnel 

Alternative indicators for 
the level of health 
protection against heatwave 
disasters 

Person (− ) 0.161 [43,81] 

Economic Factors Gross domestic 
product (GDP) per 
capita 

Availability of Cooling 
Facilities in Household 

Yuan (− ) 0.231 [43,79] 

Environmental 
Factors 

Normalized 
Difference 
Vegetation Index 
(NDVI) 

Greening Level for Coping 
with High Temperatures 

(− ) 0.224 [31,35,82]  

J. Wang et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e34116

6

wj =
dj

∑m

j=1
dj

(6)  

In this study, HVI is calculated using the addition and subtraction method. The indices for each dimension layer are computed using the 
weighted summation method, which effectively reflects the synergistic relationship among the three dimensions. Mathematical ex-
pressions are as follows: 

HVI=EI + SI － AI (7)  

EI=
∑m

j=1
wij ∗ pij (8)  

SI=
∑m

j=1
wij ∗ pij (9)  

AI=
∑m

j=1
wij ∗ pij (10)  

In the model HVI represents the Heat Vulnerability Index. EI, SI, AI represent the Exposure Index, Sensitivity Index, and Adaptive 
Capacity Index, respectively. wij denotes the weight of the j-th indicator for the i-th region (refer to Table 2), and pij represents the 
standardized value of the j-th indicator for the i-th region. 

2.3.2. Kernel density estimation 
Kernel density estimation is capable of estimating the probability density of a random variable. It uses a continuous density curve 

and employs smoothing methods to describe the distribution pattern of the random variable, thereby investigating whether a uniform 
distribution phenomenon exists [84,85]. In this study, the Kernel density estimation method is employed to illustrate the distribution 
pattern of the HVI of the study area. Mathematical expressions are as follows: 

f(x)=
1

Nh

∑N

i=1
K
(xi − x

h

)
(11)  

K(x)=
1̅̅
̅̅̅̅

2π
√ exp

(

−
x2

2

)

(12)  

Where x is the random variable. N is the number of regional prefecture-level cities. xi represents the comprehensive index of the i-th 
city. x represents the average of the comprehensive index. K (⋅) represents the Kernel density, and h represents the window width, 
determining the precision in the kernel density estimation. 

MATLAB 2022b software has been utilized to run the Kernel density model, dynamically estimating all time points during the 
research period. Through comparisons at different time periods, this study aims to form a comprehensive understanding of the HVI of 
the study area, and capture the overall morphology and dynamic characteristics of its evolution. 

2.3.3. Exploratory spatial data analysis 
The Moran Index is divided into the Global Moran Index and the Local Moran Index [86], both of which are used to measure the 

overall clustering tendency and the clustering tendency between cities in the study area, respectively. 

IG =

∑n

a=1

∑n

b=1
wab(xa − x)(xb − x)

S2
∑n

a=1

∑n

b=1
wab

(13)  

IL =
xa − x

S2

∑n

b=1

wab(xa − x) (14)  

In the formula the IG represents the Global Moran Index, and the IL represents the Local Moran Index. The xa and the xb are the HVI of 
regions a and b, respectively. The x is the average of the HVI. The S2 is the variance of the HVI, and the wab is an element in the spatial 
weight matrix. 

If IL > 0, it indicates a positive spatial correlation among the HVI of various cities in the study area, meaning that the study objects 
are clustered spatially. While if IL < 0, it indicates a negative spatial correlation among the HVI of various cities in the study area, 
meaning that the study objects are dispersed spatially. If IL = 0, it suggests a random distribution of the study objects. 
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2.3.4. Geographically and Temporally Weighted Regression (GTWR) model 
The GTWR model introduces a temporal dimension on the basis of the Geographically Weighted Regression (GWR) model [87]. 

Utilizing panel data for spatial regression, this model effectively takes into account both temporal and spatial non-stationarity [88], 
enhancing the accuracy of estimation results. The model is expressed as follows: 

Yi = β0(ui, vi, ti)+
∑p

k=1
βk(ui, vi, ti)Xik + εi (15)  

In the model, the variables ui and vi represent the latitude and longitude coordinates of the gravity center of each city, and (ui, vi, ti)

denote the spatiotemporal coordinates of the ith city. X and Y refer to the explanatory and dependent variables, respectively, with p 
representing the number of explanatory variables. β0(ui, vi, ti) is the intercept term, and βk(ui, vi, ti) is the estimated coefficient for the 
kth explanatory variable. εi represents the model residuals. 

To eliminate multicollinearity among the data, a Variance Inflation Factor (VIF) test is conducted for each indicator, where 0 < VIF 
<10 indicates the absence of multicollinearity. In this study, a total of 12 indicators have been ultimately selected for analysis 
(Table 3). 

3. Results and analysis 

3.1. The evolutionary characteristics over time dimension 

3.1.1. The overall HVI decreases over time 
The overall HVI in the study area showed a decreasing trend over the period from 2001 to 2022 (Fig. 2). The density function curve 

shifted towards lower values, with a noticeable shift towards higher values in 2004. This may be related to the heatwave at the end of 
June to early July in 2004, which led to 39 deaths from heatstroke in Guangzhou [89], multiple car fires, and peak water and electricity 
consumption throughout the city. 

The density function curve of the heat exposure index showed a trend of shifting towards higher values over time, with an overall 
transition from a single-peak to a multi-peak shape. This indicates an increasing danger due to frequent extreme heatwave events and 
rapid population concentration exposed to heat risk. 

The density function curve of the heat sensitivity index was mainly characterized by a M-shaped bimodal distribution, suggesting 
complexity in the disaster situation within the study area, with variations in the sensitivity level. The highest peaks were concentrated 
in the high-value region, indicating a trend of initially decreasing and then increasing over time. After 2020, the density curve of heat 
sensitivity showed an increasing trend, reflecting the need for the study area to enhance adaptation measures to reduce its own 
sensitivity. 

The density function curve of the heat adaptation capacity index showed a slight and steady shift over time, presenting an 
increasing trend. The maximum peak value of the density function curve changed relatively little over the sample period, with the 
mode of heat adaptation capacity concentrated between 0.3 and 0.4. The overall shape of the curve transitioned from a single-peak to a 
multi-peak pattern, gradually exhibiting more pronounced skewed multi-modal distribution characteristics, with peaks aggregating 
towards higher numerical values. The overall adaptation capacity of the study area to heat risk showed stable development over time, 
while vulnerable areas exhibited extreme sensitivity to heat disasters. Due to factors such as the lagging resilience development in the 
face of heatwave compared to economic growth, these areas may find it challenging to reach the average level in a short period. 

3.1.2. The HVI in the majority of cities shows a declining trend 
The majority of cities in the Pearl River Delta urban agglomeration showed decreasing values of the HVI over time (Fig. 3). Based on 

the growth rate at the end compared to the beginning of the period, the cities can be categorized into three types: ① Rapid decline with 
significant fluctuations (decrease >50 %), including Guangzhou and Shenzhen. ② Slow decline with Fluctuations (0 % < decrease 
≤50 %), including Foshan, Huizhou, Zhaoqing, Dongguan, Zhuhai, and Jiangmen. ③ Fluctuating increase (decrease ≤0), represented 
by Zhongshan, which is primarily due to its significantly higher sensitivity to high temperature days compared to other cities. 

Table 3 
Indicators selected by GTWR model.  

Target Layer Variable Name Unit (of measure) VIF 

Heat Exposure Average annual maximum temperature ◦C 1.793 
High temperature days Day 4.723 
Heatwave frequency Times 4.334 

Heat Sensitivity Population density Person per square kilometers 4.028 
Water resources emergency capacity Billion cubic meters per year 5.584 
Consumer price index % 1.312 
Proportion of female population % 1.561 
Proportion of population aged 0-14 % 2.586 
Proportion of population over 65 years old % 5.586 

Heat Sensitivity Number of health institutions / 7.123 
Number of beds in health institutions / 5.681 
GDP per capita Yuan 3.277  
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Fig. 2. The dynamic evolution of heat vulnerability and various dimension indices in the study area from 2001 to 2022.  

Fig. 3. Changes in Vulnerability Indices of Cities in the study area from 2001 to 2022.  
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The vulnerability index curves of various cities experienced intense fluctuations from 2001 to 2010, stabilized between 2010 and 
2012, and showed minor fluctuations after 2012. In 2011, Guangdong Province established the country’s first emergency meteoro-
logical channel, rapidly disseminating meteorological warning information and emergency science popularization knowledge [20]. In 
addition to the decreasing threat of heatwave disasters in the Pearl River Delta urban agglomeration, the intensified efforts in heat 
prevention measures such as heat subsidies, and the shift in economic development patterns have contributed to the reduction of the 
HVI. 

The difference in HVI among cities gradually increased over time. From 2001 to 2010, the trends among cities were similar, with 
relatively small differences. However, after 2010, a trend of clustered changes gradually formed. Cities like Zhaoqing, Foshan, and 
Zhongshan exhibited significantly higher HVI compared to other cities. Dongguan, Jiangmen, Huizhou, and Zhuhai showed a clustered 
trend in the changes of HVI. Meanwhile, Guangzhou and Shenzhen displayed a clustered trend of decreasing HVI. The difference of HVI 
between the cluster of Zhaoqing, Foshan, Zhongshan and the cluster of Guangzhou, Shenzhen gradually became more pronounced. 

In the dimension of heat exposure, the heat exposure indices of various cities generally showed an increasing trend, accompanied 
by significant fluctuations. All regions reached the peak of the heat exposure index in 2021, and the differences in exposure between 
different regions gradually increased. Specifically, Zhuhai and Zhongshan maintained relatively low levels of heat exposure indices. In 
contrast, Zhaoqing, Guangzhou, and Foshan consistently maintained higher levels of heat exposure indices, indicating that these areas 
are more susceptible to the risk of exposure to heatwave disasters, consistent with previous research results [79]. 

In the dimension of heat sensitivity, all cities except Zhongshan and Zhuhai showed a fluctuating downward trend in the index. 
Among them, Guangzhou and Shenzhen exhibited a particularly significant decrease. An analysis of the trend in indicators revealed 
that the local fiscal general public budget expenditures in Guangzhou and Shenzhen have significantly increased, surpassing other 
prefecture-level cities, contributing to their relatively good performance in terms of heat sensitivity. The higher sensitivity in 
Zhongshan and Zhuhai was attributed to low water resource reserves and a relatively higher proportion of female population. 

In the dimension of heat adaptability, the indices of all cities were steadily increasing year by year. The rate of increase in heat 
adaptability in Guangzhou was significantly higher than in other cities, and Shenzhen has rapidly risen to become the second-ranked 
city in the adaptability index from a low value at the beginning of the time range. Due to its geographical and economic advantages, the 
study area has abundant clinical resources and human resources, leading in “Interne and healthcare” and showing rapid momentum in 
technological innovation and development. However, the current level of medical development in the region is uneven. With a rapidly 
growing economic level, Guangzhou and Shenzhen have more comprehensive social security systems, providing better medical se-
curity and social services to cope with issues such as heatstroke caused by heatwave disasters. At the same time, the two cities had 
different focuses in medical development. Guangzhou tends to develop into a medical hub, radiating to improve the overall medical 
standards of the study area, while Shenzhen emphasizes consolidating grassroots medical care, considering health management and 
elderly care as growth points [90]. 

3.2. The evolutionary characteristics in spatial dimension 

3.2.1. The transition from negative correlation to positive correlation in space 
Due to the polarization phenomenon of HVI within the study area from 2001 to 2022 (Fig. 3), temporal analysis alone cannot 

determine the clustering degree and mutual influence of HVI in spatial dimension. Therefore, this section will explore the spatial 

Table 4 
Global Moran’s index and tests.  

Year Moran’s I p z 

2001 − 0.584 0.018 − 1.820 
2002 − 0.652 0.005 − 2.165 
2003 − 0.127 0.472 − 0.009 
2004 − 0.571 0.012 − 1.886 
2005 − 0.504 0.044 − 1.507 
2006 0.037 0.261 0.631 
2007 0.140 0.171 1.093 
2008 − 0.089 0.416 0.123 
2009 0.069 0.214 0.755 
2010 0.114 0.190 0.894 
2011 0.094 0.204 0.820 
2012 0.031 0.336 0.345 
2013 − 0.226 0.386 − 0.414 
2014 − 0.036 0.338 0.345 
2015 − 0.130 0.461 − 0.030 
2016 − 0.012 0.333 0.388 
2017 − 0.136 0.474 − 0.054 
2018 − 0.319 0.233 − 0.787 
2019 − 0.006 0.291 0.449 
2020 0.015 0.271 0.543 
2021 0.085 0.211 0.848 
2022 − 0.264 0.330 − 0.595  
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distribution of HVI in the study area. 
The results of global spatial autocorrelation analysis (Table 4) showed that from 2001 to 2004, there was a significant negative 

spatial correlation of HVI in the study area. However, after 2005, this negative spatial correlation gradually weakened and evolved 
towards positive correlation. This phenomenon indicated that some common influencing factors are gradually shared within the re-
gion, leading to the relative clustering of high-vulnerability areas. 

Taking the years 2001, 2004, 2007, 2010, 2013, 2016, 2019, and the year with the high outbreak of heatwave events in 2021, as 
well as 2022, as examples for local spatial autocorrelation tests. During the sample period, the study area gradually exhibited a high- 
high agglomeration effect (Fig. 4). Overall, cities did not exhibit significant local spatial autocorrelation during the study period, 
except Dongguan, Jiangmen, and Huizhou. 

Notably, Jiangmen experienced a shift from low-high value areas in 2004–2013 to high-high value areas in 2019. This transition 
likely reflected the combined effects of climate change and environmental factors within the region, leading to an increase in heat 
vulnerability across the entire area surrounding Jiangmen. This trend warranted widespread attention. In contrast, Dongguan 
consistently exhibited high-low value areas, indicating that Dongguan itself has high heat vulnerability, while the surrounding areas 
have relatively low heat vulnerability. This suggested that the influence of the surrounding areas on Dongguan was relatively small. 
Similarly, Huizhou showed a trend from low-low value areas to high-low value areas during 2019–2022, reflecting that the city has 
become more vulnerable to heat over this period. 

Taken together, the cases of Jiangmen, Dongguan, and Huizhou underscore the varying degrees of heat vulnerability and the need 
for targeted strategies to address these challenges in different urban contexts. 

3.2.2. The overall trend of vulnerability levels shows a decreasing tendency 
To further compare the spatial pattern evolution of HVI among different spatial units within the study area, the map is categorized 

into three types: low vulnerability area, medium vulnerability area, and high vulnerability area, using the natural breakpoint method 
(Fig. 5). 

During the sample period, the area of regions with medium to high levels of HVI initially increased and then decreased. In 2004, the 
overall level of temperature vulnerability increased, with a significant increase in the area of high vulnerability. This trend gradually 
showed a pattern of high vulnerability in the eastern and western regions and low vulnerability in the central region. This may be 
attributed to the increase in temperature and the occurrence of more extreme weather events, leading to greater heat pressure on cities. 
After the extreme heat in 2021, the implementation of response measured and the improvement of social adaptability led to a certain 

Fig. 4. Local Moran’s Index of HVI in the study area from 2001 to 2022.  
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degree of degradation in heat vulnerability in Zhaoqing and Foshan in 2022. 
Cities in medium and high vulnerability areas have evolved from a block-like distribution to a continuous pattern, such as Foshan 

and Zhongshan. Cities with low vulnerability have transitioned from a multi-center to a single-center pattern, as seen in Guangzhou 
and Shenzhen. Despite the high population density in central cities, their lower HVI was attributed to economic development and 
strong radiation capacity. This suggested that the level of economic development may have a strong inhibitory effect on the heat 
vulnerability of cities. 

3.3. Analysis of influencing factors 

3.3.1. Modelling evaluation 
The adjusted R2 for the GTWR model is 0.86, showing an improvement of 0.02 compared to the OLS model. Also, the AICc is 

reduced by 92.298, indicating that the GTWR model has a higher goodness of fit and performs better in analyzing the explanatory 
variables (Table 5). 

3.3.2. Temporal evolution volatility of influencing factors 
According to the regression results of the GTWR model, the estimated coefficients of various influencing factors on the HVI of the 

study area were obtained at different time and space locations. Based on this, box plots have been drawn to explore their temporal 
evolution patterns (Fig. 6).  

(1) Heat Exposure 

Fig. 5. Distribution of HVI for Cities in the study area from 2001 to 2022.  

Table 5 
Comparative results of OLS and GWTR models.  

Models OLS GTWR 

AICc − 810.513 − 902.811 
R2 0.97896 0.99762 
Adjusted R2 – 0.99747  
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The main influencing indicators were the annual average maximum temperature, high temperature days and heatwave frequency, 
all of which had a positive effect on the HVI. 

The contributions of the annual average maximum temperature and high temperature days to HVI were in a fluctuating upward 
trend. Therefore, it is necessary to strengthen year-round meteorological monitoring, improve the accuracy of predicting extreme 

Fig. 6. Trend of changes in regression coefficients of explanatory variables from 2001 to 2022.  
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heatwave events, and ensure the rapid and effective implementation of measures during heatwave events.  

(2) Heat Sensitivity 

In the sensitivity dimension, the factors of the female population ratio and the consumer price index (CPI) had a relatively strong 
influence. Water resource emergency capacity, CPI, and the population ratio of 0–14 years old showed a negative correlation with HVI, 
while the female population ratio showed a positive correlation. Population density and population ratio of 65 years and above 
exhibited stage-wise changes. 

Firstly, the population density factor had a promoting effect before 2011 and exerted an inhibitory effect after 2011, which may be 
due to the rapid urbanization process in the study area. The significant growth in population density in Zhongshan, Guangzhou, 
Foshan, Dongguan, and Shenzhen in 2009–2010 led to the concentration of the population in relatively small areas. This concentration 
may have resulted in a stronger urban heat island effect, making urban areas more susceptible to heat risk. Over time, the urbanization 
process has become more stable, and after macroeconomic regulation and control at the national and regional levels, population 

Fig. 7. Map of Regression Coefficients for Influencing Factors on Heat Vulnerability in the study area in 2022.  
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growth slowed down in 2011, thereby slowing down the change of the HVI. Therefore, in the long run, the growth of population 
density tends to be an inevitable trend, but with reasonable regulation, its negative impact on heat vulnerability will gradually 
strengthen. Ensuring that the growth rate of population density is in line with the urbanization process is crucial for decrease the HVI 
and the exposure to heatwaves. 

In the early and late stages of the study, the regression coefficients for water resource emergency capacity showed a small but 
fluctuating difference, which was determined by the uneven spatial and temporal distribution of water resources in the study area 
[91]. The mid-term regression coefficients demonstrated a fluctuating downward trend, reflecting the increasing inhibitory effect of 
controlling the total water resources on the HVI. This was attributed to the water resource management system proposed in the 2011 
″Comprehensive Plan for Water Resources in Guangdong Province [92]". The implementation of the strictest water resource man-
agement system in 2013 at the national level has promoted more accurate and systematic planning by local governments for regional 
water resources [93]. 

Secondly, the estimated coefficients of CPI showed an overall increasing trend throughout the study period. This indicated that with 
the development of economic prosperity, residents’ purchasing power gradually increases, and their ability to cope with heatwave 
disasters also improves. The overall regression coefficients gradually approached zero, indicating a weakening inhibitory effect of this 
indicator. It is necessary for the government and economic research institutions to closely monitor price index data and timely assess 
changes in residents’ living standards. 

Thirdly, the fluctuation curves of the female population ratio and the population ratio of 0–14 years old both showed a decreasing 
trend over time. The proportion of female population in cities was increasing year by year, necessitating special attention to the 
sensitivity of the female population to heatwaves. Proportion of population aged 0–14 has an inhibitory effect on the change in the 
HVI. This may be because children aged 0–14 typically have greater physiological adaptability than adults, with a relatively intact 
temperature regulation system. The implementation of relatively comprehensive social security measures for children in the study 
area, including education, healthcare, and daily care, alleviates their vulnerability to heatwaves. 

Finally, the regression coefficient of proportion of population over 65 years old exhibited a phased change, showing an inhibitory 
effect from 2011 to 2018. During the period of rapid development in the cities of the study area, the vulnerability assessment may be 
more influenced by the proportion of the elderly population. More and more studies have confirmed that the elderly are more 
vulnerable in heatwave disasters [94], sparking high social attention. The study area has introduced policy measures to promote the 
health and adaptive capacity of the elderly. Therefore, the contribution of the elderly population ratio to the overall vulnerability 
shifted from positive to negative. From 2019 to 2022, the regression coefficient of the elderly population ratio factor returned to a 
positive value, possibly due to the gradual strengthening of the aging trend in recent years.  

(3) Heat Adaptive Capacity 

Adaptation dimension factors had negative regression coefficients, indicating that the number of health institutions, the number of 
beds in health institutions, and per capita regional GDP all have inhibitory effects on the increase of HVI, with similar effects. Since the 
21st century, the rapid development of the study area has improved people’s economic standards of living. The construction of urban 
public health systems has been increasingly perfected, and the continuous stable increase in the construction of health and medical 
institutions, bed capacity, and staffing of technical personnel has effectively reduced the HVI in the study area. 

3.3.3. Spatial heterogeneity of influencing factors 
Visualizing the regression coefficients calculated by GTWR on spatial distribution, taking the year 2022 as an example (Fig. 7). In 

2022, the high-value areas of heat exposure factor regression coefficients in the study area were mainly located in the northern and 
eastern regions, showing significant heterogeneity in the primary influencing regions for different factors. The high-value areas of 
regression coefficients for heat sensitivity factors were mainly in the central region, while the high-value areas for heat adaptive 
capacity factors were primarily in the surrounding areas. 

Overall, the main reasons for the formation of high vulnerability areas in the central and northern parts of the study area were 
intense and prolonged high-temperature days, frequent heatwave events, and the concentration of high-density populations and 
economies. 

4. Discussion 

Based on the conclusions, to further enhance urban resilience to heat risk, this study proposes the following recommendations: 
Spatial and temporal differences in thermal vulnerability exist in the study area. The primary concern stems from increasingly 

severe heat disasters, necessitating enhanced forecasting and warning systems for high temperatures [95]. Currently, China lacks a 
comprehensive mechanism to address heatwaves. In contrast, the UK established the Heatwave Plan as early as 2014, updated in 2022, 
which includes a five-level warning service, collaborative response measures across sectors, and systematic monitoring and fore-
casting. Furthermore, learning from developed countries’ experiences, raising public awareness that “heatwaves are disasters” can be 
beneficial [96]. For instance, the US government created the heat.gov website to visually display national heatwave conditions, aiming 
to ensure citizen safety and provide tools and resources to combat heatwaves [97]. Taking Zhaoqing as an example, its higher fre-
quency, intensity, and duration of heatwaves compared to other cities highlight the need for targeted monitoring and pilot projects in 
the Pearl River Delta urban agglomeration. 

Moreover, these findings are closely tied to regional economic development, social equity in resource allocation, and 
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environmental conditions, necessitating attention from relevant authorities. Economically, improving economic development levels is 
fundamental. Guangzhou and Shenzhen consistently maintain advantages in overall assessments due to their leading economic status. 
In terms of social equity in resource allocation, disparities in medical facilities and material reserves across regions are evident. This 
calls for government efforts to strengthen the public health system, ensuring sufficient food, medical services, and health protection 
during hot weather. Attention should be directed towards vulnerable groups, particularly women and the elderly, by encouraging 
communities to provide cooling spaces and establish outdoor work standards, as well as using physical cooling methods [98]. 

Regarding environmental conditions, governments should enhance water resource management, implement water-saving mea-
sures, and bolster emergency water reserves to prevent crises at reservoirs during hot weather. Additionally, the study underscores that 
ongoing improvements in healthcare infrastructure, bed capacity, and skilled personnel effectively reduce heat vulnerability in the 
study area. Therefore, it is recommended that governments strengthen the construction and support of public health systems to ensure 
adequate food, medical services, and health protection during high temperatures. 

5. Conclusion 

In summary, the overall heat vulnerability index (HVI) decreased over time in the study area, with each city showing fluctuating 
declines and increasing differences among them, especially after 2010. Vulnerable cities like Zhongshan are highly sensitive to 
heatwaves, underscoring the importance of sharing experiences and resources with nearby less vulnerable areas. Spatially, from 2001 
to 2022, heat vulnerability shifted from negative to positive clustering, with noticeable declines in high HVI levels from 2021 to 2022. 
High-vulnerability cities changed from regional clusters to continuous distributions, indicating significant interdependence and the 
need to enhance heat adaptation, particularly in cities like Zhaoqing. The GTWR model identified frequent heatwaves, social sensi-
tivity, and changes in residents’ consumption as key factors influencing heat vulnerability. Special attention should be given to the 
frequency and duration of heatwaves, and timely social services for vulnerable groups, especially women and the elderly. Improving 
economic development, water resources, medical facilities, and promoting green initiatives can establish resilient communities, reduce 
disaster risks, and support sustainable development planning. 
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